
Python
Notes for ProfessionalsPython®

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Python® group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

800+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Python Language 2 ..
Section 1.1: Getting Started 2 ...
Section 1.2: Creating variables and assigning values 6 ..
Section 1.3: Block Indentation 10 ...
Section 1.4: Datatypes 11 ...
Section 1.5: Collection Types 15 ..
Section 1.6: IDLE - Python GUI 19 ..
Section 1.7: User Input 21 ...
Section 1.8: Built in Modules and Functions 21 ..
Section 1.9: Creating a module 25 ...
Section 1.10: Installation of Python 2.7.x and 3.x 26 ...
Section 1.11: String function - str() and repr() 28 ...
Section 1.12: Installing external modules using pip 29 ...
Section 1.13: Help Utility 31 ...

Chapter 2: Python Data Types 33 ..
Section 2.1: String Data Type 33 ...
Section 2.2: Set Data Types 33 ...
Section 2.3: Numbers data type 33 ..
Section 2.4: List Data Type 34 ...
Section 2.5: Dictionary Data Type 34 ...
Section 2.6: Tuple Data Type 34 ...

Chapter 3: Indentation 35 ...
Section 3.1: Simple example 35 ...
Section 3.2: How Indentation is Parsed 35 ...
Section 3.3: Indentation Errors 36 ...

Chapter 4: Comments and Documentation 37 ..
Section 4.1: Single line, inline and multiline comments 37 ..
Section 4.2: Programmatically accessing docstrings 37 ..
Section 4.3: Write documentation using docstrings 38 ..

Chapter 5: Date and Time 42 ..
Section 5.1: Parsing a string into a timezone aware datetime object 42 ..
Section 5.2: Constructing timezone-aware datetimes 42 ..
Section 5.3: Computing time dierences 44 ..
Section 5.4: Basic datetime objects usage 44 ...
Section 5.5: Switching between time zones 45 ..
Section 5.6: Simple date arithmetic 45 ...
Section 5.7: Converting timestamp to datetime 46 ..
Section 5.8: Subtracting months from a date accurately 46 ...
Section 5.9: Parsing an arbitrary ISO 8601 timestamp with minimal libraries 46 ..
Section 5.10: Get an ISO 8601 timestamp 47 ..
Section 5.11: Parsing a string with a short time zone name into a timezone aware datetime object 47
Section 5.12: Fuzzy datetime parsing (extracting datetime out of a text) 48 ..
Section 5.13: Iterate over dates 49 ..

Chapter 6: Date Formatting 50 ..
Section 6.1: Time between two date-times 50 ...
Section 6.2: Outputting datetime object to string 50 ..

Section 6.3: Parsing string to datetime object 50 ...

Chapter 7: Enum 51 ..
Section 7.1: Creating an enum (Python 2.4 through 3.3) 51 ...
Section 7.2: Iteration 51 ...

Chapter 8: Set 52 ...
Section 8.1: Operations on sets 52 ..
Section 8.2: Get the unique elements of a list 53 ..
Section 8.3: Set of Sets 53 ..
Section 8.4: Set Operations using Methods and Builtins 53 ...
Section 8.5: Sets versus multisets 55 ..

Chapter 9: Simple Mathematical Operators 57 ...
Section 9.1: Division 57 ...
Section 9.2: Addition 58 ..
Section 9.3: Exponentiation 59 ..
Section 9.4: Trigonometric Functions 60 ..
Section 9.5: Inplace Operations 61 ...
Section 9.6: Subtraction 61 ..
Section 9.7: Multiplication 61 ...
Section 9.8: Logarithms 62 ..
Section 9.9: Modulus 62 ...

Chapter 10: Bitwise Operators 65 ...
Section 10.1: Bitwise NOT 65 ..
Section 10.2: Bitwise XOR (Exclusive OR) 66 ..
Section 10.3: Bitwise AND 67 ..
Section 10.4: Bitwise OR 67 ..
Section 10.5: Bitwise Left Shift 67 ..
Section 10.6: Bitwise Right Shift 68 ..
Section 10.7: Inplace Operations 68 ..

Chapter 11: Boolean Operators 69 ..
Section 11.1: `and` and `or` are not guaranteed to return a boolean 69 ..
Section 11.2: A simple example 69 ...
Section 11.3: Short-circuit evaluation 69 ...
Section 11.4: and 70 ...
Section 11.5: or 70 ..
Section 11.6: not 71 ..

Chapter 12: Operator Precedence 72 ..
Section 12.1: Simple Operator Precedence Examples in python 72 ...

Chapter 13: Variable Scope and Binding 73 ...
Section 13.1: Nonlocal Variables 73 ...
Section 13.2: Global Variables 73 ..
Section 13.3: Local Variables 74 ..
Section 13.4: The del command 75 ...
Section 13.5: Functions skip class scope when looking up names 76 ...
Section 13.6: Local vs Global Scope 77 ...
Section 13.7: Binding Occurrence 79 ...

Chapter 14: Conditionals 80 ...
Section 14.1: Conditional Expression (or "The Ternary Operator") 80 ...
Section 14.2: if, elif, and else 80 ...
Section 14.3: Truth Values 80 ...

Section 14.4: Boolean Logic Expressions 81 ...
Section 14.5: Using the cmp function to get the comparison result of two objects 83 ...
Section 14.6: Else statement 83 ...
Section 14.7: Testing if an object is None and assigning it 84 ..
Section 14.8: If statement 84 ..

Chapter 15: Comparisons 86 ..
Section 15.1: Chain Comparisons 86 ..
Section 15.2: Comparison by `is` vs `==` 87 ..
Section 15.3: Greater than or less than 88 ..
Section 15.4: Not equal to 88 ...
Section 15.5: Equal To 89 ...
Section 15.6: Comparing Objects 89 ...

Chapter 16: Loops 91 ...
Section 16.1: Break and Continue in Loops 91 ..
Section 16.2: For loops 93 ..
Section 16.3: Iterating over lists 93 ..
Section 16.4: Loops with an "else" clause 94 ..
Section 16.5: The Pass Statement 96 ..
Section 16.6: Iterating over dictionaries 97 ..
Section 16.7: The "half loop" do-while 98 ..
Section 16.8: Looping and Unpacking 98 ...
Section 16.9: Iterating dierent portion of a list with dierent step size 99 ...
Section 16.10: While Loop 100 ..

Chapter 17: Arrays 102 ..
Section 17.1: Access individual elements through indexes 102 ...
Section 17.2: Basic Introduction to Arrays 102 ..
Section 17.3: Append any value to the array using append() method 103 ..
Section 17.4: Insert value in an array using insert() method 103 ..
Section 17.5: Extend python array using extend() method 103 ...
Section 17.6: Add items from list into array using fromlist() method 104 ..
Section 17.7: Remove any array element using remove() method 104 ...
Section 17.8: Remove last array element using pop() method 104 ..
Section 17.9: Fetch any element through its index using index() method 104 ...
Section 17.10: Reverse a python array using reverse() method 104 ...
Section 17.11: Get array buer information through buer_info() method 105 ..
Section 17.12: Check for number of occurrences of an element using count() method 105
Section 17.13: Convert array to string using tostring() method 105 ..
Section 17.14: Convert array to a python list with same elements using tolist() method 105
Section 17.15: Append a string to char array using fromstring() method 105 ...

Chapter 18: Multidimensional arrays 106 ..
Section 18.1: Lists in lists 106 ..
Section 18.2: Lists in lists in lists in.. 106 ..

Chapter 19: Dictionary 108 ..
Section 19.1: Introduction to Dictionary 108 ...
Section 19.2: Avoiding KeyError Exceptions 109 ...
Section 19.3: Iterating Over a Dictionary 109 ...
Section 19.4: Dictionary with default values 110 ...
Section 19.5: Merging dictionaries 111 ...
Section 19.6: Accessing keys and values 111 ..
Section 19.7: Accessing values of a dictionary 112 ...

Section 19.8: Creating a dictionary 112 ..
Section 19.9: Creating an ordered dictionary 113 ...
Section 19.10: Unpacking dictionaries using the ** operator 113 ...
Section 19.11: The trailing comma 114 ..
Section 19.12: The dict() constructor 114 ..
Section 19.13: Dictionaries Example 114 ...
Section 19.14: All combinations of dictionary values 115 ..

Chapter 20: List 117 ...
Section 20.1: List methods and supported operators 117 ..
Section 20.2: Accessing list values 122 ..
Section 20.3: Checking if list is empty 123 ...
Section 20.4: Iterating over a list 123 ...
Section 20.5: Checking whether an item is in a list 124 ..
Section 20.6: Any and All 124 ..
Section 20.7: Reversing list elements 125 ..
Section 20.8: Concatenate and Merge lists 125 ..
Section 20.9: Length of a list 126 ..
Section 20.10: Remove duplicate values in list 126 ...
Section 20.11: Comparison of lists 127 ..
Section 20.12: Accessing values in nested list 127 ..
Section 20.13: Initializing a List to a Fixed Number of Elements 128 ...

Chapter 21: List comprehensions 130 ..
Section 21.1: List Comprehensions 130 ...
Section 21.2: Conditional List Comprehensions 132 ..
Section 21.3: Avoid repetitive and expensive operations using conditional clause 134 ..
Section 21.4: Dictionary Comprehensions 135 ...
Section 21.5: List Comprehensions with Nested Loops 136 ..
Section 21.6: Generator Expressions 138 ..
Section 21.7: Set Comprehensions 140 ...
Section 21.8: Refactoring filter and map to list comprehensions 140 ...
Section 21.9: Comprehensions involving tuples 141 ..
Section 21.10: Counting Occurrences Using Comprehension 142 ...
Section 21.11: Changing Types in a List 142 ..
Section 21.12: Nested List Comprehensions 142 ..
Section 21.13: Iterate two or more list simultaneously within list comprehension 143 ..

Chapter 22: List slicing (selecting parts of lists) 144 ...
Section 22.1: Using the third "step" argument 144 ..
Section 22.2: Selecting a sublist from a list 144 ..
Section 22.3: Reversing a list with slicing 144 ..
Section 22.4: Shifting a list using slicing 144 ..

Chapter 23: groupby() 146 ..
Section 23.1: Example 4 146 ...
Section 23.2: Example 2 146 ..
Section 23.3: Example 3 147 ..

Chapter 24: Linked lists 149 ...
Section 24.1: Single linked list example 149 ...

Chapter 25: Linked List Node 154 ...
Section 25.1: Write a simple Linked List Node in python 154 ...

Chapter 26: Filter 155 ..

Section 26.1: Basic use of filter 155 ...
Section 26.2: Filter without function 155 ..
Section 26.3: Filter as short-circuit check 156 ...
Section 26.4: Complementary function: filterfalse, ifilterfalse 156 ..

Chapter 27: Heapq 158 ...
Section 27.1: Largest and smallest items in a collection 158 ...
Section 27.2: Smallest item in a collection 158 ..

Chapter 28: Tuple 160 ...
Section 28.1: Tuple 160 ...
Section 28.2: Tuples are immutable 161 ..
Section 28.3: Packing and Unpacking Tuples 161 ..
Section 28.4: Built-in Tuple Functions 162 ...
Section 28.5: Tuple Are Element-wise Hashable and Equatable 163 ...
Section 28.6: Indexing Tuples 164 ...
Section 28.7: Reversing Elements 164 ..

Chapter 29: Basic Input and Output 165 ...
Section 29.1: Using the print function 165 ..
Section 29.2: Input from a File 165 ...
Section 29.3: Read from stdin 167 ..
Section 29.4: Using input() and raw_input() 167 ..
Section 29.5: Function to prompt user for a number 167 ..
Section 29.6: Printing a string without a newline at the end 168 ...

Chapter 30: Files & Folders I/O 171 ...
Section 30.1: File modes 171 ..
Section 30.2: Reading a file line-by-line 172 ..
Section 30.3: Iterate files (recursively) 173 ..
Section 30.4: Getting the full contents of a file 173 ..
Section 30.5: Writing to a file 174 ...
Section 30.6: Check whether a file or path exists 175 ..
Section 30.7: Random File Access Using mmap 176 ..
Section 30.8: Replacing text in a file 176 ...
Section 30.9: Checking if a file is empty 176 ...
Section 30.10: Read a file between a range of lines 177 ..
Section 30.11: Copy a directory tree 177 ..
Section 30.12: Copying contents of one file to a dierent file 177 ..

Chapter 31: os.path 178 ..
Section 31.1: Join Paths 178 ...
Section 31.2: Path Component Manipulation 178 ..
Section 31.3: Get the parent directory 178 ...
Section 31.4: If the given path exists 178 ..
Section 31.5: check if the given path is a directory, file, symbolic link, mount point etc 179
Section 31.6: Absolute Path from Relative Path 179 ...

Chapter 32: Iterables and Iterators 180 ..
Section 32.1: Iterator vs Iterable vs Generator 180 ...
Section 32.2: Extract values one by one 181 ...
Section 32.3: Iterating over entire iterable 181 ...
Section 32.4: Verify only one element in iterable 181 ..
Section 32.5: What can be iterable 182 ..
Section 32.6: Iterator isn't reentrant! 182 ...

Chapter 33: Functions 183 ...
Section 33.1: Defining and calling simple functions 183 ...
Section 33.2: Defining a function with an arbitrary number of arguments 184 ..
Section 33.3: Lambda (Inline/Anonymous) Functions 187 ..
Section 33.4: Defining a function with optional arguments 189 ..
Section 33.5: Defining a function with optional mutable arguments 190 ...
Section 33.6: Argument passing and mutability 191 ..
Section 33.7: Returning values from functions 192 ...
Section 33.8: Closure 192 ...
Section 33.9: Forcing the use of named parameters 193 ..
Section 33.10: Nested functions 194 ...
Section 33.11: Recursion limit 194 ..
Section 33.12: Recursive Lambda using assigned variable 195 ...
Section 33.13: Recursive functions 195 ...
Section 33.14: Defining a function with arguments 196 ..
Section 33.15: Iterable and dictionary unpacking 196 ..
Section 33.16: Defining a function with multiple arguments 198 ...

Chapter 34: Defining functions with list arguments 199 ..
Section 34.1: Function and Call 199 ...

Chapter 35: Functional Programming in Python 201 ..
Section 35.1: Lambda Function 201 ..
Section 35.2: Map Function 201 ..
Section 35.3: Reduce Function 201 ...
Section 35.4: Filter Function 201 ...

Chapter 36: Partial functions 202 ..
Section 36.1: Raise the power 202 ...

Chapter 37: Decorators 203 ...
Section 37.1: Decorator function 203 ..
Section 37.2: Decorator class 204 ...
Section 37.3: Decorator with arguments (decorator factory) 205 ..
Section 37.4: Making a decorator look like the decorated function 207 ..
Section 37.5: Using a decorator to time a function 207 ...
Section 37.6: Create singleton class with a decorator 208 ..

Chapter 38: Classes 209 ...
Section 38.1: Introduction to classes 209 ..
Section 38.2: Bound, unbound, and static methods 210 ..
Section 38.3: Basic inheritance 212 ..
Section 38.4: Monkey Patching 214 ..
Section 38.5: New-style vs. old-style classes 214 ..
Section 38.6: Class methods: alternate initializers 215 ...
Section 38.7: Multiple Inheritance 217 ..
Section 38.8: Properties 219 ..
Section 38.9: Default values for instance variables 220 ...
Section 38.10: Class and instance variables 221 ...
Section 38.11: Class composition 222 ..
Section 38.12: Listing All Class Members 223 ...
Section 38.13: Singleton class 224 ...
Section 38.14: Descriptors and Dotted Lookups 225 ..

Chapter 39: Metaclasses 226 ...

Section 39.1: Basic Metaclasses 226 ...
Section 39.2: Singletons using metaclasses 227 ...
Section 39.3: Using a metaclass 227 ..
Section 39.4: Introduction to Metaclasses 227 ..
Section 39.5: Custom functionality with metaclasses 228 ...
Section 39.6: The default metaclass 229 ...

Chapter 40: String Formatting 232 ...
Section 40.1: Basics of String Formatting 232 ...
Section 40.2: Alignment and padding 233 ...
Section 40.3: Format literals (f-string) 234 ..
Section 40.4: Float formatting 234 ...
Section 40.5: Named placeholders 235 ...
Section 40.6: String formatting with datetime 236 ...
Section 40.7: Formatting Numerical Values 236 ...
Section 40.8: Nested formatting 237 ..
Section 40.9: Format using Getitem and Getattr 237 ...
Section 40.10: Padding and truncating strings, combined 237 ..
Section 40.11: Custom formatting for a class 238 ...

Chapter 41: String Methods 240 ..
Section 41.1: Changing the capitalization of a string 240 ...
Section 41.2: str.translate: Translating characters in a string 241 ...
Section 41.3: str.format and f-strings: Format values into a string 242 ..
Section 41.4: String module's useful constants 243 ...
Section 41.5: Stripping unwanted leading/trailing characters from a string 244 ..
Section 41.6: Reversing a string 245 ...
Section 41.7: Split a string based on a delimiter into a list of strings 245 ...
Section 41.8: Replace all occurrences of one substring with another substring 246 ..
Section 41.9: Testing what a string is composed of 247 ...
Section 41.10: String Contains 249 ...
Section 41.11: Join a list of strings into one string 249 ...
Section 41.12: Counting number of times a substring appears in a string 250 ..
Section 41.13: Case insensitive string comparisons 250 ..
Section 41.14: Justify strings 251 ...
Section 41.15: Test the starting and ending characters of a string 252 ..
Section 41.16: Conversion between str or bytes data and unicode characters 253 ..

Chapter 42: Using loops within functions 255 ..
Section 42.1: Return statement inside loop in a function 255 ..

Chapter 43: Importing modules 256 ..
Section 43.1: Importing a module 256 ..
Section 43.2: The __all__ special variable 257 ..
Section 43.3: Import modules from an arbitrary filesystem location 258 ..
Section 43.4: Importing all names from a module 258 ..
Section 43.5: Programmatic importing 259 ...
Section 43.6: PEP8 rules for Imports 259 ...
Section 43.7: Importing specific names from a module 260 ..
Section 43.8: Importing submodules 260 ...
Section 43.9: Re-importing a module 260 ..
Section 43.10: __import__() function 261 ...

Chapter 44: Dierence between Module and Package 262 ..
Section 44.1: Modules 262 ..

Section 44.2: Packages 262 ...

Chapter 45: Math Module 264 ..
Section 45.1: Rounding: round, floor, ceil, trunc 264 ..
Section 45.2: Trigonometry 265 ..
Section 45.3: Pow for faster exponentiation 266 ...
Section 45.4: Infinity and NaN ("not a number") 266 ...
Section 45.5: Logarithms 269 ..
Section 45.6: Constants 269 ..
Section 45.7: Imaginary Numbers 270 ...
Section 45.8: Copying signs 270 ...
Section 45.9: Complex numbers and the cmath module 270 ..

Chapter 46: Complex math 273 ...
Section 46.1: Advanced complex arithmetic 273 ...
Section 46.2: Basic complex arithmetic 274 ..

Chapter 47: Collections module 275 ...
Section 47.1: collections.Counter 275 ..
Section 47.2: collections.OrderedDict 276 ..
Section 47.3: collections.defaultdict 277 ...
Section 47.4: collections.namedtuple 278 ..
Section 47.5: collections.deque 279 ..
Section 47.6: collections.ChainMap 280 ..

Chapter 48: Operator module 282 ...
Section 48.1: Itemgetter 282 ..
Section 48.2: Operators as alternative to an infix operator 282 ...
Section 48.3: Methodcaller 282 ...

Chapter 49: JSON Module 284 ..
Section 49.1: Storing data in a file 284 ..
Section 49.2: Retrieving data from a file 284 ..
Section 49.3: Formatting JSON output 284 ...
Section 49.4: `load` vs `loads`, `dump` vs `dumps` 285 ...
Section 49.5: Calling `json.tool` from the command line to pretty-print JSON output 286
Section 49.6: JSON encoding custom objects 286 ..
Section 49.7: Creating JSON from Python dict 287 ..
Section 49.8: Creating Python dict from JSON 287 ..

Chapter 50: Sqlite3 Module 289 ...
Section 50.1: Sqlite3 - Not require separate server process 289 ...
Section 50.2: Getting the values from the database and Error handling 289 ...

Chapter 51: The os Module 291 ...
Section 51.1: makedirs - recursive directory creation 291 ..
Section 51.2: Create a directory 292 ...
Section 51.3: Get current directory 292 ..
Section 51.4: Determine the name of the operating system 292 ..
Section 51.5: Remove a directory 292 ..
Section 51.6: Follow a symlink (POSIX) 292 ..
Section 51.7: Change permissions on a file 292 ...

Chapter 52: The locale Module 293 ..
Section 52.1: Currency Formatting US Dollars Using the locale Module 293 ...

Chapter 53: Itertools Module 294 ..
Section 53.1: Combinations method in Itertools Module 294 ...

Section 53.2: itertools.dropwhile 294 ..
Section 53.3: Zipping two iterators until they are both exhausted 295 ..
Section 53.4: Take a slice of a generator 295 ...
Section 53.5: Grouping items from an iterable object using a function 296 ..
Section 53.6: itertools.takewhile 297 ...
Section 53.7: itertools.permutations 297 ..
Section 53.8: itertools.repeat 298 ..
Section 53.9: Get an accumulated sum of numbers in an iterable 298 ..
Section 53.10: Cycle through elements in an iterator 298 ..
Section 53.11: itertools.product 298 ...
Section 53.12: itertools.count 299 ..
Section 53.13: Chaining multiple iterators together 300 ...

Chapter 54: Asyncio Module 301 ...
Section 54.1: Coroutine and Delegation Syntax 301 ...
Section 54.2: Asynchronous Executors 302 ...
Section 54.3: Using UVLoop 303 ...
Section 54.4: Synchronization Primitive: Event 303 ...
Section 54.5: A Simple Websocket 304 ..
Section 54.6: Common Misconception about asyncio 304 ..

Chapter 55: Random module 307 ...
Section 55.1: Creating a random user password 307 ...
Section 55.2: Create cryptographically secure random numbers 307 ...
Section 55.3: Random and sequences: shue, choice and sample 308 ..
Section 55.4: Creating random integers and floats: randint, randrange, random, and uniform 309
Section 55.5: Reproducible random numbers: Seed and State 310 ..
Section 55.6: Random Binary Decision 311 ...

Chapter 56: Functools Module 312 ...
Section 56.1: partial 312 ...
Section 56.2: cmp_to_key 312 ...
Section 56.3: lru_cache 312 ...
Section 56.4: total_ordering 313 ...
Section 56.5: reduce 314 ..

Chapter 57: The dis module 315 ..
Section 57.1: What is Python bytecode? 315 ...
Section 57.2: Constants in the dis module 315 ..
Section 57.3: Disassembling modules 315 ...

Chapter 58: The base64 Module 317 ...
Section 58.1: Encoding and Decoding Base64 318 ...
Section 58.2: Encoding and Decoding Base32 319 ...
Section 58.3: Encoding and Decoding Base16 320 ..
Section 58.4: Encoding and Decoding ASCII85 320 ..
Section 58.5: Encoding and Decoding Base85 321 ...

Chapter 59: Queue Module 322 ..
Section 59.1: Simple example 322 ...

Chapter 60: Deque Module 324 ..
Section 60.1: Basic deque using 324 ...
Section 60.2: Available methods in deque 324 ..
Section 60.3: limit deque size 325 ...
Section 60.4: Breadth First Search 325 ..

Chapter 61: Webbrowser Module 326 ..
Section 61.1: Opening a URL with Default Browser 326 ..
Section 61.2: Opening a URL with Dierent Browsers 327 ...

Chapter 62: tkinter 328 ...
Section 62.1: Geometry Managers 328 ...
Section 62.2: A minimal tkinter Application 329 ..

Chapter 63: pyautogui module 331 ..
Section 63.1: Mouse Functions 331 ..
Section 63.2: Keyboard Functions 331 ...
Section 63.3: Screenshot And Image Recognition 331 ...

Chapter 64: Indexing and Slicing 332 ..
Section 64.1: Basic Slicing 332 ...
Section 64.2: Reversing an object 333 ...
Section 64.3: Slice assignment 333 ...
Section 64.4: Making a shallow copy of an array 333 ..
Section 64.5: Indexing custom classes: __getitem__, __setitem__ and __delitem__ 334
Section 64.6: Basic Indexing 335 ...

Chapter 65: Plotting with Matplotlib 337 ..
Section 65.1: Plots with Common X-axis but dierent Y-axis : Using twinx() 337 ...
Section 65.2: Plots with common Y-axis and dierent X-axis using twiny() 338 ...
Section 65.3: A Simple Plot in Matplotlib 340 ...
Section 65.4: Adding more features to a simple plot : axis labels, title, axis ticks, grid, and legend 341
Section 65.5: Making multiple plots in the same figure by superimposition similar to MATLAB 342
Section 65.6: Making multiple Plots in the same figure using plot superimposition with separate plot

commands 343 ...

Chapter 66: graph-tool 345 ..
Section 66.1: PyDotPlus 345 ...
Section 66.2: PyGraphviz 345 ..

Chapter 67: Generators 347 ...
Section 67.1: Introduction 347 ..
Section 67.2: Infinite sequences 349 ...
Section 67.3: Sending objects to a generator 350 ..
Section 67.4: Yielding all values from another iterable 351 ...
Section 67.5: Iteration 351 ...
Section 67.6: The next() function 351 ...
Section 67.7: Coroutines 352 ...
Section 67.8: Refactoring list-building code 352 ...
Section 67.9: Yield with recursion: recursively listing all files in a directory 353 ..
Section 67.10: Generator expressions 354 ..
Section 67.11: Using a generator to find Fibonacci Numbers 354 ...
Section 67.12: Searching 354 ...
Section 67.13: Iterating over generators in parallel 355 ...

Chapter 68: Reduce 356 ...
Section 68.1: Overview 356 ..
Section 68.2: Using reduce 356 ...
Section 68.3: Cumulative product 357 ..
Section 68.4: Non short-circuit variant of any/all 357 ...

Chapter 69: Map Function 358 ..
Section 69.1: Basic use of map, itertools.imap and future_builtins.map 358 ...

Section 69.2: Mapping each value in an iterable 358 ...
Section 69.3: Mapping values of dierent iterables 359 ..
Section 69.4: Transposing with Map: Using "None" as function argument (python 2.x only) 361
Section 69.5: Series and Parallel Mapping 361 ..

Chapter 70: Exponentiation 365 ..
Section 70.1: Exponentiation using builtins: ** and pow() 365 ..
Section 70.2: Square root: math.sqrt() and cmath.sqrt 365 ...
Section 70.3: Modular exponentiation: pow() with 3 arguments 366 ..
Section 70.4: Computing large integer roots 366 ...
Section 70.5: Exponentiation using the math module: math.pow() 367 ...
Section 70.6: Exponential function: math.exp() and cmath.exp() 368 ...
Section 70.7: Exponential function minus 1: math.expm1() 368 ..
Section 70.8: Magic methods and exponentiation: builtin, math and cmath 369 ..
Section 70.9: Roots: nth-root with fractional exponents 370 ...

Chapter 71: Searching 371 ..
Section 71.1: Searching for an element 371 ..
Section 71.2: Searching in custom classes: __contains__ and __iter__ 371 ...
Section 71.3: Getting the index for strings: str.index(), str.rindex() and str.find(), str.rfind() 372
Section 71.4: Getting the index list and tuples: list.index(), tuple.index() 373 ..
Section 71.5: Searching key(s) for a value in dict 373 ...
Section 71.6: Getting the index for sorted sequences: bisect.bisect_left() 374 ..
Section 71.7: Searching nested sequences 374 ...

Chapter 72: Sorting, Minimum and Maximum 376 ..
Section 72.1: Make custom classes orderable 376 ..
Section 72.2: Special case: dictionaries 378 ...
Section 72.3: Using the key argument 379 ..
Section 72.4: Default Argument to max, min 379 ...
Section 72.5: Getting a sorted sequence 380 ..
Section 72.6: Extracting N largest or N smallest items from an iterable 380 ..
Section 72.7: Getting the minimum or maximum of several values 381 ..
Section 72.8: Minimum and Maximum of a sequence 381 ...

Chapter 73: Counting 382 ..
Section 73.1: Counting all occurrence of all items in an iterable: collections.Counter 382 ..
Section 73.2: Getting the most common value(-s): collections.Counter.most_common() 382
Section 73.3: Counting the occurrences of one item in a sequence: list.count() and tuple.count() 382
Section 73.4: Counting the occurrences of a substring in a string: str.count() 383 ...
Section 73.5: Counting occurrences in numpy array 383 ..

Chapter 74: The Print Function 384 ...
Section 74.1: Print basics 384 ...
Section 74.2: Print parameters 385 ..

Chapter 75: Regular Expressions (Regex) 388 ...
Section 75.1: Matching the beginning of a string 388 ...
Section 75.2: Searching 389 ..
Section 75.3: Precompiled patterns 389 ...
Section 75.4: Flags 390 ..
Section 75.5: Replacing 391 ...
Section 75.6: Find All Non-Overlapping Matches 391 ...
Section 75.7: Checking for allowed characters 392 ..
Section 75.8: Splitting a string using regular expressions 392 ...
Section 75.9: Grouping 392 ..

Section 75.10: Escaping Special Characters 393 ...
Section 75.11: Match an expression only in specific locations 394 ...
Section 75.12: Iterating over matches using `re.finditer` 395 ..

Chapter 76: Copying data 396 ..
Section 76.1: Copy a dictionary 396 ..
Section 76.2: Performing a shallow copy 396 ...
Section 76.3: Performing a deep copy 396 ..
Section 76.4: Performing a shallow copy of a list 396 ..
Section 76.5: Copy a set 396 ...

Chapter 77: Context Managers (“with” Statement) 398 ...
Section 77.1: Introduction to context managers and the with statement 398 ..
Section 77.2: Writing your own context manager 398 ...
Section 77.3: Writing your own contextmanager using generator syntax 399 ...
Section 77.4: Multiple context managers 400 ..
Section 77.5: Assigning to a target 400 ..
Section 77.6: Manage Resources 401 ...

Chapter 78: The __name__ special variable 402 ...
Section 78.1: __name__ == '__main__' 402 ...
Section 78.2: Use in logging 402 ...
Section 78.3: function_class_or_module.__name__ 402 ..

Chapter 79: Checking Path Existence and Permissions 404 ...
Section 79.1: Perform checks using os.access 404 ..

Chapter 80: Creating Python packages 406 ...
Section 80.1: Introduction 406 ...
Section 80.2: Uploading to PyPI 406 ..
Section 80.3: Making package executable 408 ...

Chapter 81: Usage of "pip" module: PyPI Package Manager 410 ...
Section 81.1: Example use of commands 410 ..
Section 81.2: Handling ImportError Exception 410 ..
Section 81.3: Force install 411 ..

Chapter 82: pip: PyPI Package Manager 412 ..
Section 82.1: Install Packages 412 ..
Section 82.2: To list all packages installed using `pip` 412 ...
Section 82.3: Upgrade Packages 412 ..
Section 82.4: Uninstall Packages 413 ...
Section 82.5: Updating all outdated packages on Linux 413 ..
Section 82.6: Updating all outdated packages on Windows 413 ..
Section 82.7: Create a requirements.txt file of all packages on the system 413 ...
Section 82.8: Using a certain Python version with pip 414 ..
Section 82.9: Create a requirements.txt file of packages only in the current virtualenv 414
Section 82.10: Installing packages not yet on pip as wheels 415 ..

Chapter 83: Parsing Command Line arguments 418 ..
Section 83.1: Hello world in argparse 418 ..
Section 83.2: Using command line arguments with argv 418 ...
Section 83.3: Setting mutually exclusive arguments with argparse 419 ..
Section 83.4: Basic example with docopt 420 ...
Section 83.5: Custom parser error message with argparse 420 ...
Section 83.6: Conceptual grouping of arguments with argparse.add_argument_group() 421
Section 83.7: Advanced example with docopt and docopt_dispatch 422 ...

Chapter 84: Subprocess Library 424 ..
Section 84.1: More flexibility with Popen 424 ...
Section 84.2: Calling External Commands 425 ..
Section 84.3: How to create the command list argument 425 ..

Chapter 85: setup.py 427 ..
Section 85.1: Purpose of setup.py 427 ..
Section 85.2: Using source control metadata in setup.py 427 ..
Section 85.3: Adding command line scripts to your python package 428 ...
Section 85.4: Adding installation options 428 ..

Chapter 86: Recursion 430 ..
Section 86.1: The What, How, and When of Recursion 430 ..
Section 86.2: Tree exploration with recursion 433 ..
Section 86.3: Sum of numbers from 1 to n 434 ..
Section 86.4: Increasing the Maximum Recursion Depth 434 ..
Section 86.5: Tail Recursion - Bad Practice 435 ..
Section 86.6: Tail Recursion Optimization Through Stack Introspection 435 ..

Chapter 87: Type Hints 437 ..
Section 87.1: Adding types to a function 437 ...
Section 87.2: NamedTuple 438 ...
Section 87.3: Generic Types 438 ...
Section 87.4: Variables and Attributes 438 ..
Section 87.5: Class Members and Methods 439 ..
Section 87.6: Type hints for keyword arguments 439 ..

Chapter 88: Exceptions 440 ..
Section 88.1: Catching Exceptions 440 ..
Section 88.2: Do not catch everything! 440 ...
Section 88.3: Re-raising exceptions 441 ...
Section 88.4: Catching multiple exceptions 441 ..
Section 88.5: Exception Hierarchy 442 ...
Section 88.6: Else 444 ...
Section 88.7: Raising Exceptions 444 ..
Section 88.8: Creating custom exception types 445 ...
Section 88.9: Practical examples of exception handling 445 ...
Section 88.10: Exceptions are Objects too 446 ..
Section 88.11: Running clean-up code with finally 446 ..
Section 88.12: Chain exceptions with raise from 447 ..

Chapter 89: Raise Custom Errors / Exceptions 448 ...
Section 89.1: Custom Exception 448 ...
Section 89.2: Catch custom Exception 448 ..

Chapter 90: Commonwealth Exceptions 450 ...
Section 90.1: Other Errors 450 ...
Section 90.2: NameError: name '???' is not defined 451 ..
Section 90.3: TypeErrors 452 ..
Section 90.4: Syntax Error on good code 453 ...
Section 90.5: IndentationErrors (or indentation SyntaxErrors) 454 ..

Chapter 91: urllib 456 ...
Section 91.1: HTTP GET 456 ..
Section 91.2: HTTP POST 456 ..
Section 91.3: Decode received bytes according to content type encoding 457 ..

Chapter 92: Web scraping with Python 458 ...
Section 92.1: Scraping using the Scrapy framework 458 ...
Section 92.2: Scraping using Selenium WebDriver 458 ..
Section 92.3: Basic example of using requests and lxml to scrape some data 459 ...
Section 92.4: Maintaining web-scraping session with requests 459 ...
Section 92.5: Scraping using BeautifulSoup4 460 ...
Section 92.6: Simple web content download with urllib.request 460 ..
Section 92.7: Modify Scrapy user agent 460 ...
Section 92.8: Scraping with curl 460 ...

Chapter 93: HTML Parsing 462 ..
Section 93.1: Using CSS selectors in BeautifulSoup 462 ..
Section 93.2: PyQuery 462 ...
Section 93.3: Locate a text after an element in BeautifulSoup 463 ..

Chapter 94: Manipulating XML 464 ..
Section 94.1: Opening and reading using an ElementTree 464 ...
Section 94.2: Create and Build XML Documents 464 ..
Section 94.3: Modifying an XML File 465 ..
Section 94.4: Searching the XML with XPath 465 ..
Section 94.5: Opening and reading large XML files using iterparse (incremental parsing) 466

Chapter 95: Python Requests Post 468 ..
Section 95.1: Simple Post 468 ..
Section 95.2: Form Encoded Data 469 ...
Section 95.3: File Upload 469 ..
Section 95.4: Responses 470 ...
Section 95.5: Authentication 470 ...
Section 95.6: Proxies 471 ...

Chapter 96: Distribution 473 ..
Section 96.1: py2app 473 ...
Section 96.2: cx_Freeze 474 ..

Chapter 97: Property Objects 475 ..
Section 97.1: Using the @property decorator for read-write properties 475 ...
Section 97.2: Using the @property decorator 475 ...
Section 97.3: Overriding just a getter, setter or a deleter of a property object 476 ...
Section 97.4: Using properties without decorators 476 ..

Chapter 98: Overloading 479 ..
Section 98.1: Operator overloading 479 ...
Section 98.2: Magic/Dunder Methods 480 ..
Section 98.3: Container and sequence types 481 ...
Section 98.4: Callable types 482 ...
Section 98.5: Handling unimplemented behaviour 482 ..

Chapter 99: Polymorphism 484 ..
Section 99.1: Duck Typing 484 ...
Section 99.2: Basic Polymorphism 484 ..

Chapter 100: Method Overriding 488 ..
Section 100.1: Basic method overriding 488 ...

Chapter 101: User-Defined Methods 489 ..
Section 101.1: Creating user-defined method objects 489 ..
Section 101.2: Turtle example 490 ...

Chapter 102: String representations of class instances: __str__ and __repr__

methods 491 ..
Section 102.1: Motivation 491 ...
Section 102.2: Both methods implemented, eval-round-trip style __repr__() 495 ..

Chapter 103: Debugging 496 ..
Section 103.1: Via IPython and ipdb 496 ...
Section 103.2: The Python Debugger: Step-through Debugging with _pdb_ 496 ..
Section 103.3: Remote debugger 498 ...

Chapter 104: Reading and Writing CSV 499 ..
Section 104.1: Using pandas 499 ...
Section 104.2: Writing a TSV file 499 ..

Chapter 105: Writing to CSV from String or List 501 ..
Section 105.1: Basic Write Example 501 ..
Section 105.2: Appending a String as a newline in a CSV file 501 ...

Chapter 106: Dynamic code execution with `exec` and `eval` 502 ...
Section 106.1: Executing code provided by untrusted user using exec, eval, or ast.literal_eval 502
Section 106.2: Evaluating a string containing a Python literal with ast.literal_eval 502 ...
Section 106.3: Evaluating statements with exec 502 ...
Section 106.4: Evaluating an expression with eval 503 ...
Section 106.5: Precompiling an expression to evaluate it multiple times 503 ..
Section 106.6: Evaluating an expression with eval using custom globals 503 ...

Chapter 107: PyInstaller - Distributing Python Code 504 ..
Section 107.1: Installation and Setup 504 ..
Section 107.2: Using Pyinstaller 504 ..
Section 107.3: Bundling to One Folder 505 ...
Section 107.4: Bundling to a Single File 505 ...

Chapter 108: Data Visualization with Python 506 ...
Section 108.1: Seaborn 506 ..
Section 108.2: Matplotlib 508 ...
Section 108.3: Plotly 509 ...
Section 108.4: MayaVI 511 ...

Chapter 109: The Interpreter (Command Line Console) 513 ...
Section 109.1: Getting general help 513 ..
Section 109.2: Referring to the last expression 513 ..
Section 109.3: Opening the Python console 514 ..
Section 109.4: The PYTHONSTARTUP variable 514 ..
Section 109.5: Command line arguments 514 ...
Section 109.6: Getting help about an object 515 ...

Chapter 110: *args and **kwargs 518 ...
Section 110.1: Using **kwargs when writing functions 518 ..
Section 110.2: Using *args when writing functions 518 ..
Section 110.3: Populating kwarg values with a dictionary 519 ...
Section 110.4: Keyword-only and Keyword-required arguments 519 ..
Section 110.5: Using **kwargs when calling functions 519 ..
Section 110.6: **kwargs and default values 519 ...
Section 110.7: Using *args when calling functions 520 ..

Chapter 111: Garbage Collection 521 ..
Section 111.1: Reuse of primitive objects 521 ..
Section 111.2: Eects of the del command 521 ..
Section 111.3: Reference Counting 522 ..

Section 111.4: Garbage Collector for Reference Cycles 522 ...
Section 111.5: Forcefully deallocating objects 523 ...
Section 111.6: Viewing the refcount of an object 524 ...
Section 111.7: Do not wait for the garbage collection to clean up 524 ..
Section 111.8: Managing garbage collection 524 ...

Chapter 112: Pickle data serialisation 526 ...
Section 112.1: Using Pickle to serialize and deserialize an object 526 ..
Section 112.2: Customize Pickled Data 526 ..

Chapter 113: Binary Data 528 ..
Section 113.1: Format a list of values into a byte object 528 ..
Section 113.2: Unpack a byte object according to a format string 528 ..
Section 113.3: Packing a structure 528 ..

Chapter 114: Idioms 530 ..
Section 114.1: Dictionary key initializations 530 ..
Section 114.2: Switching variables 530 ..
Section 114.3: Use truth value testing 530 ..
Section 114.4: Test for "__main__" to avoid unexpected code execution 531 ..

Chapter 115: Data Serialization 533 ..
Section 115.1: Serialization using JSON 533 ..
Section 115.2: Serialization using Pickle 533 ...

Chapter 116: Multiprocessing 535 ...
Section 116.1: Running Two Simple Processes 535 ...
Section 116.2: Using Pool and Map 535 ...

Chapter 117: Multithreading 537 ...
Section 117.1: Basics of multithreading 537 ..
Section 117.2: Communicating between threads 538 ..
Section 117.3: Creating a worker pool 539 ..
Section 117.4: Advanced use of multithreads 539 ..
Section 117.5: Stoppable Thread with a while Loop 541 ...

Chapter 118: Processes and Threads 542 ..
Section 118.1: Global Interpreter Lock 542 ..
Section 118.2: Running in Multiple Threads 543 ...
Section 118.3: Running in Multiple Processes 544 ..
Section 118.4: Sharing State Between Threads 544 ...
Section 118.5: Sharing State Between Processes 545 ..

Chapter 119: Python concurrency 546 ...
Section 119.1: The multiprocessing module 546 ...
Section 119.2: The threading module 547 ...
Section 119.3: Passing data between multiprocessing processes 547 ..

Chapter 120: Parallel computation 550 ..
Section 120.1: Using the multiprocessing module to parallelise tasks 550 ...
Section 120.2: Using a C-extension to parallelize tasks 550 ..
Section 120.3: Using Parent and Children scripts to execute code in parallel 550 ..
Section 120.4: Using PyPar module to parallelize 551 ..

Chapter 121: Sockets 552 ..
Section 121.1: Raw Sockets on Linux 552 ...
Section 121.2: Sending data via UDP 552 ...
Section 121.3: Receiving data via UDP 553 ...
Section 121.4: Sending data via TCP 553 ..

Section 121.5: Multi-threaded TCP Socket Server 553 ...

Chapter 122: Websockets 556 ..
Section 122.1: Simple Echo with aiohttp 556 ...
Section 122.2: Wrapper Class with aiohttp 556 ...
Section 122.3: Using Autobahn as a Websocket Factory 557 ..

Chapter 123: Sockets And Message Encryption/Decryption Between Client and Server
559 ..

Section 123.1: Server side Implementation 559 ..
Section 123.2: Client side Implementation 561 ..

Chapter 124: Python Networking 563 ...
Section 124.1: Creating a Simple Http Server 563 ..
Section 124.2: Creating a TCP server 563 ..
Section 124.3: Creating a UDP Server 564 ...
Section 124.4: Start Simple HttpServer in a thread and open the browser 564 ...
Section 124.5: The simplest Python socket client-server example 565 ...

Chapter 125: Python HTTP Server 567 ..
Section 125.1: Running a simple HTTP server 567 ...
Section 125.2: Serving files 567 ..
Section 125.3: Basic handling of GET, POST, PUT using BaseHTTPRequestHandler 568 ...
Section 125.4: Programmatic API of SimpleHTTPServer 569 ...

Chapter 126: Flask 571 ..
Section 126.1: Files and Templates 571 ...
Section 126.2: The basics 571 ..
Section 126.3: Routing URLs 572 ...
Section 126.4: HTTP Methods 573 ...
Section 126.5: Jinja Templating 573 ...
Section 126.6: The Request Object 574 ..

Chapter 127: Introduction to RabbitMQ using AMQPStorm 576 ..
Section 127.1: How to consume messages from RabbitMQ 576 ..
Section 127.2: How to publish messages to RabbitMQ 577 ...
Section 127.3: How to create a delayed queue in RabbitMQ 577 ..

Chapter 128: Descriptor 580 ...
Section 128.1: Simple descriptor 580 ...
Section 128.2: Two-way conversions 581 ...

Chapter 129: tempfile NamedTemporaryFile 582 ...
Section 129.1: Create (and write to a) known, persistent temporary file 582 ...

Chapter 130: Input, Subset and Output External Data Files using Pandas 584
Section 130.1: Basic Code to Import, Subset and Write External Data Files Using Pandas 584

Chapter 131: Unzipping Files 586 ..
Section 131.1: Using Python ZipFile.extractall() to decompress a ZIP file 586 ..
Section 131.2: Using Python TarFile.extractall() to decompress a tarball 586 ...

Chapter 132: Working with ZIP archives 587 ..
Section 132.1: Examining Zipfile Contents 587 ...
Section 132.2: Opening Zip Files 587 ...
Section 132.3: Extracting zip file contents to a directory 588 ...
Section 132.4: Creating new archives 588 ..

Chapter 133: Getting start with GZip 589 ..
Section 133.1: Read and write GNU zip files 589 ..

Chapter 134: Stack 590 ...
Section 134.1: Creating a Stack class with a List Object 590 ..
Section 134.2: Parsing Parentheses 591 ...

Chapter 135: Working around the Global Interpreter Lock (GIL) 593 ...
Section 135.1: Multiprocessing.Pool 593 ..
Section 135.2: Cython nogil: 594 ..

Chapter 136: Deployment 595 ...
Section 136.1: Uploading a Conda Package 595 ..

Chapter 137: Logging 597 ..
Section 137.1: Introduction to Python Logging 597 ..
Section 137.2: Logging exceptions 598 ...

Chapter 138: Web Server Gateway Interface (WSGI) 601 ...
Section 138.1: Server Object (Method) 601 ...

Chapter 139: Python Server Sent Events 602 ..
Section 139.1: Flask SSE 602 ...
Section 139.2: Asyncio SSE 602 ..

Chapter 140: Alternatives to switch statement from other languages 604
Section 140.1: Use what the language oers: the if/else construct 604 ...
Section 140.2: Use a dict of functions 604 ..
Section 140.3: Use class introspection 605 ...
Section 140.4: Using a context manager 606 ..

Chapter 141: List destructuring (aka packing and unpacking) 607 ...
Section 141.1: Destructuring assignment 607 ...
Section 141.2: Packing function arguments 608 ..
Section 141.3: Unpacking function arguments 610 ..

Chapter 142: Accessing Python source code and bytecode 611 ..
Section 142.1: Display the bytecode of a function 611 ..
Section 142.2: Display the source code of an object 611 ...
Section 142.3: Exploring the code object of a function 612 ..

Chapter 143: Mixins 613 ..
Section 143.1: Mixin 613 ...
Section 143.2: Overriding Methods in Mixins 614 ...

Chapter 144: Attribute Access 615 ...
Section 144.1: Basic Attribute Access using the Dot Notation 615 ...
Section 144.2: Setters, Getters & Properties 615 ..

Chapter 145: ArcPy 618 ..
Section 145.1: createDissolvedGDB to create a file gdb on the workspace 618 ..
Section 145.2: Printing one field's value for all rows of feature class in file geodatabase using Search

Cursor 618 ...

Chapter 146: Abstract Base Classes (abc) 619 ...
Section 146.1: Setting the ABCMeta metaclass 619 ...
Section 146.2: Why/How to use ABCMeta and @abstractmethod 619 ..

Chapter 147: Plugin and Extension Classes 621 ...
Section 147.1: Mixins 621 ...
Section 147.2: Plugins with Customized Classes 622 ...

Chapter 148: Immutable datatypes(int, float, str, tuple and frozensets) 624
Section 148.1: Individual characters of strings are not assignable 624 ...
Section 148.2: Tuple's individual members aren't assignable 624 ...

Section 148.3: Frozenset's are immutable and not assignable 624 ...

Chapter 149: Incompatibilities moving from Python 2 to Python 3 625 ..
Section 149.1: Integer Division 625 ...
Section 149.2: Unpacking Iterables 626 ..
Section 149.3: Strings: Bytes versus Unicode 628 ..
Section 149.4: Print statement vs. Print function 630 ..
Section 149.5: Dierences between range and xrange functions 631 ..
Section 149.6: Raising and handling Exceptions 632 ...
Section 149.7: Leaked variables in list comprehension 634 ..
Section 149.8: True, False and None 635 ..
Section 149.9: User Input 635 ...
Section 149.10: Comparison of dierent types 636 ...
Section 149.11: .next() method on iterators renamed 636 ...
Section 149.12: filter(), map() and zip() return iterators instead of sequences 637 ...
Section 149.13: Renamed modules 637 ...
Section 149.14: Removed operators <> and ``, synonymous with != and repr() 638 ...
Section 149.15: long vs. int 638 ...
Section 149.16: All classes are "new-style classes" in Python 3 639 ..
Section 149.17: Reduce is no longer a built-in 640 ...
Section 149.18: Absolute/Relative Imports 640 ..
Section 149.19: map() 642 ..
Section 149.20: The round() function tie-breaking and return type 643 ..
Section 149.21: File I/O 644 ..
Section 149.22: cmp function removed in Python 3 644 ...
Section 149.23: Octal Constants 645 ...
Section 149.24: Return value when writing to a file object 645 ..
Section 149.25: exec statement is a function in Python 3 645 ..
Section 149.26: encode/decode to hex no longer available 646 ...
Section 149.27: Dictionary method changes 647 ..
Section 149.28: Class Boolean Value 647 ...
Section 149.29: hasattr function bug in Python 2 648 ...

Chapter 150: 2to3 tool 650 ..
Section 150.1: Basic Usage 650 ..

Chapter 151: Non-ocial Python implementations 652 ..
Section 151.1: IronPython 652 ...
Section 151.2: Jython 652 ...
Section 151.3: Transcrypt 653 ..

Chapter 152: Abstract syntax tree 656 ...
Section 152.1: Analyze functions in a python script 656 ..

Chapter 153: Unicode and bytes 658 ...
Section 153.1: Encoding/decoding error handling 658 ..
Section 153.2: File I/O 658 ..
Section 153.3: Basics 659 ..

Chapter 154: Python Serial Communication (pyserial) 661 ...
Section 154.1: Initialize serial device 661 ...
Section 154.2: Read from serial port 661 ...
Section 154.3: Check what serial ports are available on your machine 661 ..

Chapter 155: Neo4j and Cypher using Py2Neo 664 ...
Section 155.1: Adding Nodes to Neo4j Graph 664 ..

Section 155.2: Importing and Authenticating 664 ..
Section 155.3: Adding Relationships to Neo4j Graph 664 ...
Section 155.4: Query 1 : Autocomplete on News Titles 664 ..
Section 155.5: Query 2 : Get News Articles by Location on a particular date 665 ...
Section 155.6: Cypher Query Samples 665 ..

Chapter 156: Basic Curses with Python 666 ..
Section 156.1: The wrapper() helper function 666 ...
Section 156.2: Basic Invocation Example 666 ..

Chapter 157: Templates in python 667 ...
Section 157.1: Simple data output program using template 667 ...
Section 157.2: Changing delimiter 667 ..

Chapter 158: Pillow 668 ...
Section 158.1: Read Image File 668 ...
Section 158.2: Convert files to JPEG 668 ..

Chapter 159: The pass statement 669 ..
Section 159.1: Ignore an exception 669 ...
Section 159.2: Create a new Exception that can be caught 669 ..

Chapter 160: CLI subcommands with precise help output 671 ..
Section 160.1: Native way (no libraries) 671 ...
Section 160.2: argparse (default help formatter) 671 ..
Section 160.3: argparse (custom help formatter) 672 ..

Chapter 161: Database Access 674 ..
Section 161.1: SQLite 674 ...
Section 161.2: Accessing MySQL database using MySQLdb 679 ...
Section 161.3: Connection 680 ..
Section 161.4: PostgreSQL Database access using psycopg2 681 ..
Section 161.5: Oracle database 682 ..
Section 161.6: Using sqlalchemy 684 ...

Chapter 162: Connecting Python to SQL Server 685 ...
Section 162.1: Connect to Server, Create Table, Query Data 685 ..

Chapter 163: PostgreSQL 686 ..
Section 163.1: Getting Started 686 ...

Chapter 164: Python and Excel 687 ..
Section 164.1: Read the excel data using xlrd module 687 ...
Section 164.2: Format Excel files with xlsxwriter 687 ...
Section 164.3: Put list data into a Excel's file 688 ...
Section 164.4: OpenPyXL 689 ..
Section 164.5: Create excel charts with xlsxwriter 689 ..

Chapter 165: Turtle Graphics 693 ..
Section 165.1: Ninja Twist (Turtle Graphics) 693 ..

Chapter 166: Python Persistence 694 ..
Section 166.1: Python Persistence 694 ..
Section 166.2: Function utility for save and load 695 ..

Chapter 167: Design Patterns 696 ...
Section 167.1: Introduction to design patterns and Singleton Pattern 696 ...
Section 167.2: Strategy Pattern 698 ..
Section 167.3: Proxy 699 ...

Chapter 168: hashlib 701 ..

Section 168.1: MD5 hash of a string 701 ...
Section 168.2: algorithm provided by OpenSSL 702 ...

Chapter 169: Creating a Windows service using Python 703 ...
Section 169.1: A Python script that can be run as a service 703 ..
Section 169.2: Running a Flask web application as a service 704 ...

Chapter 170: Mutable vs Immutable (and Hashable) in Python 706 ...
Section 170.1: Mutable vs Immutable 706 ...
Section 170.2: Mutable and Immutable as Arguments 708 ..

Chapter 171: configparser 710 ..
Section 171.1: Creating configuration file programmatically 710 ...
Section 171.2: Basic usage 710 ...

Chapter 172: Optical Character Recognition 711 ..
Section 172.1: PyTesseract 711 ..
Section 172.2: PyOCR 711 ..

Chapter 173: Virtual environments 713 ..
Section 173.1: Creating and using a virtual environment 713 ...
Section 173.2: Specifying specific python version to use in script on Unix/Linux 715 ...
Section 173.3: Creating a virtual environment for a dierent version of python 715 ...
Section 173.4: Making virtual environments using Anaconda 715 ..
Section 173.5: Managing multiple virtual environments with virtualenvwrapper 716 ...
Section 173.6: Installing packages in a virtual environment 717 ...
Section 173.7: Discovering which virtual environment you are using 718 ..
Section 173.8: Checking if running inside a virtual environment 719 ..
Section 173.9: Using virtualenv with fish shell 719 ...

Chapter 174: Python Virtual Environment - virtualenv 721 ...
Section 174.1: Installation 721 ..
Section 174.2: Usage 721 ...
Section 174.3: Install a package in your Virtualenv 721 ...
Section 174.4: Other useful virtualenv commands 722 ...

Chapter 175: Virtual environment with virtualenvwrapper 724 ..
Section 175.1: Create virtual environment with virtualenvwrapper 724 ..

Chapter 176: Create virtual environment with virtualenvwrapper in windows 726
Section 176.1: Virtual environment with virtualenvwrapper for windows 726 ...

Chapter 177: sys 727 ..
Section 177.1: Command line arguments 727 ..
Section 177.2: Script name 727 ..
Section 177.3: Standard error stream 727 ..
Section 177.4: Ending the process prematurely and returning an exit code 727 ...

Chapter 178: ChemPy - python package 728 ..
Section 178.1: Parsing formulae 728 ...
Section 178.2: Balancing stoichiometry of a chemical reaction 728 ...
Section 178.3: Balancing reactions 728 ..
Section 178.4: Chemical equilibria 729 ..
Section 178.5: Ionic strength 729 ...
Section 178.6: Chemical kinetics (system of ordinary dierential equations) 729 ..

Chapter 179: pygame 731 ..
Section 179.1: Pygame's mixer module 731 ..
Section 179.2: Installing pygame 732 ..

Chapter 180: Pyglet 734 ...
Section 180.1: Installation of Pyglet 734 ..
Section 180.2: Hello World in Pyglet 734 ..
Section 180.3: Playing Sound in Pyglet 734 ..
Section 180.4: Using Pyglet for OpenGL 734 ...
Section 180.5: Drawing Points Using Pyglet and OpenGL 734 ...

Chapter 181: Audio 736 ..
Section 181.1: Working with WAV files 736 ..
Section 181.2: Convert any soundfile with python and mpeg 736 ..
Section 181.3: Playing Windows' beeps 736 ..
Section 181.4: Audio With Pyglet 737 ..

Chapter 182: pyaudio 738 ..
Section 182.1: Callback Mode Audio I/O 738 ..
Section 182.2: Blocking Mode Audio I/O 739 ...

Chapter 183: shelve 741 ..
Section 183.1: Creating a new Shelf 741 ..
Section 183.2: Sample code for shelve 742 ..
Section 183.3: To summarize the interface (key is a string, data is an arbitrary object): 742
Section 183.4: Write-back 742 ...

Chapter 184: IoT Programming with Python and Raspberry PI 744 ...
Section 184.1: Example - Temperature sensor 744 ..

Chapter 185: kivy - Cross-platform Python Framework for NUI Development 748
Section 185.1: First App 748 ..

Chapter 186: Pandas Transform: Preform operations on groups and concatenate the
results 750 ...

Section 186.1: Simple transform 750 ...
Section 186.2: Multiple results per group 751 ..

Chapter 187: Similarities in syntax, Dierences in meaning: Python vs. JavaScript 752
Section 187.1: `in` with lists 752 ...

Chapter 188: Call Python from C# 753 ...
Section 188.1: Python script to be called by C# application 753 ..
Section 188.2: C# code calling Python script 753 ..

Chapter 189: ctypes 755 ...
Section 189.1: ctypes arrays 755 ...
Section 189.2: Wrapping functions for ctypes 755 ..
Section 189.3: Basic usage 756 ..
Section 189.4: Common pitfalls 756 ..
Section 189.5: Basic ctypes object 757 ...
Section 189.6: Complex usage 758 ..

Chapter 190: Writing extensions 760 ..
Section 190.1: Hello World with C Extension 760 ..
Section 190.2: C Extension Using c++ and Boost 760 ..
Section 190.3: Passing an open file to C Extensions 762 ..

Chapter 191: Python Lex-Yacc 763 ...
Section 191.1: Getting Started with PLY 763 ..
Section 191.2: The "Hello, World!" of PLY - A Simple Calculator 763 ..
Section 191.3: Part 1: Tokenizing Input with Lex 765 ...
Section 191.4: Part 2: Parsing Tokenized Input with Yacc 768 ..

Chapter 192: Unit Testing 772 ..
Section 192.1: Test Setup and Teardown within a unittest.TestCase 772 ..
Section 192.2: Asserting on Exceptions 772 ...
Section 192.3: Testing Exceptions 773 ..
Section 192.4: Choosing Assertions Within Unittests 774 ...
Section 192.5: Unit tests with pytest 775 ..
Section 192.6: Mocking functions with unittest.mock.create_autospec 778 ...

Chapter 193: py.test 780 ...
Section 193.1: Setting up py.test 780 ...
Section 193.2: Intro to Test Fixtures 780 ...
Section 193.3: Failing Tests 783 ...

Chapter 194: Profiling 785 ...
Section 194.1: %%timeit and %timeit in IPython 785 ..
Section 194.2: Using cProfile (Preferred Profiler) 785 ...
Section 194.3: timeit() function 785 ...
Section 194.4: timeit command line 786 ...
Section 194.5: line_profiler in command line 786 ..

Chapter 195: Python speed of program 788 ...
Section 195.1: Deque operations 788 ..
Section 195.2: Algorithmic Notations 788 ...
Section 195.3: Notation 789 ..
Section 195.4: List operations 790 ...
Section 195.5: Set operations 790 ...

Chapter 196: Performance optimization 792 ...
Section 196.1: Code profiling 792 ...

Chapter 197: Security and Cryptography 794 ..
Section 197.1: Secure Password Hashing 794 ...
Section 197.2: Calculating a Message Digest 794 ...
Section 197.3: Available Hashing Algorithms 794 ..
Section 197.4: File Hashing 795 ...
Section 197.5: Generating RSA signatures using pycrypto 795 ...
Section 197.6: Asymmetric RSA encryption using pycrypto 796 ...
Section 197.7: Symmetric encryption using pycrypto 797 ..

Chapter 198: Secure Shell Connection in Python 798 ..
Section 198.1: ssh connection 798 ...

Chapter 199: Python Anti-Patterns 799 ..
Section 199.1: Overzealous except clause 799 ...
Section 199.2: Looking before you leap with processor-intensive function 799 ..

Chapter 200: Common Pitfalls 802 ...
Section 200.1: List multiplication and common references 802 ..
Section 200.2: Mutable default argument 805 ..
Section 200.3: Changing the sequence you are iterating over 806 ..
Section 200.4: Integer and String identity 809 ..
Section 200.5: Dictionaries are unordered 810 ...
Section 200.6: Variable leaking in list comprehensions and for loops 811 ..
Section 200.7: Chaining of or operator 811 ...
Section 200.8: sys.argv[0] is the name of the file being executed 812 ..
Section 200.9: Accessing int literals' attributes 812 ..
Section 200.10: Global Interpreter Lock (GIL) and blocking threads 813 ...

Section 200.11: Multiple return 814 ..
Section 200.12: Pythonic JSON keys 814 ...

Chapter 201: Hidden Features 816 ..
Section 201.1: Operator Overloading 816 ...

Credits 817 ..

You may also like 831 ..

GoalKicker.com – Python® Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://GoalKicker.com/PythonBook

This Python® Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Python® group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/PythonBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 2

Chapter 1: Getting started with Python
Language
Python 3.x
Version Release Date
3.8 2020-04-29

3.7 2018-06-27

3.6 2016-12-23

3.5 2015-09-13

3.4 2014-03-17

3.3 2012-09-29

3.2 2011-02-20

3.1 2009-06-26

3.0 2008-12-03

Python 2.x
Version Release Date
2.7 2010-07-03

2.6 2008-10-02

2.5 2006-09-19

2.4 2004-11-30

2.3 2003-07-29

2.2 2001-12-21

2.1 2001-04-15

2.0 2000-10-16

Section 1.1: Getting Started
Python is a widely used high-level programming language for general-purpose programming, created by Guido van
Rossum and first released in 1991. Python features a dynamic type system and automatic memory management
and supports multiple programming paradigms, including object-oriented, imperative, functional programming,
and procedural styles. It has a large and comprehensive standard library.

Two major versions of Python are currently in active use:

Python 3.x is the current version and is under active development.
Python 2.x is the legacy version and will receive only security updates until 2020. No new features will be
implemented. Note that many projects still use Python 2, although migrating to Python 3 is getting easier.

You can download and install either version of Python here. See Python 3 vs. Python 2 for a comparison between
them. In addition, some third-parties offer re-packaged versions of Python that add commonly used libraries and
other features to ease setup for common use cases, such as math, data analysis or scientific use. See the list at the
official site.

Verify if Python is installed

To confirm that Python was installed correctly, you can verify that by running the following command in your
favorite terminal (If you are using Windows OS, you need to add path of python to the environment variable before
using it in command prompt):

https://www.python.org/downloads/release/python-383rc1/
https://www.python.org/downloads/release/python-370/
https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-350/
https://www.python.org/download/releases/3.4.0/
https://www.python.org/download/releases/3.3.0/
https://www.python.org/download/releases/3.2/
https://www.python.org/download/releases/3.1/
https://www.python.org/download/releases/3.0/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.6/
https://www.python.org/download/releases/2.5/
https://www.python.org/download/releases/2.4/
https://www.python.org/download/releases/2.3/
https://www.python.org/download/releases/2.2/
https://www.python.org/download/releases/2.1/
https://www.python.org/download/releases/2.0/
https://www.python.org/downloads/
https://www.python.org/download/alternatives/
https://www.python.org/download/alternatives/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 3

$ python --version

Python 3.x Version ≥ 3.0

If you have Python 3 installed, and it is your default version (see Troubleshooting for more details) you should see
something like this:

$ python --version
Python 3.6.0

Python 2.x Version ≤ 2.7

If you have Python 2 installed, and it is your default version (see Troubleshooting for more details) you should see
something like this:

$ python --version
Python 2.7.13

If you have installed Python 3, but $ python --version outputs a Python 2 version, you also have Python 2
installed. This is often the case on MacOS, and many Linux distributions. Use $ python3 instead to explicitly use the
Python 3 interpreter.

Hello, World in Python using IDLE

IDLE is a simple editor for Python, that comes bundled with Python.

How to create Hello, World program in IDLE

Open IDLE on your system of choice.
In older versions of Windows, it can be found at All Programs under the Windows menu.
In Windows 8+, search for IDLE or find it in the apps that are present in your system.
On Unix-based (including Mac) systems you can open it from the shell by typing $ idle
python_file.py.

It will open a shell with options along the top.

In the shell, there is a prompt of three right angle brackets:

>>>

Now write the following code in the prompt:

>>> print("Hello, World")

Hit Enter .

>>> print("Hello, World")
Hello, World

Hello World Python file

Create a new file hello.py that contains the following line:

Python 3.x Version ≥ 3.0

print('Hello, World')

Python 2.x Version ≥ 2.6

https://docs.python.org/2/library/idle.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 4

You can use the Python 3 print function in Python 2 with the following import statement:

from __future__ import print_function

Python 2 has a number of functionalities that can be optionally imported from Python 3 using the __future__
module, as discussed here.

Python 2.x Version ≤ 2.7

If using Python 2, you may also type the line below. Note that this is not valid in Python 3 and thus not
recommended because it reduces cross-version code compatibility.

print 'Hello, World'

In your terminal, navigate to the directory containing the file hello.py.

Type python hello.py, then hit the Enter key.

$ python hello.py
Hello, World

You should see Hello, World printed to the console.

You can also substitute hello.py with the path to your file. For example, if you have the file in your home directory
and your user is "user" on Linux, you can type python /home/user/hello.py.

Launch an interactive Python shell

By executing (running) the python command in your terminal, you are presented with an interactive Python shell.
This is also known as the Python Interpreter or a REPL (for 'Read Evaluate Print Loop').

$ python
Python 2.7.12 (default, Jun 28 2016, 08:46:01)
[GCC 6.1.1 20160602] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello, World'
Hello, World
>>>

If you want to run Python 3 from your terminal, execute the command python3.

$ python3
Python 3.6.0 (default, Jan 13 2017, 00:00:00)
[GCC 6.1.1 20160602] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello, World')
Hello, World
>>>

Alternatively, start the interactive prompt and load file with python -i <file.py>.

In command line, run:

$ python -i hello.py
"Hello World"
>>>

https://docs.python.org/3.6/tutorial/interpreter.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 5

There are multiple ways to close the Python shell:

>>> exit()

or

>>> quit()

Alternatively, CTRL + D will close the shell and put you back on your terminal's command line.

If you want to cancel a command you're in the middle of typing and get back to a clean command prompt, while
staying inside the Interpreter shell, use CTRL + C .

Try an interactive Python shell online.

Other Online Shells

Various websites provide online access to Python shells.

Online shells may be useful for the following purposes:

Run a small code snippet from a machine which lacks python installation(smartphones, tablets etc).
Learn or teach basic Python.
Solve online judge problems.

Examples:

Disclaimer: documentation author(s) are not affiliated with any resources listed below.

https://www.python.org/shell/ - The online Python shell hosted by the official Python website.
https://ideone.com/ - Widely used on the Net to illustrate code snippet behavior.
https://repl.it/languages/python3 - Powerful and simple online compiler, IDE and interpreter. Code, compile,
and run code in Python.
https://www.tutorialspoint.com/execute_python_online.php - Full-featured UNIX shell, and a user-friendly
project explorer.
http://rextester.com/l/python3_online_compiler - Simple and easy to use IDE which shows execution time

Run commands as a string

Python can be passed arbitrary code as a string in the shell:

$ python -c 'print("Hello, World")'
Hello, World

This can be useful when concatenating the results of scripts together in the shell.

Shells and Beyond

Package Management - The PyPA recommended tool for installing Python packages is PIP. To install, on your
command line execute pip install <the package name>. For instance, pip install numpy. (Note: On windows
you must add pip to your PATH environment variables. To avoid this, use python -m pip install <the package
name>)

Shells - So far, we have discussed different ways to run code using Python's native interactive shell. Shells use

https://www.python.org/shell/
https://www.python.org/shell/
https://ideone.com/
https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python_online.php
http://rextester.com/l/python3_online_compiler
https://pip.pypa.io/en/stable/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 6

Python's interpretive power for experimenting with code real-time. Alternative shells include IDLE - a pre-bundled
GUI, IPython - known for extending the interactive experience, etc.

Programs - For long-term storage you can save content to .py files and edit/execute them as scripts or programs
with external tools e.g. shell, IDEs (such as PyCharm), Jupyter notebooks, etc. Intermediate users may use these
tools; however, the methods discussed here are sufficient for getting started.

Python tutor allows you to step through Python code so you can visualize how the program will flow, and helps you
to understand where your program went wrong.

PEP8 defines guidelines for formatting Python code. Formatting code well is important so you can quickly read what
the code does.

Section 1.2: Creating variables and assigning values
To create a variable in Python, all you need to do is specify the variable name, and then assign a value to it.

<variable name> = <value>

Python uses = to assign values to variables. There's no need to declare a variable in advance (or to assign a data
type to it), assigning a value to a variable itself declares and initializes the variable with that value. There's no way to
declare a variable without assigning it an initial value.

Integer
a = 2
print(a)
Output: 2

Integer
b = 9223372036854775807
print(b)
Output: 9223372036854775807

Floating point
pi = 3.14
print(pi)
Output: 3.14

String
c = 'A'
print(c)
Output: A

String
name = 'John Doe'
print(name)
Output: John Doe

Boolean
q = True
print(q)
Output: True

Empty value or null data type
x = None
print(x)
Output: None

https://docs.python.org/3/library/idle.html
https://ipython.org/install.html
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.jetbrains.com/pycharm/download/
https://github.com/jupyter/notebook
http://www.pythontutor.com/visualize.html#mode=edit
https://www.python.org/dev/peps/pep-0008/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 7

Variable assignment works from left to right. So the following will give you an syntax error.

0 = x
=> Output: SyntaxError: can't assign to literal

You can not use python's keywords as a valid variable name. You can see the list of keyword by:

import keyword
print(keyword.kwlist)

Rules for variable naming:

Variables names must start with a letter or an underscore.1.

 x = True # valid
 _y = True # valid

 9x = False # starts with numeral
 => SyntaxError: invalid syntax

 $y = False # starts with symbol
 => SyntaxError: invalid syntax

The remainder of your variable name may consist of letters, numbers and underscores.2.

has_0_in_it = "Still Valid"

Names are case sensitive.3.

x = 9
y = X*5
=>NameError: name 'X' is not defined

Even though there's no need to specify a data type when declaring a variable in Python, while allocating the
necessary area in memory for the variable, the Python interpreter automatically picks the most suitable built-in
type for it:

a = 2
print(type(a))
Output: <type 'int'>

b = 9223372036854775807
print(type(b))
Output: <type 'int'>

pi = 3.14
print(type(pi))
Output: <type 'float'>

c = 'A'
print(type(c))
Output: <type 'str'>

name = 'John Doe'
print(type(name))
Output: <type 'str'>

q = True
print(type(q))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 8

Output: <type 'bool'>

x = None
print(type(x))
Output: <type 'NoneType'>

Now you know the basics of assignment, let's get this subtlety about assignment in python out of the way.

When you use = to do an assignment operation, what's on the left of = is a name for the object on the right. Finally,
what = does is assign the reference of the object on the right to the name on the left.

That is:

a_name = an_object # "a_name" is now a name for the reference to the object "an_object"

So, from many assignment examples above, if we pick pi = 3.14, then pi is a name (not the name, since an object
can have multiple names) for the object 3.14. If you don't understand something below, come back to this point
and read this again! Also, you can take a look at this for a better understanding.

You can assign multiple values to multiple variables in one line. Note that there must be the same number of
arguments on the right and left sides of the = operator:

a, b, c = 1, 2, 3
print(a, b, c)
Output: 1 2 3

a, b, c = 1, 2
=> Traceback (most recent call last):
=> File "name.py", line N, in <module>
=> a, b, c = 1, 2
=> ValueError: need more than 2 values to unpack

a, b = 1, 2, 3
=> Traceback (most recent call last):
=> File "name.py", line N, in <module>
=> a, b = 1, 2, 3
=> ValueError: too many values to unpack

The error in last example can be obviated by assigning remaining values to equal number of arbitrary variables.
This dummy variable can have any name, but it is conventional to use the underscore (_) for assigning unwanted
values:

a, b, _ = 1, 2, 3
print(a, b)
Output: 1, 2

Note that the number of _ and number of remaining values must be equal. Otherwise 'too many values to unpack
error' is thrown as above:

a, b, _ = 1,2,3,4
=>Traceback (most recent call last):
=>File "name.py", line N, in <module>
=>a, b, _ = 1,2,3,4
=>ValueError: too many values to unpack (expected 3)

You can also assign a single value to several variables simultaneously.

http://effbot.org/zone/python-objects.htm
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 9

a = b = c = 1
print(a, b, c)
Output: 1 1 1

When using such cascading assignment, it is important to note that all three variables a, b and c refer to the same
object in memory, an int object with the value of 1. In other words, a, b and c are three different names given to the
same int object. Assigning a different object to one of them afterwards doesn't change the others, just as expected:

a = b = c = 1 # all three names a, b and c refer to same int object with value 1
print(a, b, c)
Output: 1 1 1
b = 2 # b now refers to another int object, one with a value of 2
print(a, b, c)
Output: 1 2 1 # so output is as expected.

The above is also true for mutable types (like list, dict, etc.) just as it is true for immutable types (like int, string,
tuple, etc.):

x = y = [7, 8, 9] # x and y refer to the same list object just created, [7, 8, 9]
x = [13, 8, 9] # x now refers to a different list object just created, [13, 8, 9]
print(y) # y still refers to the list it was first assigned
Output: [7, 8, 9]

So far so good. Things are a bit different when it comes to modifying the object (in contrast to assigning the name to
a different object, which we did above) when the cascading assignment is used for mutable types. Take a look
below, and you will see it first hand:

x = y = [7, 8, 9] # x and y are two different names for the same list object just created, [7,
8, 9]
x[0] = 13 # we are updating the value of the list [7, 8, 9] through one of its names, x
in this case
print(y) # printing the value of the list using its other name
Output: [13, 8, 9] # hence, naturally the change is reflected

Nested lists are also valid in python. This means that a list can contain another list as an element.

x = [1, 2, [3, 4, 5], 6, 7] # this is nested list
print x[2]
Output: [3, 4, 5]
print x[2][1]
Output: 4

Lastly, variables in Python do not have to stay the same type as which they were first defined -- you can simply use
= to assign a new value to a variable, even if that value is of a different type.

a = 2
print(a)
Output: 2

a = "New value"
print(a)
Output: New value

If this bothers you, think about the fact that what's on the left of = is just a name for an object. First you call the int
object with value 2 a, then you change your mind and decide to give the name a to a string object, having value
'New value'. Simple, right?

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 10

Section 1.3: Block Indentation
Python uses indentation to define control and loop constructs. This contributes to Python's readability, however, it
requires the programmer to pay close attention to the use of whitespace. Thus, editor miscalibration could result in
code that behaves in unexpected ways.

Python uses the colon symbol (:) and indentation for showing where blocks of code begin and end (If you come
from another language, do not confuse this with somehow being related to the ternary operator). That is, blocks in
Python, such as functions, loops, if clauses and other constructs, have no ending identifiers. All blocks start with a
colon and then contain the indented lines below it.

For example:

def my_function(): # This is a function definition. Note the colon (:)
 a = 2 # This line belongs to the function because it's indented
 return a # This line also belongs to the same function
print(my_function()) # This line is OUTSIDE the function block

or

if a > b: # If block starts here
 print(a) # This is part of the if block
else: # else must be at the same level as if
 print(b) # This line is part of the else block

Blocks that contain exactly one single-line statement may be put on the same line, though this form is generally not
considered good style:

if a > b: print(a)
else: print(b)

Attempting to do this with more than a single statement will not work:

if x > y: y = x
 print(y) # IndentationError: unexpected indent

if x > y: while y != z: y -= 1 # SyntaxError: invalid syntax

An empty block causes an IndentationError. Use pass (a command that does nothing) when you have a block with
no content:

def will_be_implemented_later():
 pass

Spaces vs. Tabs

In short: always use 4 spaces for indentation.

Using tabs exclusively is possible but PEP 8, the style guide for Python code, states that spaces are preferred.

Python 3.x Version ≥ 3.0

Python 3 disallows mixing the use of tabs and spaces for indentation. In such case a compile-time error is
generated: Inconsistent use of tabs and spaces in indentation and the program will not run.

Python 2.x Version ≤ 2.7

https://en.wikipedia.org/wiki/%3F:
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 11

Python 2 allows mixing tabs and spaces in indentation; this is strongly discouraged. The tab character completes
the previous indentation to be a multiple of 8 spaces. Since it is common that editors are configured to show tabs
as multiple of 4 spaces, this can cause subtle bugs.

Citing PEP 8:

When invoking the Python 2 command line interpreter with the -t option, it issues warnings about code
that illegally mixes tabs and spaces. When using -tt these warnings become errors. These options are
highly recommended!

Many editors have "tabs to spaces" configuration. When configuring the editor, one should differentiate between
the tab character ('\t') and the Tab key.

The tab character should be configured to show 8 spaces, to match the language semantics - at least in cases
when (accidental) mixed indentation is possible. Editors can also automatically convert the tab character to
spaces.
However, it might be helpful to configure the editor so that pressing the Tab key will insert 4 spaces,
instead of inserting a tab character.

Python source code written with a mix of tabs and spaces, or with non-standard number of indentation spaces can
be made pep8-conformant using autopep8. (A less powerful alternative comes with most Python installations:
reindent.py)

Section 1.4: Datatypes
Built-in Types
Booleans

bool: A boolean value of either True or False. Logical operations like and, or, not can be performed on booleans.

x or y # if x is False then y otherwise x
x and y # if x is False then x otherwise y
not x # if x is True then False, otherwise True

In Python 2.x and in Python 3.x, a boolean is also an int. The bool type is a subclass of the int type and True and
False are its only instances:

issubclass(bool, int) # True

isinstance(True, bool) # True
isinstance(False, bool) # True

If boolean values are used in arithmetic operations, their integer values (1 and 0 for True and False) will be used to
return an integer result:

True + False == 1 # 1 + 0 == 1
True * True == 1 # 1 * 1 == 1

Numbers

int: Integer number

https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://stackoverflow.com/questions/2625294/how-do-i-autoformat-some-python-code-to-be-correctly-formatted
https://pypi.python.org/pypi/Reindent/0.1.0
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 12

a = 2
b = 100
c = 123456789
d = 38563846326424324

Integers in Python are of arbitrary sizes.

Note: in older versions of Python, a long type was available and this was distinct from int. The two have
been unified.

float: Floating point number; precision depends on the implementation and system architecture, for
CPython the float datatype corresponds to a C double.

a = 2.0
b = 100.e0
c = 123456789.e1

complex: Complex numbers

a = 2 + 1j
b = 100 + 10j

The <, <=, > and >= operators will raise a TypeError exception when any operand is a complex number.

Strings
Python 3.x Version ≥ 3.0

str: a unicode string. The type of 'hello'
bytes: a byte string. The type of b'hello'

Python 2.x Version ≤ 2.7

str: a byte string. The type of 'hello'
bytes: synonym for str
unicode: a unicode string. The type of u'hello'

Sequences and collections

Python differentiates between ordered sequences and unordered collections (such as set and dict).

strings (str, bytes, unicode) are sequences

reversed: A reversed order of str with reversed function

a = reversed('hello')

tuple: An ordered collection of n values of any type (n >= 0).

a = (1, 2, 3)
b = ('a', 1, 'python', (1, 2))
b[2] = 'something else' # returns a TypeError

Supports indexing; immutable; hashable if all its members are hashable

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 13

list: An ordered collection of n values (n >= 0)

a = [1, 2, 3]
b = ['a', 1, 'python', (1, 2), [1, 2]]
b[2] = 'something else' # allowed

Not hashable; mutable.

set: An unordered collection of unique values. Items must be hashable.

a = {1, 2, 'a'}

dict: An unordered collection of unique key-value pairs; keys must be hashable.

a = {1: 'one',
 2: 'two'}

b = {'a': [1, 2, 3],
 'b': 'a string'}

An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equality must have the same hash value.

Built-in constants

In conjunction with the built-in datatypes there are a small number of built-in constants in the built-in namespace:

True: The true value of the built-in type bool
False: The false value of the built-in type bool
None: A singleton object used to signal that a value is absent.
Ellipsis or ...: used in core Python3+ anywhere and limited usage in Python2.7+ as part of array notation.
numpy and related packages use this as a 'include everything' reference in arrays.
NotImplemented: a singleton used to indicate to Python that a special method doesn't support the specific
arguments, and Python will try alternatives if available.

a = None # No value will be assigned. Any valid datatype can be assigned later

Python 3.x Version ≥ 3.0

None doesn't have any natural ordering. Using ordering comparison operators (<, <=, >=, >) isn't supported anymore
and will raise a TypeError.

Python 2.x Version ≤ 2.7

None is always less than any number (None < -32 evaluates to True).

Testing the type of variables

In python, we can check the datatype of an object using the built-in function type.

a = '123'
print(type(a))

https://docs.python.org/3.5/glossary.html
https://docs.python.org/3.5/glossary.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 14

Out: <class 'str'>
b = 123
print(type(b))
Out: <class 'int'>

In conditional statements it is possible to test the datatype with isinstance. However, it is usually not encouraged
to rely on the type of the variable.

i = 7
if isinstance(i, int):
 i += 1
elif isinstance(i, str):
 i = int(i)
 i += 1

For information on the differences between type() and isinstance() read: Differences between isinstance and
type in Python

To test if something is of NoneType:

x = None
if x is None:
 print('Not a surprise, I just defined x as None.')

Converting between datatypes

You can perform explicit datatype conversion.

For example, '123' is of str type and it can be converted to integer using int function.

a = '123'
b = int(a)

Converting from a float string such as '123.456' can be done using float function.

a = '123.456'
b = float(a)
c = int(a) # ValueError: invalid literal for int() with base 10: '123.456'
d = int(b) # 123

You can also convert sequence or collection types

a = 'hello'
list(a) # ['h', 'e', 'l', 'l', 'o']
set(a) # {'o', 'e', 'l', 'h'}
tuple(a) # ('h', 'e', 'l', 'l', 'o')

Explicit string type at definition of literals

With one letter labels just in front of the quotes you can tell what type of string you want to define.

b'foo bar': results bytes in Python 3, str in Python 2
u'foo bar': results str in Python 3, unicode in Python 2
'foo bar': results str
r'foo bar': results so called raw string, where escaping special characters is not necessary, everything is
taken verbatim as you typed

normal = 'foo\nbar' # foo

https://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python
https://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 15

 # bar
escaped = 'foo\\nbar' # foo\nbar
raw = r'foo\nbar' # foo\nbar

Mutable and Immutable Data Types

An object is called mutable if it can be changed. For example, when you pass a list to some function, the list can be
changed:

def f(m):
 m.append(3) # adds a number to the list. This is a mutation.

x = [1, 2]
f(x)
x == [1, 2] # False now, since an item was added to the list

An object is called immutable if it cannot be changed in any way. For example, integers are immutable, since there's
no way to change them:

def bar():
 x = (1, 2)
 g(x)
 x == (1, 2) # Will always be True, since no function can change the object (1, 2)

Note that variables themselves are mutable, so we can reassign the variable x, but this does not change the object
that x had previously pointed to. It only made x point to a new object.

Data types whose instances are mutable are called mutable data types, and similarly for immutable objects and
datatypes.

Examples of immutable Data Types:

int, long, float, complex
str

bytes

tuple

frozenset

Examples of mutable Data Types:

bytearray

list

set

dict

Section 1.5: Collection Types
There are a number of collection types in Python. While types such as int and str hold a single value, collection
types hold multiple values.

Lists

The list type is probably the most commonly used collection type in Python. Despite its name, a list is more like an
array in other languages, mostly JavaScript. In Python, a list is merely an ordered collection of valid Python values. A
list can be created by enclosing values, separated by commas, in square brackets:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 16

int_list = [1, 2, 3]
string_list = ['abc', 'defghi']

A list can be empty:

empty_list = []

The elements of a list are not restricted to a single data type, which makes sense given that Python is a dynamic
language:

mixed_list = [1, 'abc', True, 2.34, None]

A list can contain another list as its element:

nested_list = [['a', 'b', 'c'], [1, 2, 3]]

The elements of a list can be accessed via an index, or numeric representation of their position. Lists in Python are
zero-indexed meaning that the first element in the list is at index 0, the second element is at index 1 and so on:

names = ['Alice', 'Bob', 'Craig', 'Diana', 'Eric']
print(names[0]) # Alice
print(names[2]) # Craig

Indices can also be negative which means counting from the end of the list (-1 being the index of the last element).
So, using the list from the above example:

print(names[-1]) # Eric
print(names[-4]) # Bob

Lists are mutable, so you can change the values in a list:

names[0] = 'Ann'
print(names)
Outputs ['Ann', 'Bob', 'Craig', 'Diana', 'Eric']

Besides, it is possible to add and/or remove elements from a list:

Append object to end of list with L.append(object), returns None.

names = ['Alice', 'Bob', 'Craig', 'Diana', 'Eric']
names.append("Sia")
print(names)
Outputs ['Alice', 'Bob', 'Craig', 'Diana', 'Eric', 'Sia']

Add a new element to list at a specific index. L.insert(index, object)

names.insert(1, "Nikki")
print(names)
Outputs ['Alice', 'Nikki', 'Bob', 'Craig', 'Diana', 'Eric', 'Sia']

Remove the first occurrence of a value with L.remove(value), returns None

names.remove("Bob")
print(names) # Outputs ['Alice', 'Nikki', 'Craig', 'Diana', 'Eric', 'Sia']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 17

Get the index in the list of the first item whose value is x. It will show an error if there is no such item.

name.index("Alice")
0

Count length of list

len(names)
6

count occurrence of any item in list

a = [1, 1, 1, 2, 3, 4]
a.count(1)
3

Reverse the list

a.reverse()
[4, 3, 2, 1, 1, 1]
or
a[::-1]
[4, 3, 2, 1, 1, 1]

Remove and return item at index (defaults to the last item) with L.pop([index]), returns the item

names.pop() # Outputs 'Sia'

You can iterate over the list elements like below:

for element in my_list:
 print (element)

Tuples

A tuple is similar to a list except that it is fixed-length and immutable. So the values in the tuple cannot be changed
nor the values be added to or removed from the tuple. Tuples are commonly used for small collections of values
that will not need to change, such as an IP address and port. Tuples are represented with parentheses instead of
square brackets:

ip_address = ('10.20.30.40', 8080)

The same indexing rules for lists also apply to tuples. Tuples can also be nested and the values can be any valid
Python valid.

A tuple with only one member must be defined (note the comma) this way:

one_member_tuple = ('Only member',)

or

one_member_tuple = 'Only member', # No brackets

or just using tuple syntax

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 18

one_member_tuple = tuple(['Only member'])

Dictionaries

A dictionary in Python is a collection of key-value pairs. The dictionary is surrounded by curly braces. Each pair is
separated by a comma and the key and value are separated by a colon. Here is an example:

state_capitals = {
 'Arkansas': 'Little Rock',
 'Colorado': 'Denver',
 'California': 'Sacramento',
 'Georgia': 'Atlanta'
}

To get a value, refer to it by its key:

ca_capital = state_capitals['California']

You can also get all of the keys in a dictionary and then iterate over them:

for k in state_capitals.keys():
 print('{} is the capital of {}'.format(state_capitals[k], k))

Dictionaries strongly resemble JSON syntax. The native json module in the Python standard library can be used to
convert between JSON and dictionaries.

set

A set is a collection of elements with no repeats and without insertion order but sorted order. They are used in
situations where it is only important that some things are grouped together, and not what order they were
included. For large groups of data, it is much faster to check whether or not an element is in a set than it is to do
the same for a list.

Defining a set is very similar to defining a dictionary:

first_names = {'Adam', 'Beth', 'Charlie'}

Or you can build a set using an existing list:

my_list = [1,2,3]
my_set = set(my_list)

Check membership of the set using in:

if name in first_names:
 print(name)

You can iterate over a set exactly like a list, but remember: the values will be in an arbitrary, implementation-
defined order.

defaultdict

A defaultdict is a dictionary with a default value for keys, so that keys for which no value has been explicitly
defined can be accessed without errors. defaultdict is especially useful when the values in the dictionary are
collections (lists, dicts, etc) in the sense that it does not need to be initialized every time when a new key is used.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 19

A defaultdict will never raise a KeyError. Any key that does not exist gets the default value returned.

For example, consider the following dictionary

>>> state_capitals = {
 'Arkansas': 'Little Rock',
 'Colorado': 'Denver',
 'California': 'Sacramento',
 'Georgia': 'Atlanta'
}

If we try to access a non-existent key, python returns us an error as follows

>>> state_capitals['Alabama']
Traceback (most recent call last):

 File "<ipython-input-61-236329695e6f>", line 1, in <module>
 state_capitals['Alabama']

KeyError: 'Alabama'

Let us try with a defaultdict. It can be found in the collections module.

>>> from collections import defaultdict
>>> state_capitals = defaultdict(lambda: 'Boston')

What we did here is to set a default value (Boston) in case the give key does not exist. Now populate the dict as
before:

>>> state_capitals['Arkansas'] = 'Little Rock'
>>> state_capitals['California'] = 'Sacramento'
>>> state_capitals['Colorado'] = 'Denver'
>>> state_capitals['Georgia'] = 'Atlanta'

If we try to access the dict with a non-existent key, python will return us the default value i.e. Boston

>>> state_capitals['Alabama']
'Boston'

and returns the created values for existing key just like a normal dictionary

>>> state_capitals['Arkansas']
'Little Rock'

Section 1.6: IDLE - Python GUI
IDLE is Python’s Integrated Development and Learning Environment and is an alternative to the command line. As
the name may imply, IDLE is very useful for developing new code or learning python. On Windows this comes with
the Python interpreter, but in other operating systems you may need to install it through your package manager.

The main purposes of IDLE are:

Multi-window text editor with syntax highlighting, autocompletion, and smart indent
Python shell with syntax highlighting
Integrated debugger with stepping, persistent breakpoints, and call stack visibility
Automatic indentation (useful for beginners learning about Python's indentation)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 20

Saving the Python program as .py files and run them and edit them later at any them using IDLE.

In IDLE, hit F5 or run Python Shell to launch an interpreter. Using IDLE can be a better learning experience for
new users because code is interpreted as the user writes.

Note that there are lots of alternatives, see for example this discussion or this list.

Troubleshooting

Windows

If you're on Windows, the default command is python. If you receive a "'python' is not recognized" error,
the most likely cause is that Python's location is not in your system's PATH environment variable. This can be
accessed by right-clicking on 'My Computer' and selecting 'Properties' or by navigating to 'System' through
'Control Panel'. Click on 'Advanced system settings' and then 'Environment Variables...'. Edit the PATH variable
to include the directory of your Python installation, as well as the Script folder (usually
C:\Python27;C:\Python27\Scripts). This requires administrative privileges and may require a restart.

When using multiple versions of Python on the same machine, a possible solution is to rename one of the
python.exe files. For example, naming one version python27.exe would cause python27 to become the
Python command for that version.

You can also use the Python Launcher for Windows, which is available through the installer and comes by
default. It allows you to select the version of Python to run by using py -[x.y] instead of python[x.y]. You
can use the latest version of Python 2 by running scripts with py -2 and the latest version of Python 3 by
running scripts with py -3.

Debian/Ubuntu/MacOS

This section assumes that the location of the python executable has been added to the PATH environment
variable.

If you're on Debian/Ubuntu/MacOS, open the terminal and type python for Python 2.x or python3 for Python
3.x.

Type which python to see which Python interpreter will be used.

Arch Linux

The default Python on Arch Linux (and descendants) is Python 3, so use python or python3 for Python 3.x and
python2 for Python 2.x.

Other systems

Python 3 is sometimes bound to python instead of python3. To use Python 2 on these systems where it is
installed, you can use python2.

http://stackoverflow.com/questions/81584/what-ide-to-use-for-python
https://wiki.python.org/moin/PythonEditors
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 21

Section 1.7: User Input
Interactive input

To get input from the user, use the input function (note: in Python 2.x, the function is called raw_input instead,
although Python 2.x has its own version of input that is completely different):

Python 2.x Version ≥ 2.3

name = raw_input("What is your name? ")
Out: What is your name? _

Security Remark Do not use input() in Python2 - the entered text will be evaluated as if it were a
Python expression (equivalent to eval(input()) in Python3), which might easily become a vulnerability.
See this article for further information on the risks of using this function.

Python 3.x Version ≥ 3.0

name = input("What is your name? ")
Out: What is your name? _

The remainder of this example will be using Python 3 syntax.

The function takes a string argument, which displays it as a prompt and returns a string. The above code provides a
prompt, waiting for the user to input.

name = input("What is your name? ")
Out: What is your name?

If the user types "Bob" and hits enter, the variable name will be assigned to the string "Bob":

name = input("What is your name? ")
Out: What is your name? Bob
print(name)
Out: Bob

Note that the input is always of type str, which is important if you want the user to enter numbers. Therefore, you
need to convert the str before trying to use it as a number:

x = input("Write a number:")
Out: Write a number: 10
x / 2
Out: TypeError: unsupported operand type(s) for /: 'str' and 'int'
float(x) / 2
Out: 5.0

NB: It's recommended to use try/except blocks to catch exceptions when dealing with user inputs. For instance, if
your code wants to cast a raw_input into an int, and what the user writes is uncastable, it raises a ValueError.

Section 1.8: Built in Modules and Functions
A module is a file containing Python definitions and statements. Function is a piece of code which execute some
logic.

>>> pow(2,3) #8

https://docs.python.org/2/library/functions.html#input
https://medium.com/@GallegoDor/python-exploitation-1-input-ac10d3f4491f#.cr6w4z7q8
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 22

To check the built in function in python we can use dir(). If called without an argument, return the names in the
current scope. Else, return an alphabetized list of names comprising (some of) the attribute of the given object, and
of attributes reachable from it.

>>> dir(__builtins__)
[
 'ArithmeticError',
 'AssertionError',
 'AttributeError',
 'BaseException',
 'BufferError',
 'BytesWarning',
 'DeprecationWarning',
 'EOFError',
 'Ellipsis',
 'EnvironmentError',
 'Exception',
 'False',
 'FloatingPointError',
 'FutureWarning',
 'GeneratorExit',
 'IOError',
 'ImportError',
 'ImportWarning',
 'IndentationError',
 'IndexError',
 'KeyError',
 'KeyboardInterrupt',
 'LookupError',
 'MemoryError',
 'NameError',
 'None',
 'NotImplemented',
 'NotImplementedError',
 'OSError',
 'OverflowError',
 'PendingDeprecationWarning',
 'ReferenceError',
 'RuntimeError',
 'RuntimeWarning',
 'StandardError',
 'StopIteration',
 'SyntaxError',
 'SyntaxWarning',
 'SystemError',
 'SystemExit',
 'TabError',
 'True',
 'TypeError',
 'UnboundLocalError',
 'UnicodeDecodeError',
 'UnicodeEncodeError',
 'UnicodeError',
 'UnicodeTranslateError',
 'UnicodeWarning',
 'UserWarning',
 'ValueError',
 'Warning',
 'ZeroDivisionError',
 '__debug__',
 '__doc__',

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 23

 '__import__',
 '__name__',
 '__package__',
 'abs',
 'all',
 'any',
 'apply',
 'basestring',
 'bin',
 'bool',
 'buffer',
 'bytearray',
 'bytes',
 'callable',
 'chr',
 'classmethod',
 'cmp',
 'coerce',
 'compile',
 'complex',
 'copyright',
 'credits',
 'delattr',
 'dict',
 'dir',
 'divmod',
 'enumerate',
 'eval',
 'execfile',
 'exit',
 'file',
 'filter',
 'float',
 'format',
 'frozenset',
 'getattr',
 'globals',
 'hasattr',
 'hash',
 'help',
 'hex',
 'id',
 'input',
 'int',
 'intern',
 'isinstance',
 'issubclass',
 'iter',
 'len',
 'license',
 'list',
 'locals',
 'long',
 'map',
 'max',
 'memoryview',
 'min',
 'next',
 'object',
 'oct',
 'open',
 'ord',

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 24

 'pow',
 'print',
 'property',
 'quit',
 'range',
 'raw_input',
 'reduce',
 'reload',
 'repr',
 'reversed',
 'round',
 'set',
 'setattr',
 'slice',
 'sorted',
 'staticmethod',
 'str',
 'sum',
 'super',
 'tuple',
 'type',
 'unichr',
 'unicode',
 'vars',
 'xrange',
 'zip'
]

To know the functionality of any function, we can use built in function help .

>>> help(max)
Help on built-in function max in module __builtin__:
max(...)
 max(iterable[, key=func]) -> value
 max(a, b, c, ...[, key=func]) -> value
 With a single iterable argument, return its largest item.
 With two or more arguments, return the largest argument.

Built in modules contains extra functionalities. For example to get square root of a number we need to include math
module.

>>> import math
>>> math.sqrt(16) # 4.0

To know all the functions in a module we can assign the functions list to a variable, and then print the variable.

>>> import math
>>> dir(math)

 ['__doc__', '__name__', '__package__', 'acos', 'acosh',
 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',
 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1',
 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',
 'log1p', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt',
 'tan', 'tanh', 'trunc']

it seems __doc__ is useful to provide some documentation in, say, functions

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 25

>>> math.__doc__
'This module is always available. It provides access to the\nmathematical
 functions defined by the C standard.'

In addition to functions, documentation can also be provided in modules. So, if you have a file named
helloWorld.py like this:

"""This is the module docstring."""

def sayHello():
 """This is the function docstring."""
 return 'Hello World'

You can access its docstrings like this:

>>> import helloWorld
>>> helloWorld.__doc__
'This is the module docstring.'
>>> helloWorld.sayHello.__doc__
'This is the function docstring.'

For any user defined type, its attributes, its class's attributes, and recursively the attributes of its class's base
classes can be retrieved using dir()

>>> class MyClassObject(object):
... pass
...
>>> dir(MyClassObject)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__',
'__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__']

Any data type can be simply converted to string using a builtin function called str. This function is called by default
when a data type is passed to print

>>> str(123) # "123"

Section 1.9: Creating a module
A module is an importable file containing definitions and statements.

A module can be created by creating a .py file.

hello.py
def say_hello():
 print("Hello!")

Functions in a module can be used by importing the module.

For modules that you have made, they will need to be in the same directory as the file that you are importing them
into. (However, you can also put them into the Python lib directory with the pre-included modules, but should be
avoided if possible.)

$ python
>>> import hello
>>> hello.say_hello()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 26

=> "Hello!"

Modules can be imported by other modules.

greet.py
import hello
hello.say_hello()

Specific functions of a module can be imported.

greet.py
from hello import say_hello
say_hello()

Modules can be aliased.

greet.py
import hello as ai
ai.say_hello()

A module can be stand-alone runnable script.

run_hello.py
if __name__ == '__main__':
 from hello import say_hello
 say_hello()

Run it!

$ python run_hello.py
=> "Hello!"

If the module is inside a directory and needs to be detected by python, the directory should contain a file named
__init__.py.

Section 1.10: Installation of Python 2.7.x and 3.x

Note: Following instructions are written for Python 2.7 (unless specified): instructions for Python 3.x are
similar.

Windows

First, download the latest version of Python 2.7 from the official Website (https://www.python.org/downloads/).
Version is provided as an MSI package. To install it manually, just double-click the file.

By default, Python installs to a directory:

 C:\Python27\

Warning: installation does not automatically modify the PATH environment variable.

Assuming that your Python installation is in C:\Python27, add this to your PATH:

https://www.python.org/downloads/)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 27

C:\Python27\;C:\Python27\Scripts\

Now to check if Python installation is valid write in cmd:

python --version

Python 2.x and 3.x Side-By-Side

To install and use both Python 2.x and 3.x side-by-side on a Windows machine:

Install Python 2.x using the MSI installer.1.

Ensure Python is installed for all users.
Optional: add Python to PATH to make Python 2.x callable from the command-line using python.

Install Python 3.x using its respective installer.2.

Again, ensure Python is installed for all users.
Optional: add Python to PATH to make Python 3.x callable from the command-line using python. This
may override Python 2.x PATH settings, so double-check your PATH and ensure it's configured to your
preferences.
Make sure to install the py launcher for all users.

Python 3 will install the Python launcher which can be used to launch Python 2.x and Python 3.x interchangeably
from the command-line:

P:\>py -3
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

C:\>py -2
Python 2.7.13 (v2.7.13:a06454b1afa1, Dec 17 2016, 20:42:59) [MSC v.1500 32 Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

To use the corresponding version of pip for a specific Python version, use:

C:\>py -3 -m pip -V
pip 9.0.1 from C:\Python36\lib\site-packages (python 3.6)

C:\>py -2 -m pip -V
pip 9.0.1 from C:\Python27\lib\site-packages (python 2.7)

Linux

The latest versions of CentOS, Fedora, Red Hat Enterprise (RHEL) and Ubuntu come with Python 2.7.

To install Python 2.7 on linux manually, just do the following in terminal:

wget --no-check-certificate https://www.python.org/ftp/python/2.7.X/Python-2.7.X.tgz
tar -xzf Python-2.7.X.tgz
cd Python-2.7.X
./configure
make

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 28

sudo make install

Also add the path of new python in PATH environment variable. If new python is in /root/python-2.7.X then run
export PATH = $PATH:/root/python-2.7.X

Now to check if Python installation is valid write in terminal:

python --version

Ubuntu (From Source)

If you need Python 3.6 you can install it from source as shown below (Ubuntu 16.10 and 17.04 have 3.6 version in
the universal repository). Below steps have to be followed for Ubuntu 16.04 and lower versions:

sudo apt install build-essential checkinstall
sudo apt install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-
dev libc6-dev libbz2-dev
wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tar.xz
tar xvf Python-3.6.1.tar.xz
cd Python-3.6.1/
./configure --enable-optimizations
sudo make altinstall

macOS

As we speak, macOS comes installed with Python 2.7.10, but this version is outdated and slightly modified from the
regular Python.

The version of Python that ships with OS X is great for learning but it’s not good for development. The
version shipped with OS X may be out of date from the official current Python release, which is
considered the stable production version. (source)

Install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Install Python 2.7:

brew install python

For Python 3.x, use the command brew install python3 instead.

Section 1.11: String function - str() and repr()
There are two functions that can be used to obtain a readable representation of an object.

repr(x) calls x.__repr__(): a representation of x. eval will usually convert the result of this function back to the
original object.

str(x) calls x.__str__(): a human-readable string that describes the object. This may elide some technical detail.

repr()

http://docs.python-guide.org/en/latest/starting/install/osx/
https://brew.sh/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 29

For many types, this function makes an attempt to return a string that would yield an object with the same value
when passed to eval(). Otherwise, the representation is a string enclosed in angle brackets that contains the name
of the type of the object along with additional information. This often includes the name and address of the object.

str()

For strings, this returns the string itself. The difference between this and repr(object) is that str(object) does
not always attempt to return a string that is acceptable to eval(). Rather, its goal is to return a printable or 'human
readable' string. If no argument is given, this returns the empty string, ''.

Example 1:

s = """w'o"w"""
repr(s) # Output: '\'w\\\'o"w\''
str(s) # Output: 'w\'o"w'
eval(str(s)) == s # Gives a SyntaxError
eval(repr(s)) == s # Output: True

Example 2:

import datetime
today = datetime.datetime.now()
str(today) # Output: '2016-09-15 06:58:46.915000'
repr(today) # Output: 'datetime.datetime(2016, 9, 15, 6, 58, 46, 915000)'

When writing a class, you can override these methods to do whatever you want:

class Represent(object):

 def __init__(self, x, y):
 self.x, self.y = x, y

 def __repr__(self):
 return "Represent(x={},y=\"{}\")".format(self.x, self.y)

 def __str__(self):
 return "Representing x as {} and y as {}".format(self.x, self.y)

Using the above class we can see the results:

r = Represent(1, "Hopper")
print(r) # prints __str__
print(r.__repr__) # prints __repr__: '<bound method Represent.__repr__ of
Represent(x=1,y="Hopper")>'
rep = r.__repr__() # sets the execution of __repr__ to a new variable
print(rep) # prints 'Represent(x=1,y="Hopper")'
r2 = eval(rep) # evaluates rep
print(r2) # prints __str__ from new object
print(r2 == r) # prints 'False' because they are different objects

Section 1.12: Installing external modules using pip
pip is your friend when you need to install any package from the plethora of choices available at the python
package index (PyPI). pip is already installed if you're using Python 2 >= 2.7.9 or Python 3 >= 3.4 downloaded from
python.org. For computers running Linux or another *nix with a native package manager, pip must often be
manually installed.

https://pip.pypa.io/en/stable/installing/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 30

On instances with both Python 2 and Python 3 installed, pip often refers to Python 2 and pip3 to Python 3. Using
pip will only install packages for Python 2 and pip3 will only install packages for Python 3.

Finding / installing a package

Searching for a package is as simple as typing

$ pip search <query>
Searches for packages whose name or summary contains <query>

Installing a package is as simple as typing (in a terminal / command-prompt, not in the Python interpreter)

$ pip install [package_name] # latest version of the package

$ pip install [package_name]==x.x.x # specific version of the package

$ pip install '[package_name]>=x.x.x' # minimum version of the package

where x.x.x is the version number of the package you want to install.

When your server is behind proxy, you can install package by using below command:

$ pip --proxy http://<server address>:<port> install

Upgrading installed packages

When new versions of installed packages appear they are not automatically installed to your system. To get an
overview of which of your installed packages have become outdated, run:

$ pip list --outdated

To upgrade a specific package use

$ pip install [package_name] --upgrade

Updating all outdated packages is not a standard functionality of pip.

Upgrading pip

You can upgrade your existing pip installation by using the following commands

On Linux or macOS X:

$ pip install -U pip

You may need to use sudo with pip on some Linux Systems

On Windows:

py -m pip install -U pip

or

python -m pip install -U pip

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 31

For more information regarding pip do read here.

Section 1.13: Help Utility
Python has several functions built into the interpreter. If you want to get information of keywords, built-in
functions, modules or topics open a Python console and enter:

>>> help()

You will receive information by entering keywords directly:

>>> help(help)

or within the utility:

help> help

which will show an explanation:

Help on _Helper in module _sitebuiltins object:

class _Helper(builtins.object)
| Define the builtin 'help'.
|
| This is a wrapper around pydoc.help that provides a helpful message
| when 'help' is typed at the Python interactive prompt.
|
| Calling help() at the Python prompt starts an interactive help session.
| Calling help(thing) prints help for the python object 'thing'.
|
| Methods defined here:
|
| __call__(self, *args, **kwds)
|
| __repr__(self)
|
| --
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

You can also request subclasses of modules:

help(pymysql.connections)

You can use help to access the docstrings of the different modules you have imported, e.g., try the following:

>>> help(math)

and you'll get an error

>>> import math

https://pip.pypa.io/en/stable/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 32

>>> help(math)

And now you will get a list of the available methods in the module, but only AFTER you have imported it.

Close the helper with quit

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 33

Chapter 2: Python Data Types
Data types are nothing but variables you use to reserve some space in memory. Python variables do not need an
explicit declaration to reserve memory space. The declaration happens automatically when you assign a value to a
variable.

Section 2.1: String Data Type
String are identified as a contiguous set of characters represented in the quotation marks. Python allows for either
pairs of single or double quotes. Strings are immutable sequence data type, i.e each time one makes any changes
to a string, completely new string object is created.

a_str = 'Hello World'
print(a_str) #output will be whole string. Hello World
print(a_str[0]) #output will be first character. H
print(a_str[0:5]) #output will be first five characters. Hello

Section 2.2: Set Data Types
Sets are unordered collections of unique objects, there are two types of set:

Sets - They are mutable and new elements can be added once sets are defined1.

basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
print(basket) # duplicates will be removed
> {'orange', 'banana', 'pear', 'apple'}
a = set('abracadabra')
print(a) # unique letters in a
> {'a', 'r', 'b', 'c', 'd'}
a.add('z')
print(a)
> {'a', 'c', 'r', 'b', 'z', 'd'}

Frozen Sets - They are immutable and new elements cannot added after its defined.2.

b = frozenset('asdfagsa')
print(b)
> frozenset({'f', 'g', 'd', 'a', 's'})
cities = frozenset(["Frankfurt", "Basel","Freiburg"])
print(cities)
> frozenset({'Frankfurt', 'Basel', 'Freiburg'})

Section 2.3: Numbers data type
Numbers have four types in Python. Int, float, complex, and long.

int_num = 10 #int value
float_num = 10.2 #float value
complex_num = 3.14j #complex value
long_num = 1234567L #long value

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 34

Section 2.4: List Data Type
A list contains items separated by commas and enclosed within square brackets [].lists are almost similar to arrays
in C. One difference is that all the items belonging to a list can be of different data type.

list = [123,'abcd',10.2,'d'] #can be an array of any data type or single data type.
list1 = ['hello','world']
print(list) #will output whole list. [123,'abcd',10.2,'d']
print(list[0:2]) #will output first two element of list. [123,'abcd']
print(list1 * 2) #will gave list1 two times. ['hello','world','hello','world']
print(list + list1) #will gave concatenation of both the lists.
[123,'abcd',10.2,'d','hello','world']

Section 2.5: Dictionary Data Type
Dictionary consists of key-value pairs. It is enclosed by curly braces {} and values can be assigned and accessed
using square brackets[].

dic={'name':'red','age':10}
print(dic) #will output all the key-value pairs. {'name':'red','age':10}
print(dic['name']) #will output only value with 'name' key. 'red'
print(dic.values()) #will output list of values in dic. ['red',10]
print(dic.keys()) #will output list of keys. ['name','age']

Section 2.6: Tuple Data Type
Lists are enclosed in brackets [] and their elements and size can be changed, while tuples are enclosed in
parentheses () and cannot be updated. Tuples are immutable.

tuple = (123,'hello')
tuple1 = ('world')
print(tuple) #will output whole tuple. (123,'hello')
print(tuple[0]) #will output first value. (123)
print(tuple + tuple1) #will output (123,'hello','world')
tuple[1]='update' #this will give you error.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 35

Chapter 3: Indentation
Section 3.1: Simple example
For Python, Guido van Rossum based the grouping of statements on indentation. The reasons for this are explained
in the first section of the "Design and History Python FAQ". Colons, :, are used to declare an indented code block,
such as the following example:

class ExampleClass:
 #Every function belonging to a class must be indented equally
 def __init__(self):
 name = "example"

 def someFunction(self, a):
 #Notice everything belonging to a function must be indented
 if a > 5:
 return True
 else:
 return False

#If a function is not indented to the same level it will not be considers as part of the parent class
def separateFunction(b):
 for i in b:
 #Loops are also indented and nested conditions start a new indentation
 if i == 1:
 return True
 return False

separateFunction([2,3,5,6,1])

Spaces or Tabs?

The recommended indentation is 4 spaces but tabs or spaces can be used so long as they are consistent. Do not
mix tabs and spaces in Python as this will cause an error in Python 3 and can causes errors in Python 2.

Section 3.2: How Indentation is Parsed
Whitespace is handled by the lexical analyzer before being parsed.

The lexical analyzer uses a stack to store indentation levels. At the beginning, the stack contains just the value 0,
which is the leftmost position. Whenever a nested block begins, the new indentation level is pushed on the stack,
and an "INDENT" token is inserted into the token stream which is passed to the parser. There can never be more
than one "INDENT" token in a row (IndentationError).

When a line is encountered with a smaller indentation level, values are popped from the stack until a value is on top
which is equal to the new indentation level (if none is found, a syntax error occurs). For each value popped, a
"DEDENT" token is generated. Obviously, there can be multiple "DEDENT" tokens in a row.

The lexical analyzer skips empty lines (those containing only whitespace and possibly comments), and will never
generate either "INDENT" or "DEDENT" tokens for them.

At the end of the source code, "DEDENT" tokens are generated for each indentation level left on the stack, until just
the 0 is left.

For example:

https://docs.python.org/3/faq/design.html
https://docs.python.org/3/faq/design.html#why-are-colons-required-for-the-if-while-def-class-statements
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://stackoverflow.com/questions/2034517/pythons-interpretation-of-tabs-and-spaces-to-indent/25471702#25471702
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 36

if foo:
 if bar:
 x = 42
else:
 print foo

is analyzed as:

<if> <foo> <:> [0]
<INDENT> <if> <bar> <:> [0, 4]
<INDENT> <x> <=> <42> [0, 4, 8]
<DEDENT> <DEDENT> <else> <:> [0]
<INDENT> <print> <foo> [0, 2]
<DEDENT>

The parser than handles the "INDENT" and "DEDENT" tokens as block delimiters.

Section 3.3: Indentation Errors
The spacing should be even and uniform throughout. Improper indentation can cause an IndentationError or
cause the program to do something unexpected. The following example raises an IndentationError:

a = 7
if a > 5:
 print "foo"
else:
 print "bar"
 print "done"

Or if the line following a colon is not indented, an IndentationError will also be raised:

if True:
print "true"

If you add indentation where it doesn't belong, an IndentationError will be raised:

if True:
 a = 6
 b = 5

If you forget to un-indent functionality could be lost. In this example None is returned instead of the expected False:

def isEven(a):
 if a%2 ==0:
 return True
 #this next line should be even with the if
 return False
print isEven(7)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 37

Chapter 4: Comments and Documentation
Section 4.1: Single line, inline and multiline comments
Comments are used to explain code when the basic code itself isn't clear.

Python ignores comments, and so will not execute code in there, or raise syntax errors for plain English sentences.

Single-line comments begin with the hash character (#) and are terminated by the end of line.

Single line comment:

This is a single line comment in Python

Inline comment:

print("Hello World") # This line prints "Hello World"

Comments spanning multiple lines have """ or ''' on either end. This is the same as a multiline string, but
they can be used as comments:

"""
This type of comment spans multiple lines.
These are mostly used for documentation of functions, classes and modules.
"""

Section 4.2: Programmatically accessing docstrings
Docstrings are - unlike regular comments - stored as an attribute of the function they document, meaning that you
can access them programmatically.

An example function
def func():
 """This is a function that does nothing at all"""
 return

The docstring can be accessed using the __doc__ attribute:

print(func.__doc__)

This is a function that does nothing at all

help(func)

Help on function func in module __main__:

func()

 This is a function that does nothing at all

Another example function

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 38

function.__doc__ is just the actual docstring as a string, while the help function provides general information
about a function, including the docstring. Here's a more helpful example:

def greet(name, greeting="Hello"):
 """Print a greeting to the user `name`

 Optional parameter `greeting` can change what they're greeted with."""

 print("{} {}".format(greeting, name))

help(greet)

Help on function greet in module __main__:

greet(name, greeting='Hello')

 Print a greeting to the user name
 Optional parameter greeting can change what they're greeted with.

Advantages of docstrings over regular comments

Just putting no docstring or a regular comment in a function makes it a lot less helpful.

def greet(name, greeting="Hello"):
 # Print a greeting to the user `name`
 # Optional parameter `greeting` can change what they're greeted with.

 print("{} {}".format(greeting, name))

print(greet.__doc__)

None

help(greet)

Help on function greet in module main:

greet(name, greeting='Hello')

Section 4.3: Write documentation using docstrings
A docstring is a multi-line comment used to document modules, classes, functions and methods. It has to be the
first statement of the component it describes.

def hello(name):
 """Greet someone.

 Print a greeting ("Hello") for the person with the given name.
 """

 print("Hello "+name)

class Greeter:
 """An object used to greet people.

https://www.python.org/dev/peps/pep-0257/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 39

 It contains multiple greeting functions for several languages
 and times of the day.
 """

The value of the docstring can be accessed within the program and is - for example - used by the help command.

Syntax conventions
PEP 257

PEP 257 defines a syntax standard for docstring comments. It basically allows two types:

One-line Docstrings:

According to PEP 257, they should be used with short and simple functions. Everything is placed in one line, e.g:

def hello():
 """Say hello to your friends."""
 print("Hello my friends!")

The docstring shall end with a period, the verb should be in the imperative form.

Multi-line Docstrings:

Multi-line docstring should be used for longer, more complex functions, modules or classes.

def hello(name, language="en"):
 """Say hello to a person.

 Arguments:
 name: the name of the person
 language: the language in which the person should be greeted
 """

 print(greeting[language]+" "+name)

They start with a short summary (equivalent to the content of a one-line docstring) which can be on the same line
as the quotation marks or on the next line, give additional detail and list parameters and return values.

Note PEP 257 defines what information should be given within a docstring, it doesn't define in which format it
should be given. This was the reason for other parties and documentation parsing tools to specify their own
standards for documentation, some of which are listed below and in this question.

Sphinx

Sphinx is a tool to generate HTML based documentation for Python projects based on docstrings. Its markup
language used is reStructuredText. They define their own standards for documentation, pythonhosted.org hosts a
very good description of them. The Sphinx format is for example used by the pyCharm IDE.

A function would be documented like this using the Sphinx/reStructuredText format:

def hello(name, language="en"):
 """Say hello to a person.

 :param name: the name of the person
 :type name: str
 :param language: the language in which the person should be greeted
 :type language: str

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/#multi-line-docstrings
https://stackoverflow.com/questions/5334531/using-javadoc-for-python-documentation
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/rst.html
https://pythonhosted.org/an_example_pypi_project/sphinx.html
https://www.jetbrains.com/pycharm/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 40

 :return: a number
 :rtype: int
 """

 print(greeting[language]+" "+name)
 return 4

Google Python Style Guide

Google has published Google Python Style Guide which defines coding conventions for Python, including
documentation comments. In comparison to the Sphinx/reST many people say that documentation according to
Google's guidelines is better human-readable.

The pythonhosted.org page mentioned above also provides some examples for good documentation according to
the Google Style Guide.

Using the Napoleon plugin, Sphinx can also parse documentation in the Google Style Guide-compliant format.

A function would be documented like this using the Google Style Guide format:

def hello(name, language="en"):
 """Say hello to a person.

 Args:
 name: the name of the person as string
 language: the language code string

 Returns:
 A number.
 """

 print(greeting[language]+" "+name)
 return 4

https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://pythonhosted.org/an_example_pypi_project/sphinx.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F

GoalKicker.com – Python® Notes for Professionals 42

Chapter 5: Date and Time
Section 5.1: Parsing a string into a timezone aware datetime
object
Python 3.2+ has support for %z format when parsing a string into a datetime object.

UTC offset in the form +HHMM or -HHMM (empty string if the object is naive).

Python 3.x Version ≥ 3.2

import datetime
dt = datetime.datetime.strptime("2016-04-15T08:27:18-0500", "%Y-%m-%dT%H:%M:%S%z")

For other versions of Python, you can use an external library such as dateutil, which makes parsing a string with
timezone into a datetime object is quick.

import dateutil.parser
dt = dateutil.parser.parse("2016-04-15T08:27:18-0500")

The dt variable is now a datetime object with the following value:

datetime.datetime(2016, 4, 15, 8, 27, 18, tzinfo=tzoffset(None, -18000))

Section 5.2: Constructing timezone-aware datetimes
By default all datetime objects are naive. To make them timezone-aware, you must attach a tzinfo object, which
provides the UTC offset and timezone abbreviation as a function of date and time.

Fixed Offset Time Zones

For time zones that are a fixed offset from UTC, in Python 3.2+, the datetime module provides the timezone class, a
concrete implementation of tzinfo, which takes a timedelta and an (optional) name parameter:

Python 3.x Version ≥ 3.2

from datetime import datetime, timedelta, timezone
JST = timezone(timedelta(hours=+9))

dt = datetime(2015, 1, 1, 12, 0, 0, tzinfo=JST)
print(dt)
2015-01-01 12:00:00+09:00

print(dt.tzname())
UTC+09:00

dt = datetime(2015, 1, 1, 12, 0, 0, tzinfo=timezone(timedelta(hours=9), 'JST'))
print(dt.tzname)
'JST'

For Python versions before 3.2, it is necessary to use a third party library, such as dateutil. dateutil provides an
equivalent class, tzoffset, which (as of version 2.5.3) takes arguments of the form dateutil.tz.tzoffset(tzname,
offset), where offset is specified in seconds:

Python 3.x Version < 3.2

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://dateutil.readthedocs.org/en/latest/
http://dateutil.readthedocs.io
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 43

Python 2.x Version < 2.7

from datetime import datetime, timedelta
from dateutil import tz

JST = tz.tzoffset('JST', 9 * 3600) # 3600 seconds per hour
dt = datetime(2015, 1, 1, 12, 0, tzinfo=JST)
print(dt)
2015-01-01 12:00:00+09:00
print(dt.tzname)
'JST'

Zones with daylight savings time

For zones with daylight savings time, python standard libraries do not provide a standard class, so it is necessary to
use a third party library. pytz and dateutil are popular libraries providing time zone classes.

In addition to static time zones, dateutil provides time zone classes that use daylight savings time (see the
documentation for the tz module). You can use the tz.gettz() method to get a time zone object, which can then
be passed directly to the datetime constructor:

from datetime import datetime
from dateutil import tz
local = tz.gettz() # Local time
PT = tz.gettz('US/Pacific') # Pacific time

dt_l = datetime(2015, 1, 1, 12, tzinfo=local) # I am in EST
dt_pst = datetime(2015, 1, 1, 12, tzinfo=PT)
dt_pdt = datetime(2015, 7, 1, 12, tzinfo=PT) # DST is handled automatically
print(dt_l)
2015-01-01 12:00:00-05:00
print(dt_pst)
2015-01-01 12:00:00-08:00
print(dt_pdt)
2015-07-01 12:00:00-07:00

CAUTION: As of version 2.5.3, dateutil does not handle ambiguous datetimes correctly, and will always default to
the later date. There is no way to construct an object with a dateutil timezone representing, for example
2015-11-01 1:30 EDT-4, since this is during a daylight savings time transition.

All edge cases are handled properly when using pytz, but pytz time zones should not be directly attached to time
zones through the constructor. Instead, a pytz time zone should be attached using the time zone's localize
method:

from datetime import datetime, timedelta
import pytz

PT = pytz.timezone('US/Pacific')
dt_pst = PT.localize(datetime(2015, 1, 1, 12))
dt_pdt = PT.localize(datetime(2015, 11, 1, 0, 30))
print(dt_pst)
2015-01-01 12:00:00-08:00
print(dt_pdt)
2015-11-01 00:30:00-07:00

Be aware that if you perform datetime arithmetic on a pytz-aware time zone, you must either perform the
calculations in UTC (if you want absolute elapsed time), or you must call normalize() on the result:

http://pytz.sourceforge.net/
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 44

dt_new = dt_pdt + timedelta(hours=3) # This should be 2:30 AM PST
print(dt_new)
2015-11-01 03:30:00-07:00
dt_corrected = PT.normalize(dt_new)
print(dt_corrected)
2015-11-01 02:30:00-08:00

Section 5.3: Computing time dierences
the timedelta module comes in handy to compute differences between times:

from datetime import datetime, timedelta
now = datetime.now()
then = datetime(2016, 5, 23) # datetime.datetime(2016, 05, 23, 0, 0, 0)

Specifying time is optional when creating a new datetime object

delta = now-then

delta is of type timedelta

print(delta.days)
60
print(delta.seconds)
40826

To get n day's after and n day's before date we could use:

n day's after date:

def get_n_days_after_date(date_format="%d %B %Y", add_days=120):

 date_n_days_after = datetime.datetime.now() + timedelta(days=add_days)
 return date_n_days_after.strftime(date_format)

n day's before date:

 def get_n_days_before_date(self, date_format="%d %B %Y", days_before=120):

 date_n_days_ago = datetime.datetime.now() - timedelta(days=days_before)
 return date_n_days_ago.strftime(date_format)

Section 5.4: Basic datetime objects usage
The datetime module contains three primary types of objects - date, time, and datetime.

import datetime

Date object
today = datetime.date.today()
new_year = datetime.date(2017, 01, 01) #datetime.date(2017, 1, 1)

Time object
noon = datetime.time(12, 0, 0) #datetime.time(12, 0)

Current datetime
now = datetime.datetime.now()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 45

Datetime object
millenium_turn = datetime.datetime(2000, 1, 1, 0, 0, 0) #datetime.datetime(2000, 1, 1, 0, 0)

Arithmetic operations for these objects are only supported within same datatype and performing simple arithmetic
with instances of different types will result in a TypeError.

subtraction of noon from today
noon-today
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'datetime.time' and 'datetime.date'
However, it is straightforward to convert between types.

Do this instead
print('Time since the millenium at midnight: ',
 datetime.datetime(today.year, today.month, today.day) - millenium_turn)

Or this
print('Time since the millenium at noon: ',
 datetime.datetime.combine(today, noon) - millenium_turn)

Section 5.5: Switching between time zones
To switch between time zones, you need datetime objects that are timezone-aware.

from datetime import datetime
from dateutil import tz

utc = tz.tzutc()
local = tz.tzlocal()

utc_now = datetime.utcnow()
utc_now # Not timezone-aware.

utc_now = utc_now.replace(tzinfo=utc)
utc_now # Timezone-aware.

local_now = utc_now.astimezone(local)
local_now # Converted to local time.

Section 5.6: Simple date arithmetic
Dates don't exist in isolation. It is common that you will need to find the amount of time between dates or
determine what the date will be tomorrow. This can be accomplished using timedelta objects

import datetime

today = datetime.date.today()
print('Today:', today)

yesterday = today - datetime.timedelta(days=1)
print('Yesterday:', yesterday)

tomorrow = today + datetime.timedelta(days=1)
print('Tomorrow:', tomorrow)

print('Time between tomorrow and yesterday:', tomorrow - yesterday)

https://docs.python.org/3/library/datetime.html#timedelta-objects
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 46

This will produce results similar to:

Today: 2016-04-15
Yesterday: 2016-04-14
Tomorrow: 2016-04-16
Difference between tomorrow and yesterday: 2 days, 0:00:00

Section 5.7: Converting timestamp to datetime
The datetime module can convert a POSIX timestamp to a ITC datetime object.

The Epoch is January 1st, 1970 midnight.

import time
from datetime import datetime
seconds_since_epoch=time.time() #1469182681.709

utc_date=datetime.utcfromtimestamp(seconds_since_epoch) #datetime.datetime(2016, 7, 22, 10, 18, 1,
709000)

Section 5.8: Subtracting months from a date accurately
Using the calendar module

import calendar
from datetime import date

def monthdelta(date, delta):
 m, y = (date.month+delta) % 12, date.year + ((date.month)+delta-1) // 12
 if not m: m = 12
 d = min(date.day, calendar.monthrange(y, m)[1])
 return date.replace(day=d,month=m, year=y)

next_month = monthdelta(date.today(), 1) #datetime.date(2016, 10, 23)

Using the dateutils module

import datetime
import dateutil.relativedelta

d = datetime.datetime.strptime("2013-03-31", "%Y-%m-%d")
d2 = d - dateutil.relativedelta.relativedelta(months=1) #datetime.datetime(2013, 2, 28, 0, 0)

Section 5.9: Parsing an arbitrary ISO 8601 timestamp with
minimal libraries
Python has only limited support for parsing ISO 8601 timestamps. For strptime you need to know exactly what
format it is in. As a complication the stringification of a datetime is an ISO 8601 timestamp, with space as a
separator and 6 digit fraction:

str(datetime.datetime(2016, 7, 22, 9, 25, 59, 555555))
'2016-07-22 09:25:59.555555'

but if the fraction is 0, no fractional part is output

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 47

str(datetime.datetime(2016, 7, 22, 9, 25, 59, 0))
'2016-07-22 09:25:59'

But these 2 forms need a different format for strptime. Furthermore, strptime' does not support at all
parsing minute timezones that have a:in it, thus2016-07-22 09:25:59+0300can be parsed, but the
standard format2016-07-22 09:25:59+03:00` cannot.

There is a single-file library called iso8601 which properly parses ISO 8601 timestamps and only them.

It supports fractions and timezones, and the T separator all with a single function:

import iso8601
iso8601.parse_date('2016-07-22 09:25:59')
datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<iso8601.Utc>)
iso8601.parse_date('2016-07-22 09:25:59+03:00')
datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<FixedOffset '+03:00' ...>)
iso8601.parse_date('2016-07-22 09:25:59Z')
datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<iso8601.Utc>)
iso8601.parse_date('2016-07-22T09:25:59.000111+03:00')
datetime.datetime(2016, 7, 22, 9, 25, 59, 111, tzinfo=<FixedOffset '+03:00' ...>)

If no timezone is set, iso8601.parse_date defaults to UTC. The default zone can be changed with default_zone
keyword argument. Notably, if this is None instead of the default, then those timestamps that do not have an
explicit timezone are returned as naive datetimes instead:

iso8601.parse_date('2016-07-22T09:25:59', default_timezone=None)
datetime.datetime(2016, 7, 22, 9, 25, 59)
iso8601.parse_date('2016-07-22T09:25:59Z', default_timezone=None)
datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<iso8601.Utc>)

Section 5.10: Get an ISO 8601 timestamp
Without timezone, with microseconds
from datetime import datetime

datetime.now().isoformat()
Out: '2016-07-31T23:08:20.886783'

With timezone, with microseconds
from datetime import datetime
from dateutil.tz import tzlocal

datetime.now(tzlocal()).isoformat()
Out: '2016-07-31T23:09:43.535074-07:00'

With timezone, without microseconds
from datetime import datetime
from dateutil.tz import tzlocal

datetime.now(tzlocal()).replace(microsecond=0).isoformat()
Out: '2016-07-31T23:10:30-07:00'

See ISO 8601 for more information about the ISO 8601 format.

Section 5.11: Parsing a string with a short time zone name into

https://bitbucket.org/micktwomey/pyiso8601/src/43c6749d06c4aac6b1156911e85a0b952ca8a324/iso8601/iso8601.py?at=default&fileviewer=file-view-default
https://pypi.python.org/pypi/iso8601
https://en.wikipedia.org/wiki/ISO_8601
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 48

a timezone aware datetime object
Using the dateutil library as in the previous example on parsing timezone-aware timestamps, it is also possible to
parse timestamps with a specified "short" time zone name.

For dates formatted with short time zone names or abbreviations, which are generally ambiguous (e.g. CST, which
could be Central Standard Time, China Standard Time, Cuba Standard Time, etc - more can be found here) or not
necessarily available in a standard database, it is necessary to specify a mapping between time zone abbreviation
and tzinfo object.

from dateutil import tz
from dateutil.parser import parse

ET = tz.gettz('US/Eastern')
CT = tz.gettz('US/Central')
MT = tz.gettz('US/Mountain')
PT = tz.gettz('US/Pacific')

us_tzinfos = {'CST': CT, 'CDT': CT,
 'EST': ET, 'EDT': ET,
 'MST': MT, 'MDT': MT,
 'PST': PT, 'PDT': PT}

dt_est = parse('2014-01-02 04:00:00 EST', tzinfos=us_tzinfos)
dt_pst = parse('2016-03-11 16:00:00 PST', tzinfos=us_tzinfos)

After running this:

dt_est
datetime.datetime(2014, 1, 2, 4, 0, tzinfo=tzfile('/usr/share/zoneinfo/US/Eastern'))
dt_pst
datetime.datetime(2016, 3, 11, 16, 0, tzinfo=tzfile('/usr/share/zoneinfo/US/Pacific'))

It is worth noting that if using a pytz time zone with this method, it will not be properly localized:

from dateutil.parser import parse
import pytz

EST = pytz.timezone('America/New_York')
dt = parse('2014-02-03 09:17:00 EST', tzinfos={'EST': EST})

This simply attaches the pytz time zone to the datetime:

dt.tzinfo # Will be in Local Mean Time!
<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

If using this method, you should probably re-localize the naive portion of the datetime after parsing:

dt_fixed = dt.tzinfo.localize(dt.replace(tzinfo=None))
dt_fixed.tzinfo # Now it's EST.
<DstTzInfo 'America/New_York' EST-1 day, 19:00:00 STD>)

Section 5.12: Fuzzy datetime parsing (extracting datetime out
of a text)
It is possible to extract a date out of a text using the dateutil parser in a "fuzzy" mode, where components of the

https://dateutil.readthedocs.io
https://www.timeanddate.com/time/zones/
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 49

string not recognized as being part of a date are ignored.

from dateutil.parser import parse

dt = parse("Today is January 1, 2047 at 8:21:00AM", fuzzy=True)
print(dt)

dt is now a datetime object and you would see datetime.datetime(2047, 1, 1, 8, 21) printed.

Section 5.13: Iterate over dates
Sometimes you want to iterate over a range of dates from a start date to some end date. You can do it using
datetime library and timedelta object:

import datetime

The size of each step in days
day_delta = datetime.timedelta(days=1)

start_date = datetime.date.today()
end_date = start_date + 7*day_delta

for i in range((end_date - start_date).days):
 print(start_date + i*day_delta)

Which produces:

2016-07-21
2016-07-22
2016-07-23
2016-07-24
2016-07-25
2016-07-26
2016-07-27

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 50

Chapter 6: Date Formatting
Section 6.1: Time between two date-times
from datetime import datetime

a = datetime(2016,10,06,0,0,0)
b = datetime(2016,10,01,23,59,59)

a-b
datetime.timedelta(4, 1)

(a-b).days
4
(a-b).total_seconds()
518399.0

Section 6.2: Outputting datetime object to string
Uses C standard format codes.

from datetime import datetime
datetime_for_string = datetime(2016,10,1,0,0)
datetime_string_format = '%b %d %Y, %H:%M:%S'
datetime.strftime(datetime_for_string,datetime_string_format)
Oct 01 2016, 00:00:00

Section 6.3: Parsing string to datetime object
Uses C standard format codes.

from datetime import datetime
datetime_string = 'Oct 1 2016, 00:00:00'
datetime_string_format = '%b %d %Y, %H:%M:%S'
datetime.strptime(datetime_string, datetime_string_format)
datetime.datetime(2016, 10, 1, 0, 0)

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 51

Chapter 7: Enum
Section 7.1: Creating an enum (Python 2.4 through 3.3)
Enums have been backported from Python 3.4 to Python 2.4 through Python 3.3. You can get this the enum34
backport from PyPI.

pip install enum34

Creation of an enum is identical to how it works in Python 3.4+

from enum import Enum

class Color(Enum):
 red = 1
 green = 2
 blue = 3

print(Color.red) # Color.red
print(Color(1)) # Color.red
print(Color['red']) # Color.red

Section 7.2: Iteration
Enums are iterable:

class Color(Enum):
 red = 1
 green = 2
 blue = 3

[c for c in Color] # [<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>]

https://pypi.python.org/pypi/enum34
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 52

Chapter 8: Set
Section 8.1: Operations on sets
with other sets

Intersection
{1, 2, 3, 4, 5}.intersection({3, 4, 5, 6}) # {3, 4, 5}
{1, 2, 3, 4, 5} & {3, 4, 5, 6} # {3, 4, 5}

Union
{1, 2, 3, 4, 5}.union({3, 4, 5, 6}) # {1, 2, 3, 4, 5, 6}
{1, 2, 3, 4, 5} | {3, 4, 5, 6} # {1, 2, 3, 4, 5, 6}

Difference
{1, 2, 3, 4}.difference({2, 3, 5}) # {1, 4}
{1, 2, 3, 4} - {2, 3, 5} # {1, 4}

Symmetric difference with
{1, 2, 3, 4}.symmetric_difference({2, 3, 5}) # {1, 4, 5}
{1, 2, 3, 4} ^ {2, 3, 5} # {1, 4, 5}

Superset check
{1, 2}.issuperset({1, 2, 3}) # False
{1, 2} >= {1, 2, 3} # False

Subset check
{1, 2}.issubset({1, 2, 3}) # True
{1, 2} <= {1, 2, 3} # True

Disjoint check
{1, 2}.isdisjoint({3, 4}) # True
{1, 2}.isdisjoint({1, 4}) # False

with single elements

Existence check
2 in {1,2,3} # True
4 in {1,2,3} # False
4 not in {1,2,3} # True

Add and Remove
s = {1,2,3}
s.add(4) # s == {1,2,3,4}

s.discard(3) # s == {1,2,4}
s.discard(5) # s == {1,2,4}

s.remove(2) # s == {1,4}
s.remove(2) # KeyError!

Set operations return new sets, but have the corresponding in-place versions:

method in-place operation in-place method
union s |= t update

intersection s &= t intersection_update

difference s -= t difference_update

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 53

symmetric_difference s ^= t symmetric_difference_update

For example:

s = {1, 2}
s.update({3, 4}) # s == {1, 2, 3, 4}

Section 8.2: Get the unique elements of a list
Let's say you've got a list of restaurants -- maybe you read it from a file. You care about the unique restaurants in
the list. The best way to get the unique elements from a list is to turn it into a set:

restaurants = ["McDonald's", "Burger King", "McDonald's", "Chicken Chicken"]
unique_restaurants = set(restaurants)
print(unique_restaurants)
prints {'Chicken Chicken', "McDonald's", 'Burger King'}

Note that the set is not in the same order as the original list; that is because sets are unordered, just like dicts.

This can easily be transformed back into a List with Python's built in list function, giving another list that is the
same list as the original but without duplicates:

list(unique_restaurants)
['Chicken Chicken', "McDonald's", 'Burger King']

It's also common to see this as one line:

Removes all duplicates and returns another list
list(set(restaurants))

Now any operations that could be performed on the original list can be done again.

Section 8.3: Set of Sets
{{1,2}, {3,4}}

leads to:

TypeError: unhashable type: 'set'

Instead, use frozenset:

{frozenset({1, 2}), frozenset({3, 4})}

Section 8.4: Set Operations using Methods and Builtins
We define two sets a and b

>>> a = {1, 2, 2, 3, 4}
>>> b = {3, 3, 4, 4, 5}

NOTE: {1} creates a set of one element, but {} creates an empty dict. The correct way to create an
empty set is set().

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 54

Intersection

a.intersection(b) returns a new set with elements present in both a and b

>>> a.intersection(b)
{3, 4}

Union

a.union(b) returns a new set with elements present in either a and b

>>> a.union(b)
{1, 2, 3, 4, 5}

Difference

a.difference(b) returns a new set with elements present in a but not in b

>>> a.difference(b)
{1, 2}
>>> b.difference(a)
{5}

Symmetric Difference

a.symmetric_difference(b) returns a new set with elements present in either a or b but not in both

>>> a.symmetric_difference(b)
{1, 2, 5}
>>> b.symmetric_difference(a)
{1, 2, 5}

NOTE: a.symmetric_difference(b) == b.symmetric_difference(a)

Subset and superset

c.issubset(a) tests whether each element of c is in a.

a.issuperset(c) tests whether each element of c is in a.

>>> c = {1, 2}
>>> c.issubset(a)
True
>>> a.issuperset(c)
True

The latter operations have equivalent operators as shown below:

Method Operator
a.intersection(b) a & b

a.union(b) a|b
a.difference(b) a - b

a.symmetric_difference(b) a ^ b

a.issubset(b) a <= b

a.issuperset(b) a >= b

Disjoint sets

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 55

Sets a and d are disjoint if no element in a is also in d and vice versa.

>>> d = {5, 6}
>>> a.isdisjoint(b) # {2, 3, 4} are in both sets
False
>>> a.isdisjoint(d)
True

This is an equivalent check, but less efficient
>>> len(a & d) == 0
True

This is even less efficient
>>> a & d == set()
True

Testing membership

The builtin in keyword searches for occurances

>>> 1 in a
True
>>> 6 in a
False

Length

The builtin len() function returns the number of elements in the set

>>> len(a)
4
>>> len(b)
3

Section 8.5: Sets versus multisets
Sets are unordered collections of distinct elements. But sometimes we want to work with unordered collections of
elements that are not necessarily distinct and keep track of the elements' multiplicities.

Consider this example:

>>> setA = {'a','b','b','c'}
>>> setA
set(['a', 'c', 'b'])

By saving the strings 'a', 'b', 'b', 'c' into a set data structure we've lost the information on the fact that 'b'
occurs twice. Of course saving the elements to a list would retain this information

>>> listA = ['a','b','b','c']
>>> listA
['a', 'b', 'b', 'c']

but a list data structure introduces an extra unneeded ordering that will slow down our computations.

For implementing multisets Python provides the Counter class from the collections module (starting from version
2.7):

Python 2.x Version ≥ 2.7

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 56

>>> from collections import Counter
>>> counterA = Counter(['a','b','b','c'])
>>> counterA
Counter({'b': 2, 'a': 1, 'c': 1})

Counter is a dictionary where where elements are stored as dictionary keys and their counts are stored as
dictionary values. And as all dictionaries, it is an unordered collection.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 57

Chapter 9: Simple Mathematical Operators
Numerical types and their metaclasses

The numbers module contains the abstract metaclasses for the numerical types:

subclasses numbers.Number numbers.Integral numbers.Rational numbers.Real numbers.Complex
bool ✓ ✓ ✓ ✓ ✓
int ✓ ✓ ✓ ✓ ✓
fractions.Fraction ✓ ― ✓ ✓ ✓
float ✓ ― ― ✓ ✓
complex ✓ ― ― ― ✓
decimal.Decimal ✓ ― ― ― ―
Python does common mathematical operators on its own, including integer and float division, multiplication,
exponentiation, addition, and subtraction. The math module (included in all standard Python versions) offers
expanded functionality like trigonometric functions, root operations, logarithms, and many more.

Section 9.1: Division
Python does integer division when both operands are integers. The behavior of Python's division operators have
changed from Python 2.x and 3.x (see also Integer Division).

a, b, c, d, e = 3, 2, 2.0, -3, 10

Python 2.x Version ≤ 2.7

In Python 2 the result of the ' / ' operator depends on the type of the numerator and denominator.

a / b # = 1

a / c # = 1.5

d / b # = -2

b / a # = 0

d / e # = -1

Note that because both a and b are ints, the result is an int.

The result is always rounded down (floored).

Because c is a float, the result of a / c is a float.

You can also use the operator module:

import operator # the operator module provides 2-argument arithmetic functions
operator.div(a, b) # = 1
operator.__div__(a, b) # = 1

Python 2.x Version ≥ 2.2

What if you want float division:

Recommended:

https://docs.python.org/library/numbers.html#numbers.Number
https://docs.python.org/library/numbers.html#numbers.Integral
https://docs.python.org/library/numbers.html#numbers.Rational
https://docs.python.org/library/numbers.html#numbers.Real
https://docs.python.org/library/numbers.html#numbers.Complex
https://docs.python.org/library/functions.html#bool
https://docs.python.org/library/functions.html#int
https://docs.python.org/library/fractions.html#fractions.Fraction
https://docs.python.org/library/functions.html#float
https://docs.python.org/library/functions.html#complex
https://docs.python.org/library/decimal.html#decimal.Decimal
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 58

from __future__ import division # applies Python 3 style division to the entire module
a / b # = 1.5
a // b # = 1

Okay (if you don't want to apply to the whole module):

a / (b * 1.0) # = 1.5
1.0 * a / b # = 1.5
a / b * 1.0 # = 1.0 (careful with order of operations)

from operator import truediv
truediv(a, b) # = 1.5

Not recommended (may raise TypeError, eg if argument is complex):

float(a) / b # = 1.5
a / float(b) # = 1.5

Python 2.x Version ≥ 2.2

The ' // ' operator in Python 2 forces floored division regardless of type.

a // b # = 1
a // c # = 1.0

Python 3.x Version ≥ 3.0

In Python 3 the / operator performs 'true' division regardless of types. The // operator performs floor division and
maintains type.

a / b # = 1.5
e / b # = 5.0
a // b # = 1
a // c # = 1.0

import operator # the operator module provides 2-argument arithmetic functions
operator.truediv(a, b) # = 1.5
operator.floordiv(a, b) # = 1
operator.floordiv(a, c) # = 1.0

Possible combinations (builtin types):

int and int (gives an int in Python 2 and a float in Python 3)
int and float (gives a float)
int and complex (gives a complex)
float and float (gives a float)
float and complex (gives a complex)
complex and complex (gives a complex)

See PEP 238 for more information.

Section 9.2: Addition
a, b = 1, 2

Using the "+" operator:
a + b # = 3

https://www.python.org/dev/peps/pep-0238/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 59

Using the "in-place" "+=" operator to add and assign:
a += b # a = 3 (equivalent to a = a + b)

import operator # contains 2 argument arithmetic functions for the examples

operator.add(a, b) # = 5 since a is set to 3 right before this line

The "+=" operator is equivalent to:
a = operator.iadd(a, b) # a = 5 since a is set to 3 right before this line

Possible combinations (builtin types):

int and int (gives an int)
int and float (gives a float)
int and complex (gives a complex)
float and float (gives a float)
float and complex (gives a complex)
complex and complex (gives a complex)

Note: the + operator is also used for concatenating strings, lists and tuples:

"first string " + "second string" # = 'first string second string'

[1, 2, 3] + [4, 5, 6] # = [1, 2, 3, 4, 5, 6]

Section 9.3: Exponentiation
a, b = 2, 3

(a ** b) # = 8
pow(a, b) # = 8

import math
math.pow(a, b) # = 8.0 (always float; does not allow complex results)

import operator
operator.pow(a, b) # = 8

Another difference between the built-in pow and math.pow is that the built-in pow can accept three arguments:

a, b, c = 2, 3, 2

pow(2, 3, 2) # 0, calculates (2 ** 3) % 2, but as per Python docs,
 # does so more efficiently

Special functions

The function math.sqrt(x) calculates the square root of x.

import math
import cmath
c = 4
math.sqrt(c) # = 2.0 (always float; does not allow complex results)
cmath.sqrt(c) # = (2+0j) (always complex)

To compute other roots, such as a cube root, raise the number to the reciprocal of the degree of the root. This
could be done with any of the exponential functions or operator.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 60

 import math
 x = 8
 math.pow(x, 1/3) # evaluates to 2.0
 x**(1/3) # evaluates to 2.0

The function math.exp(x) computes e ** x.

math.exp(0) # 1.0
math.exp(1) # 2.718281828459045 (e)

The function math.expm1(x) computes e ** x - 1. When x is small, this gives significantly better precision than
math.exp(x) - 1.

math.expm1(0) # 0.0

math.exp(1e-6) - 1 # 1.0000004999621837e-06
math.expm1(1e-6) # 1.0000005000001665e-06
exact result # 1.000000500000166666708333341666...

Section 9.4: Trigonometric Functions
a, b = 1, 2

import math

math.sin(a) # returns the sine of 'a' in radians
Out: 0.8414709848078965

math.cosh(b) # returns the inverse hyperbolic cosine of 'b' in radians
Out: 3.7621956910836314

math.atan(math.pi) # returns the arc tangent of 'pi' in radians
Out: 1.2626272556789115

math.hypot(a, b) # returns the Euclidean norm, same as math.sqrt(a*a + b*b)
Out: 2.23606797749979

Note that math.hypot(x, y) is also the length of the vector (or Euclidean distance) from the origin (0, 0)
to the point (x, y).

To compute the Euclidean distance between two points (x1, y1) & (x2, y2) you can use math.hypot as
follows

math.hypot(x2-x1, y2-y1)

To convert from radians -> degrees and degrees -> radians respectively use math.degrees and math.radians

math.degrees(a)
Out: 57.29577951308232

math.radians(57.29577951308232)
Out: 1.0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 61

Section 9.5: Inplace Operations
It is common within applications to need to have code like this:

a = a + 1

or

a = a * 2

There is an effective shortcut for these in place operations:

a += 1
and
a *= 2

Any mathematic operator can be used before the '=' character to make an inplace operation:

-= decrement the variable in place
+= increment the variable in place
*= multiply the variable in place
/= divide the variable in place
//= floor divide the variable in place # Python 3
%= return the modulus of the variable in place
**= raise to a power in place

Other in place operators exist for the bitwise operators (^, | etc)

Section 9.6: Subtraction
a, b = 1, 2

Using the "-" operator:
b - a # = 1

import operator # contains 2 argument arithmetic functions
operator.sub(b, a) # = 1

Possible combinations (builtin types):

int and int (gives an int)
int and float (gives a float)
int and complex (gives a complex)
float and float (gives a float)
float and complex (gives a complex)
complex and complex (gives a complex)

Section 9.7: Multiplication
a, b = 2, 3

a * b # = 6

import operator

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 62

operator.mul(a, b) # = 6

Possible combinations (builtin types):

int and int (gives an int)
int and float (gives a float)
int and complex (gives a complex)
float and float (gives a float)
float and complex (gives a complex)
complex and complex (gives a complex)

Note: The * operator is also used for repeated concatenation of strings, lists, and tuples:

3 * 'ab' # = 'ababab'
3 * ('a', 'b') # = ('a', 'b', 'a', 'b', 'a', 'b')

Section 9.8: Logarithms
By default, the math.log function calculates the logarithm of a number, base e. You can optionally specify a base as
the second argument.

import math
import cmath

math.log(5) # = 1.6094379124341003
optional base argument. Default is math.e
math.log(5, math.e) # = 1.6094379124341003
cmath.log(5) # = (1.6094379124341003+0j)
math.log(1000, 10) # 3.0 (always returns float)
cmath.log(1000, 10) # (3+0j)

Special variations of the math.log function exist for different bases.

Logarithm base e - 1 (higher precision for low values)
math.log1p(5) # = 1.791759469228055

Logarithm base 2
math.log2(8) # = 3.0

Logarithm base 10
math.log10(100) # = 2.0
cmath.log10(100) # = (2+0j)

Section 9.9: Modulus
Like in many other languages, Python uses the % operator for calculating modulus.

3 % 4 # 3
10 % 2 # 0
6 % 4 # 2

Or by using the operator module:

import operator

operator.mod(3 , 4) # 3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 63

operator.mod(10 , 2) # 0
operator.mod(6 , 4) # 2

You can also use negative numbers.

-9 % 7 # 5
9 % -7 # -5
-9 % -7 # -2

If you need to find the result of integer division and modulus, you can use the divmod function as a shortcut:

quotient, remainder = divmod(9, 4)
quotient = 2, remainder = 1 as 4 * 2 + 1 == 9

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F

GoalKicker.com – Python® Notes for Professionals 65

Chapter 10: Bitwise Operators
Bitwise operations alter binary strings at the bit level. These operations are incredibly basic and are directly
supported by the processor. These few operations are necessary in working with device drivers, low-level graphics,
cryptography, and network communications. This section provides useful knowledge and examples of Python's
bitwise operators.

Section 10.1: Bitwise NOT
The ~ operator will flip all of the bits in the number. Since computers use signed number representations — most
notably, the two's complement notation to encode negative binary numbers where negative numbers are written
with a leading one (1) instead of a leading zero (0).

This means that if you were using 8 bits to represent your two's-complement numbers, you would treat patterns
from 0000 0000 to 0111 1111 to represent numbers from 0 to 127 and reserve 1xxx xxxx to represent negative
numbers.

Eight-bit two's-complement numbers

Bits Unsigned Value Two's-complement Value
0000 0000 0 0

0000 0001 1 1

0000 0010 2 2

0111 1110 126 126

0111 1111 127 127

1000 0000 128 -128

1000 0001 129 -127

1000 0010 130 -126

1111 1110 254 -2

1111 1111 255 -1

In essence, this means that whereas 1010 0110 has an unsigned value of 166 (arrived at by adding (128 * 1) +
(64 * 0) + (32 * 1) + (16 * 0) + (8 * 0) + (4 * 1) + (2 * 1) + (1 * 0)), it has a two's-complement value
of -90 (arrived at by adding (128 * 1) - (64 * 0) - (32 * 1) - (16 * 0) - (8 * 0) - (4 * 1) - (2 * 1) -
(1 * 0), and complementing the value).

In this way, negative numbers range down to -128 (1000 0000). Zero (0) is represented as 0000 0000, and minus
one (-1) as 1111 1111.

In general, though, this means ~n = -n - 1.

0 = 0b0000 0000
~0
Out: -1
-1 = 0b1111 1111

1 = 0b0000 0001
~1
Out: -2
-2 = 1111 1110

2 = 0b0000 0010
~2

https://en.wikipedia.org/wiki/Signed_number_representations
https://en.wikipedia.org/wiki/Two%27s_complement
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 66

Out: -3
-3 = 0b1111 1101

123 = 0b0111 1011
~123
Out: -124
-124 = 0b1000 0100

Note, the overall effect of this operation when applied to positive numbers can be summarized:

~n -> -|n+1|

And then, when applied to negative numbers, the corresponding effect is:

~-n -> |n-1|

The following examples illustrate this last rule...

-0 = 0b0000 0000
~-0
Out: -1
-1 = 0b1111 1111
0 is the obvious exception to this rule, as -0 == 0 always

-1 = 0b1000 0001
~-1
Out: 0
0 = 0b0000 0000

-2 = 0b1111 1110
~-2
Out: 1
1 = 0b0000 0001

-123 = 0b1111 1011
~-123
Out: 122
122 = 0b0111 1010

Section 10.2: Bitwise XOR (Exclusive OR)
The ^ operator will perform a binary XOR in which a binary 1 is copied if and only if it is the value of exactly one
operand. Another way of stating this is that the result is 1 only if the operands are different. Examples include:

0 ^ 0 = 0
0 ^ 1 = 1
1 ^ 0 = 1
1 ^ 1 = 0

60 = 0b111100
30 = 0b011110
60 ^ 30
Out: 34
34 = 0b100010

bin(60 ^ 30)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 67

Out: 0b100010

Section 10.3: Bitwise AND
The & operator will perform a binary AND, where a bit is copied if it exists in both operands. That means:

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

60 = 0b111100
30 = 0b011110
60 & 30
Out: 28
28 = 0b11100

bin(60 & 30)
Out: 0b11100

Section 10.4: Bitwise OR
The | operator will perform a binary "or," where a bit is copied if it exists in either operand. That means:

0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 | 1 = 1

60 = 0b111100
30 = 0b011110
60 | 30
Out: 62
62 = 0b111110

bin(60 | 30)
Out: 0b111110

Section 10.5: Bitwise Left Shift
The << operator will perform a bitwise "left shift," where the left operand's value is moved left by the number of bits
given by the right operand.

2 = 0b10
2 << 2
Out: 8
8 = 0b1000

bin(2 << 2)
Out: 0b1000

Performing a left bit shift of 1 is equivalent to multiplication by 2:

7 << 1
Out: 14

Performing a left bit shift of n is equivalent to multiplication by 2**n:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 68

3 << 4
Out: 48

Section 10.6: Bitwise Right Shift
The >> operator will perform a bitwise "right shift," where the left operand's value is moved right by the number of
bits given by the right operand.

8 = 0b1000
8 >> 2
Out: 2
2 = 0b10

bin(8 >> 2)
Out: 0b10

Performing a right bit shift of 1 is equivalent to integer division by 2:

36 >> 1
Out: 18

15 >> 1
Out: 7

Performing a right bit shift of n is equivalent to integer division by 2**n:

48 >> 4
Out: 3

59 >> 3
Out: 7

Section 10.7: Inplace Operations
All of the Bitwise operators (except ~) have their own in place versions

a = 0b001
a &= 0b010
a = 0b000

a = 0b001
a |= 0b010
a = 0b011

a = 0b001
a <<= 2
a = 0b100

a = 0b100
a >>= 2
a = 0b001

a = 0b101
a ^= 0b011
a = 0b110

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 69

Chapter 11: Boolean Operators
Section 11.1: `and` and `or` are not guaranteed to return a
boolean
When you use or, it will either return the first value in the expression if it's true, else it will blindly return the second
value. I.e. or is equivalent to:

def or_(a, b):
 if a:
 return a
 else:
 return b

For and, it will return its first value if it's false, else it returns the last value:

def and_(a, b):
 if not a:
 return a
 else:
 return b

Section 11.2: A simple example
In Python you can compare a single element using two binary operators--one on either side:

if 3.14 < x < 3.142:
 print("x is near pi")

In many (most?) programming languages, this would be evaluated in a way contrary to regular math: (3.14 < x) <
3.142, but in Python it is treated like 3.14 < x and x < 3.142, just like most non-programmers would expect.

Section 11.3: Short-circuit evaluation
Python minimally evaluates Boolean expressions.

>>> def true_func():
... print("true_func()")
... return True
...
>>> def false_func():
... print("false_func()")
... return False
...
>>> true_func() or false_func()
true_func()
True
>>> false_func() or true_func()
false_func()
true_func()
True
>>> true_func() and false_func()
true_func()
false_func()
False
>>> false_func() and false_func()

https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 70

false_func()
False

Section 11.4: and
Evaluates to the second argument if and only if both of the arguments are truthy. Otherwise evaluates to the first
falsey argument.

x = True
y = True
z = x and y # z = True

x = True
y = False
z = x and y # z = False

x = False
y = True
z = x and y # z = False

x = False
y = False
z = x and y # z = False

x = 1
y = 1
z = x and y # z = y, so z = 1, see `and` and `or` are not guaranteed to be a boolean

x = 0
y = 1
z = x and y # z = x, so z = 0 (see above)

x = 1
y = 0
z = x and y # z = y, so z = 0 (see above)

x = 0
y = 0
z = x and y # z = x, so z = 0 (see above)

The 1's in the above example can be changed to any truthy value, and the 0's can be changed to any falsey value.

Section 11.5: or
Evaluates to the first truthy argument if either one of the arguments is truthy. If both arguments are falsey,
evaluates to the second argument.

x = True
y = True
z = x or y # z = True

x = True
y = False
z = x or y # z = True

x = False
y = True
z = x or y # z = True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 71

x = False
y = False
z = x or y # z = False

x = 1
y = 1
z = x or y # z = x, so z = 1, see `and` and `or` are not guaranteed to be a boolean

x = 1
y = 0
z = x or y # z = x, so z = 1 (see above)

x = 0
y = 1
z = x or y # z = y, so z = 1 (see above)

x = 0
y = 0
z = x or y # z = y, so z = 0 (see above)

The 1's in the above example can be changed to any truthy value, and the 0's can be changed to any falsey value.

Section 11.6: not
It returns the opposite of the following statement:

x = True
y = not x # y = False

x = False
y = not x # y = True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 72

Chapter 12: Operator Precedence
Python operators have a set order of precedence, which determines what operators are evaluated first in a
potentially ambiguous expression. For instance, in the expression 3 * 2 + 7, first 3 is multiplied by 2, and then the
result is added to 7, yielding 13. The expression is not evaluated the other way around, because * has a higher
precedence than +.

Below is a list of operators by precedence, and a brief description of what they (usually) do.

Section 12.1: Simple Operator Precedence Examples in python
Python follows PEMDAS rule. PEMDAS stands for Parentheses, Exponents, Multiplication and Division, and Addition
and Subtraction.

Example:

>>> a, b, c, d = 2, 3, 5, 7
>>> a ** (b + c) # parentheses
256
>>> a * b ** c # exponent: same as `a * (b ** c)`
7776
>>> a + b * c / d # multiplication / division: same as `a + (b * c / d)`
4.142857142857142

Extras: mathematical rules hold, but not always:

>>> 300 / 300 * 200
200.0
>>> 300 * 200 / 300
200.0
>>> 1e300 / 1e300 * 1e200
1e+200
>>> 1e300 * 1e200 / 1e300
inf

https://docs.python.org/3/tutorial/floatingpoint.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 73

Chapter 13: Variable Scope and Binding
Section 13.1: Nonlocal Variables
Python 3.x Version ≥ 3.0

Python 3 added a new keyword called nonlocal. The nonlocal keyword adds a scope override to the inner scope.
You can read all about it in PEP 3104. This is best illustrated with a couple of code examples. One of the most
common examples is to create function that can increment:

def counter():
 num = 0
 def incrementer():
 num += 1
 return num
 return incrementer

If you try running this code, you will receive an UnboundLocalError because the num variable is referenced before
it is assigned in the innermost function. Let's add nonlocal to the mix:

def counter():
 num = 0
 def incrementer():
 nonlocal num
 num += 1
 return num
 return incrementer

c = counter()
c() # = 1
c() # = 2
c() # = 3

Basically nonlocal will allow you to assign to variables in an outer scope, but not a global scope. So you can't use
nonlocal in our counter function because then it would try to assign to a global scope. Give it a try and you will
quickly get a SyntaxError. Instead you must use nonlocal in a nested function.

(Note that the functionality presented here is better implemented using generators.)

Section 13.2: Global Variables
In Python, variables inside functions are considered local if and only if they appear in the left side of an assignment
statement, or some other binding occurrence; otherwise such a binding is looked up in enclosing functions, up to
the global scope. This is true even if the assignment statement is never executed.

x = 'Hi'

def read_x():
 print(x) # x is just referenced, therefore assumed global

read_x() # prints Hi

def read_y():
 print(y) # here y is just referenced, therefore assumed global

https://www.python.org/dev/peps/pep-3104/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 74

read_y() # NameError: global name 'y' is not defined

def read_y():
 y = 'Hey' # y appears in an assignment, therefore it's local
 print(y) # will find the local y

read_y() # prints Hey

def read_x_local_fail():
 if False:
 x = 'Hey' # x appears in an assignment, therefore it's local
 print(x) # will look for the _local_ z, which is not assigned, and will not be found

read_x_local_fail() # UnboundLocalError: local variable 'x' referenced before assignment

Normally, an assignment inside a scope will shadow any outer variables of the same name:

x = 'Hi'

def change_local_x():
 x = 'Bye'
 print(x)
change_local_x() # prints Bye
print(x) # prints Hi

Declaring a name global means that, for the rest of the scope, any assignments to the name will happen at the
module's top level:

x = 'Hi'

def change_global_x():
 global x
 x = 'Bye'
 print(x)

change_global_x() # prints Bye
print(x) # prints Bye

The global keyword means that assignments will happen at the module's top level, not at the program's top level.
Other modules will still need the usual dotted access to variables within the module.

To summarize: in order to know whether a variable x is local to a function, you should read the entire function:

if you've found global x, then x is a global variable1.
If you've found nonlocal x, then x belongs to an enclosing function, and is neither local nor global2.
If you've found x = 5 or for x in range(3) or some other binding, then x is a local variable3.
Otherwise x belongs to some enclosing scope (function scope, global scope, or builtins)4.

Section 13.3: Local Variables
If a name is bound inside a function, it is by default accessible only within the function:

def foo():
 a = 5
 print(a) # ok

print(a) # NameError: name 'a' is not defined

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 75

Control flow constructs have no impact on the scope (with the exception of except), but accessing variable that was
not assigned yet is an error:

def foo():
 if True:
 a = 5
 print(a) # ok

b = 3
def bar():
 if False:
 b = 5
 print(b) # UnboundLocalError: local variable 'b' referenced before assignment

Common binding operations are assignments, for loops, and augmented assignments such as a += 5

Section 13.4: The del command
This command has several related yet distinct forms.

del v

If v is a variable, the command del v removes the variable from its scope. For example:

x = 5
print(x) # out: 5
del x
print(x) # NameError: name 'f' is not defined

Note that del is a binding occurrence, which means that unless explicitly stated otherwise (using nonlocal
or global), del v will make v local to the current scope. If you intend to delete v in an outer scope, use
nonlocal v or global v in the same scope of the del v statement.

In all the following, the intention of a command is a default behavior but is not enforced by the language. A class
might be written in a way that invalidates this intention.

del v.name

This command triggers a call to v.__delattr__(name).

The intention is to make the attribute name unavailable. For example:

class A:
 pass

a = A()
a.x = 7
print(a.x) # out: 7
del a.x
print(a.x) # error: AttributeError: 'A' object has no attribute 'x'

del v[item]

This command triggers a call to v.__delitem__(item).

The intention is that item will not belong in the mapping implemented by the object v. For example:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 76

x = {'a': 1, 'b': 2}
del x['a']
print(x) # out: {'b': 2}
print(x['a']) # error: KeyError: 'a'

del v[a:b]

This actually calls v.__delslice__(a, b).

The intention is similar to the one described above, but with slices - ranges of items instead of a single item. For
example:

x = [0, 1, 2, 3, 4]
del x[1:3]
print(x) # out: [0, 3, 4]

See also Garbage Collection#The del command.

Section 13.5: Functions skip class scope when looking up
names
Classes have a local scope during definition, but functions inside the class do not use that scope when looking up
names. Because lambdas are functions, and comprehensions are implemented using function scope, this can lead
to some surprising behavior.

a = 'global'

class Fred:
 a = 'class' # class scope
 b = (a for i in range(10)) # function scope
 c = [a for i in range(10)] # function scope
 d = a # class scope
 e = lambda: a # function scope
 f = lambda a=a: a # default argument uses class scope

 @staticmethod # or @classmethod, or regular instance method
 def g(): # function scope
 return a

print(Fred.a) # class
print(next(Fred.b)) # global
print(Fred.c[0]) # class in Python 2, global in Python 3
print(Fred.d) # class
print(Fred.e()) # global
print(Fred.f()) # class
print(Fred.g()) # global

Users unfamiliar with how this scope works might expect b, c, and e to print class.

From PEP 227:

Names in class scope are not accessible. Names are resolved in the innermost enclosing function scope.
If a class definition occurs in a chain of nested scopes, the resolution process skips class definitions.

From Python's documentation on naming and binding:

http://www.python.org/dev/peps/pep-0227/
http://docs.python.org/3/reference/executionmodel.html#naming
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 77

The scope of names defined in a class block is limited to the class block; it does not extend to the code
blocks of methods – this includes comprehensions and generator expressions since they are
implemented using a function scope. This means that the following will fail:

class A:
 a = 42
 b = list(a + i for i in range(10))

This example uses references from this answer by Martijn Pieters, which contains more in depth analysis of this
behavior.

Section 13.6: Local vs Global Scope
What are local and global scope?

All Python variables which are accessible at some point in code are either in local scope or in global scope.

The explanation is that local scope includes all variables defined in the current function and global scope includes
variables defined outside of the current function.

foo = 1 # global

def func():
 bar = 2 # local
 print(foo) # prints variable foo from global scope
 print(bar) # prints variable bar from local scope

One can inspect which variables are in which scope. Built-in functions locals() and globals() return the whole
scopes as dictionaries.

foo = 1

def func():
 bar = 2
 print(globals().keys()) # prints all variable names in global scope
 print(locals().keys()) # prints all variable names in local scope

What happens with name clashes?
foo = 1

def func():
 foo = 2 # creates a new variable foo in local scope, global foo is not affected

 print(foo) # prints 2

 # global variable foo still exists, unchanged:
 print(globals()['foo']) # prints 1
 print(locals()['foo']) # prints 2

To modify a global variable, use keyword global:

foo = 1

def func():
 global foo
 foo = 2 # this modifies the global foo, rather than creating a local variable

http://stackoverflow.com/questions/13905741/accessing-class-variables-from-a-list-comprehension-in-the-class-definition/13913933#13913933
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 78

The scope is defined for the whole body of the function!

What it means is that a variable will never be global for a half of the function and local afterwards, or vice-versa.

foo = 1

def func():
 # This function has a local variable foo, because it is defined down below.
 # So, foo is local from this point. Global foo is hidden.

 print(foo) # raises UnboundLocalError, because local foo is not yet initialized
 foo = 7
 print(foo)

Likewise, the opposite:

foo = 1

def func():
 # In this function, foo is a global variable from the beginning

 foo = 7 # global foo is modified

 print(foo) # 7
 print(globals()['foo']) # 7

 global foo # this could be anywhere within the function
 print(foo) # 7

Functions within functions

There may be many levels of functions nested within functions, but within any one function there is only one local
scope for that function and the global scope. There are no intermediate scopes.

foo = 1

def f1():
 bar = 1

 def f2():
 baz = 2
 # here, foo is a global variable, baz is a local variable
 # bar is not in either scope
 print(locals().keys()) # ['baz']
 print('bar' in locals()) # False
 print('bar' in globals()) # False

 def f3():
 baz = 3
 print(bar) # bar from f1 is referenced so it enters local scope of f3 (closure)
 print(locals().keys()) # ['bar', 'baz']
 print('bar' in locals()) # True
 print('bar' in globals()) # False

 def f4():
 bar = 4 # a new local bar which hides bar from local scope of f1
 baz = 4
 print(bar)
 print(locals().keys()) # ['bar', 'baz']
 print('bar' in locals()) # True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 79

 print('bar' in globals()) # False

global vs nonlocal (Python 3 only)

Both these keywords are used to gain write access to variables which are not local to the current functions.

The global keyword declares that a name should be treated as a global variable.

foo = 0 # global foo

def f1():
 foo = 1 # a new foo local in f1

 def f2():
 foo = 2 # a new foo local in f2

 def f3():
 foo = 3 # a new foo local in f3
 print(foo) # 3
 foo = 30 # modifies local foo in f3 only

 def f4():
 global foo
 print(foo) # 0
 foo = 100 # modifies global foo

On the other hand, nonlocal (see Nonlocal Variables), available in Python 3, takes a local variable from an
enclosing scope into the local scope of current function.

From the Python documentation on nonlocal:

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest
enclosing scope excluding globals.

Python 3.x Version ≥ 3.0

def f1():

 def f2():
 foo = 2 # a new foo local in f2

 def f3():
 nonlocal foo # foo from f2, which is the nearest enclosing scope
 print(foo) # 2
 foo = 20 # modifies foo from f2!

Section 13.7: Binding Occurrence
x = 5
x += 7
for x in iterable: pass

Each of the above statements is a binding occurrence - x become bound to the object denoted by 5. If this statement
appears inside a function, then x will be function-local by default. See the "Syntax" section for a list of binding
statements.

https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 80

Chapter 14: Conditionals
Conditional expressions, involving keywords such as if, elif, and else, provide Python programs with the ability to
perform different actions depending on a boolean condition: True or False. This section covers the use of Python
conditionals, boolean logic, and ternary statements.

Section 14.1: Conditional Expression (or "The Ternary
Operator")
The ternary operator is used for inline conditional expressions. It is best used in simple, concise operations that are
easily read.

The order of the arguments is different from many other languages (such as C, Ruby, Java, etc.), which may
lead to bugs when people unfamiliar with Python's "surprising" behaviour use it (they may reverse the order).
Some find it "unwieldy", since it goes contrary to the normal flow of thought (thinking of the condition first
and then the effects).

n = 5

"Greater than 2" if n > 2 else "Smaller than or equal to 2"
Out: 'Greater than 2'

The result of this expression will be as it is read in English - if the conditional expression is True, then it will evaluate
to the expression on the left side, otherwise, the right side.

Ternary operations can also be nested, as here:

n = 5
"Hello" if n > 10 else "Goodbye" if n > 5 else "Good day"

They also provide a method of including conditionals in lambda functions.

Section 14.2: if, elif, and else
In Python you can define a series of conditionals using if for the first one, elif for the rest, up until the final
(optional) else for anything not caught by the other conditionals.

number = 5

if number > 2:
 print("Number is bigger than 2.")
elif number < 2: # Optional clause (you can have multiple elifs)
 print("Number is smaller than 2.")
else: # Optional clause (you can only have one else)
 print("Number is 2.")

Outputs Number is bigger than 2

Using else if instead of elif will trigger a syntax error and is not allowed.

Section 14.3: Truth Values
The following values are considered falsey, in that they evaluate to False when applied to a boolean operator.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 81

None
False
0, or any numerical value equivalent to zero, for example 0L, 0.0, 0j
Empty sequences: '', "", (), []
Empty mappings: {}
User-defined types where the __bool__ or __len__ methods return 0 or False

All other values in Python evaluate to True.

Note: A common mistake is to simply check for the Falseness of an operation which returns different Falsey values
where the difference matters. For example, using if foo() rather than the more explicit if foo() is None

Section 14.4: Boolean Logic Expressions
Boolean logic expressions, in addition to evaluating to True or False, return the value that was interpreted as True
or False. It is Pythonic way to represent logic that might otherwise require an if-else test.

And operator

The and operator evaluates all expressions and returns the last expression if all expressions evaluate to True.
Otherwise it returns the first value that evaluates to False:

>>> 1 and 2
2

>>> 1 and 0
0

>>> 1 and "Hello World"
"Hello World"

>>> "" and "Pancakes"
""

Or operator

The or operator evaluates the expressions left to right and returns the first value that evaluates to True or the last
value (if none are True).

>>> 1 or 2
1

>>> None or 1
1

>>> 0 or []
[]

Lazy evaluation

When you use this approach, remember that the evaluation is lazy. Expressions that are not required to be
evaluated to determine the result are not evaluated. For example:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 82

>>> def print_me():
 print('I am here!')
>>> 0 and print_me()
0

In the above example, print_me is never executed because Python can determine the entire expression is False
when it encounters the 0 (False). Keep this in mind if print_me needs to execute to serve your program logic.

Testing for multiple conditions

A common mistake when checking for multiple conditions is to apply the logic incorrectly.

This example is trying to check if two variables are each greater than 2. The statement is evaluated as - if (a) and
(b > 2). This produces an unexpected result because bool(a) evaluates as True when a is not zero.

>>> a = 1
>>> b = 6
>>> if a and b > 2:
... print('yes')
... else:
... print('no')

yes

Each variable needs to be compared separately.

>>> if a > 2 and b > 2:
... print('yes')
... else:
... print('no')

no

Another, similar, mistake is made when checking if a variable is one of multiple values. The statement in this
example is evaluated as - if (a == 3) or (4) or (6). This produces an unexpected result because bool(4) and
bool(6) each evaluate to True

>>> a = 1
>>> if a == 3 or 4 or 6:
... print('yes')
... else:
... print('no')

yes

Again each comparison must be made separately

>>> if a == 3 or a == 4 or a == 6:
... print('yes')
... else:
... print('no')

no

Using the in operator is the canonical way to write this.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 83

>>> if a in (3, 4, 6):
... print('yes')
... else:
... print('no')

no

Section 14.5: Using the cmp function to get the comparison
result of two objects
Python 2 includes a cmp function which allows you to determine if one object is less than, equal to, or greater than
another object. This function can be used to pick a choice out of a list based on one of those three options.

Suppose you need to print 'greater than' if x > y, 'less than' if x < y and 'equal' if x == y.

['equal', 'greater than', 'less than',][cmp(x,y)]

x,y = 1,1 output: 'equal'
x,y = 1,2 output: 'less than'
x,y = 2,1 output: 'greater than'

cmp(x,y) returns the following values

Comparison Result
x < y -1

x == y 0

x > y 1

This function is removed on Python 3. You can use the cmp_to_key(func) helper function located in functools in
Python 3 to convert old comparison functions to key functions.

Section 14.6: Else statement
if condition:
 body
else:
 body

The else statement will execute it's body only if preceding conditional statements all evaluate to False.

if True:
 print "It is true!"
else:
 print "This won't get printed.."

Output: It is true!

if False:
 print "This won't get printed.."
else:
 print "It is false!"

Output: It is false!

https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 84

Section 14.7: Testing if an object is None and assigning it
You'll often want to assign something to an object if it is None, indicating it has not been assigned. We'll use aDate.

The simplest way to do this is to use the is None test.

if aDate is None:
 aDate=datetime.date.today()

(Note that it is more Pythonic to say is None instead of == None.)

But this can be optimized slightly by exploiting the notion that not None will evaluate to True in a boolean
expression. The following code is equivalent:

if not aDate:
 aDate=datetime.date.today()

But there is a more Pythonic way. The following code is also equivalent:

aDate=aDate or datetime.date.today()

This does a Short Circuit evaluation. If aDate is initialized and is not None, then it gets assigned to itself with no net
effect. If it is None, then the datetime.date.today() gets assigned to aDate.

Section 14.8: If statement
if condition:
 body

The if statements checks the condition. If it evaluates to True, it executes the body of the if statement. If it
evaluates to False, it skips the body.

if True:
 print "It is true!"
>> It is true!

if False:
 print "This won't get printed.."

The condition can be any valid expression:

if 2 + 2 == 4:
 print "I know math!"
>> I know math!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F

GoalKicker.com – Python® Notes for Professionals 86

Chapter 15: Comparisons
Parameter Details
x First item to be compared

y Second item to be compared

Section 15.1: Chain Comparisons
You can compare multiple items with multiple comparison operators with chain comparison. For example

x > y > z

is just a short form of:

x > y and y > z

This will evaluate to True only if both comparisons are True.

The general form is

a OP b OP c OP d ...

Where OP represents one of the multiple comparison operations you can use, and the letters represent arbitrary
valid expressions.

Note that 0 != 1 != 0 evaluates to True, even though 0 != 0 is False. Unlike the common mathematical
notation in which x != y != z means that x, y and z have different values. Chaining == operations has
the natural meaning in most cases, since equality is generally transitive.

Style

There is no theoretical limit on how many items and comparison operations you use as long you have proper
syntax:

1 > -1 < 2 > 0.5 < 100 != 24

The above returns True if each comparison returns True. However, using convoluted chaining is not a good style. A
good chaining will be "directional", not more complicated than

1 > x > -4 > y != 8

Side effects

As soon as one comparison returns False, the expression evaluates immediately to False, skipping all remaining
comparisons.

Note that the expression exp in a > exp > b will be evaluated only once, whereas in the case of

a > exp and exp > b

exp will be computed twice if a > exp is true.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 87

Section 15.2: Comparison by `is` vs `==`
A common pitfall is confusing the equality comparison operators is and ==.

a == b compares the value of a and b.

a is b will compare the identities of a and b.

To illustrate:

a = 'Python is fun!'
b = 'Python is fun!'
a == b # returns True
a is b # returns False

a = [1, 2, 3, 4, 5]
b = a # b references a
a == b # True
a is b # True
b = a[:] # b now references a copy of a
a == b # True
a is b # False [!!]

Basically, is can be thought of as shorthand for id(a) == id(b).

Beyond this, there are quirks of the run-time environment that further complicate things. Short strings and small
integers will return True when compared with is, due to the Python machine attempting to use less memory for
identical objects.

a = 'short'
b = 'short'
c = 5
d = 5
a is b # True
c is d # True

But longer strings and larger integers will be stored separately.

a = 'not so short'
b = 'not so short'
c = 1000
d = 1000
a is b # False
c is d # False

You should use is to test for None:

if myvar is not None:
 # not None
 pass
if myvar is None:
 # None
 pass

A use of is is to test for a “sentinel” (i.e. a unique object).

sentinel = object()
def myfunc(var=sentinel):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 88

 if var is sentinel:
 # value wasn’t provided
 pass
 else:
 # value was provided
 pass

Section 15.3: Greater than or less than
x > y
x < y

These operators compare two types of values, they're the less than and greater than operators. For numbers this
simply compares the numerical values to see which is larger:

12 > 4
True
12 < 4
False
1 < 4
True

For strings they will compare lexicographically, which is similar to alphabetical order but not quite the same.

"alpha" < "beta"
True
"gamma" > "beta"
True
"gamma" < "OMEGA"
False

In these comparisons, lowercase letters are considered 'greater than' uppercase, which is why "gamma" < "OMEGA"
is false. If they were all uppercase it would return the expected alphabetical ordering result:

"GAMMA" < "OMEGA"
True

Each type defines it's calculation with the < and > operators differently, so you should investigate what the
operators mean with a given type before using it.

Section 15.4: Not equal to
x != y

This returns True if x and y are not equal and otherwise returns False.

12 != 1
True
12 != '12'
True
'12' != '12'
False

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 89

Section 15.5: Equal To
x == y

This expression evaluates if x and y are the same value and returns the result as a boolean value. Generally both
type and value need to match, so the int 12 is not the same as the string '12'.

12 == 12
True
12 == 1
False
'12' == '12'
True
'spam' == 'spam'
True
'spam' == 'spam '
False
'12' == 12
False

Note that each type has to define a function that will be used to evaluate if two values are the same. For builtin
types these functions behave as you'd expect, and just evaluate things based on being the same value. However
custom types could define equality testing as whatever they'd like, including always returning True or always
returning False.

Section 15.6: Comparing Objects
In order to compare the equality of custom classes, you can override == and != by defining __eq__ and __ne__
methods. You can also override __lt__ (<), __le__ (<=), __gt__ (>), and __ge__ (>). Note that you only need to
override two comparison methods, and Python can handle the rest (== is the same as not < and not >, etc.)

class Foo(object):
 def __init__(self, item):
 self.my_item = item
 def __eq__(self, other):
 return self.my_item == other.my_item

a = Foo(5)
b = Foo(5)
a == b # True
a != b # False
a is b # False

Note that this simple comparison assumes that other (the object being compared to) is the same object type.
Comparing to another type will throw an error:

class Bar(object):
 def __init__(self, item):
 self.other_item = item
 def __eq__(self, other):
 return self.other_item == other.other_item
 def __ne__(self, other):
 return self.other_item != other.other_item

c = Bar(5)
a == c # throws AttributeError: 'Foo' object has no attribute 'other_item'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 90

Checking isinstance() or similar will help prevent this (if desired).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 91

Chapter 16: Loops
Parameter Details

boolean expression expression that can be evaluated in a boolean context, e.g. x < 10

variable variable name for the current element from the iterable

iterable anything that implements iterations

As one of the most basic functions in programming, loops are an important piece to nearly every programming
language. Loops enable developers to set certain portions of their code to repeat through a number of loops which
are referred to as iterations. This topic covers using multiple types of loops and applications of loops in Python.

Section 16.1: Break and Continue in Loops
break statement

When a break statement executes inside a loop, control flow "breaks" out of the loop immediately:

i = 0
while i < 7:
 print(i)
 if i == 4:
 print("Breaking from loop")
 break
 i += 1

The loop conditional will not be evaluated after the break statement is executed. Note that break statements are
only allowed inside loops, syntactically. A break statement inside a function cannot be used to terminate loops that
called that function.

Executing the following prints every digit until number 4 when the break statement is met and the loop stops:

0
1
2
3
4
Breaking from loop

break statements can also be used inside for loops, the other looping construct provided by Python:

for i in (0, 1, 2, 3, 4):
 print(i)
 if i == 2:
 break

Executing this loop now prints:

0
1
2

Note that 3 and 4 are not printed since the loop has ended.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 92

If a loop has an else clause, it does not execute when the loop is terminated through a break statement.

continue statement

A continue statement will skip to the next iteration of the loop bypassing the rest of the current block but
continuing the loop. As with break, continue can only appear inside loops:

for i in (0, 1, 2, 3, 4, 5):
 if i == 2 or i == 4:
 continue
 print(i)

0
1
3
5

Note that 2 and 4 aren't printed, this is because continue goes to the next iteration instead of continuing on to
print(i) when i == 2 or i == 4.

Nested Loops

break and continue only operate on a single level of loop. The following example will only break out of the inner
for loop, not the outer while loop:

while True:
 for i in range(1,5):
 if i == 2:
 break # Will only break out of the inner loop!

Python doesn't have the ability to break out of multiple levels of loop at once -- if this behavior is desired,
refactoring one or more loops into a function and replacing break with return may be the way to go.

Use return from within a function as a break

The return statement exits from a function, without executing the code that comes after it.

If you have a loop inside a function, using return from inside that loop is equivalent to having a break as the rest of
the code of the loop is not executed (note that any code after the loop is not executed either):

def break_loop():
 for i in range(1, 5):
 if (i == 2):
 return(i)
 print(i)
 return(5)

If you have nested loops, the return statement will break all loops:

def break_all():
 for j in range(1, 5):
 for i in range(1,4):
 if i*j == 6:
 return(i)
 print(i*j)

will output:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 93

1 # 1*1
2 # 1*2
3 # 1*3
4 # 1*4
2 # 2*1
4 # 2*2
return because 2*3 = 6, the remaining iterations of both loops are not executed

Section 16.2: For loops
for loops iterate over a collection of items, such as list or dict, and run a block of code with each element from
the collection.

for i in [0, 1, 2, 3, 4]:
 print(i)

The above for loop iterates over a list of numbers.

Each iteration sets the value of i to the next element of the list. So first it will be 0, then 1, then 2, etc. The output
will be as follow:

0
1
2
3
4

range is a function that returns a series of numbers under an iterable form, thus it can be used in for loops:

for i in range(5):
 print(i)

gives the exact same result as the first for loop. Note that 5 is not printed as the range here is the first five
numbers counting from 0.

Iterable objects and iterators

for loop can iterate on any iterable object which is an object which defines a __getitem__ or a __iter__ function.
The __iter__ function returns an iterator, which is an object with a next function that is used to access the next
element of the iterable.

Section 16.3: Iterating over lists
To iterate through a list you can use for:

for x in ['one', 'two', 'three', 'four']:
 print(x)

This will print out the elements of the list:

one
two
three
four

http://stackoverflow.com/questions/9884132/what-exactly-are-pythons-iterator-iterable-and-iteration-protocols
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 94

The range function generates numbers which are also often used in a for loop.

for x in range(1, 6):
 print(x)

The result will be a special range sequence type in python >=3 and a list in python <=2. Both can be looped through
using the for loop.

1
2
3
4
5

If you want to loop though both the elements of a list and have an index for the elements as well, you can use
Python's enumerate function:

for index, item in enumerate(['one', 'two', 'three', 'four']):
 print(index, '::', item)

enumerate will generate tuples, which are unpacked into index (an integer) and item (the actual value from the list).
The above loop will print

(0, '::', 'one')
(1, '::', 'two')
(2, '::', 'three')
(3, '::', 'four')

Iterate over a list with value manipulation using map and lambda, i.e. apply lambda function on each element in the
list:

x = map(lambda e : e.upper(), ['one', 'two', 'three', 'four'])
print(x)

Output:

['ONE', 'TWO', 'THREE', 'FOUR'] # Python 2.x

NB: in Python 3.x map returns an iterator instead of a list so you in case you need a list you have to cast the result
print(list(x))

Section 16.4: Loops with an "else" clause
The for and while compound statements (loops) can optionally have an else clause (in practice, this usage is fairly
rare).

The else clause only executes after a for loop terminates by iterating to completion, or after a while loop
terminates by its conditional expression becoming false.

for i in range(3):
 print(i)
else:
 print('done')

i = 0

https://docs.python.org/3/library/stdtypes.html#ranges
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 95

while i < 3:
 print(i)
 i += 1
else:
 print('done')

output:

0
1
2
done

The else clause does not execute if the loop terminates some other way (through a break statement or by raising
an exception):

for i in range(2):
 print(i)
 if i == 1:
 break
else:
 print('done')

output:

0
1

Most other programming languages lack this optional else clause of loops. The use of the keyword else in
particular is often considered confusing.

The original concept for such a clause dates back to Donald Knuth and the meaning of the else keyword becomes
clear if we rewrite a loop in terms of if statements and goto statements from earlier days before structured
programming or from a lower-level assembly language.

For example:

while loop_condition():
 ...
 if break_condition():
 break
 ...

is equivalent to:

pseudocode

<<start>>:
if loop_condition():
 ...
 if break_condition():
 goto <<end>>
 ...
 goto <<start>>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 96

<<end>>:

These remain equivalent if we attach an else clause to each of them.

For example:

while loop_condition():
 ...
 if break_condition():
 break
 ...
else:
 print('done')

is equivalent to:

pseudocode

<<start>>:
if loop_condition():
 ...
 if break_condition():
 goto <<end>>
 ...
 goto <<start>>
else:
 print('done')

<<end>>:

A for loop with an else clause can be understood the same way. Conceptually, there is a loop condition that
remains True as long as the iterable object or sequence still has some remaining elements.

Why would one use this strange construct?

The main use case for the for...else construct is a concise implementation of search as for instance:

a = [1, 2, 3, 4]
for i in a:
 if type(i) is not int:
 print(i)
 break
else:
 print("no exception")

To make the else in this construct less confusing one can think of it as "if not break" or "if not found".

Some discussions on this can be found in [Python-ideas] Summary of for...else threads, Why does python use 'else'
after for and while loops? , and Else Clauses on Loop Statements

Section 16.5: The Pass Statement
pass is a null statement for when a statement is required by Python syntax (such as within the body of a for or
while loop), but no action is required or desired by the programmer. This can be useful as a placeholder for code
that is yet to be written.

for x in range(10):

https://mail.python.org/pipermail/python-ideas/2009-October/006155.html
https://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops
https://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops
http://python-notes.curiousefficiency.org/en/latest/python_concepts/break_else.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 97

 pass #we don't want to do anything, or are not ready to do anything here, so we'll pass

In this example, nothing will happen. The for loop will complete without error, but no commands or code will be
actioned. pass allows us to run our code successfully without having all commands and action fully implemented.

Similarly, pass can be used in while loops, as well as in selections and function definitions etc.

while x == y:
 pass

Section 16.6: Iterating over dictionaries
Considering the following dictionary:

 d = {"a": 1, "b": 2, "c": 3}

To iterate through its keys, you can use:

for key in d:
 print(key)

Output:

"a"
"b"
"c"

This is equivalent to:

for key in d.keys():
 print(key)

or in Python 2:

for key in d.iterkeys():
 print(key)

To iterate through its values, use:

for value in d.values():
 print(value)

Output:

1
2
3

To iterate through its keys and values, use:

for key, value in d.items():
 print(key, "::", value)

Output:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 98

a :: 1
b :: 2
c :: 3

Note that in Python 2, .keys(), .values() and .items() return a list object. If you simply need to iterate through
the result, you can use the equivalent .iterkeys(), .itervalues() and .iteritems().

The difference between .keys() and .iterkeys(), .values() and .itervalues(), .items() and .iteritems() is
that the iter* methods are generators. Thus, the elements within the dictionary are yielded one by one as they are
evaluated. When a list object is returned, all of the elements are packed into a list and then returned for further
evaluation.

Note also that in Python 3, Order of items printed in the above manner does not follow any order.

Section 16.7: The "half loop" do-while
Unlike other languages, Python doesn't have a do-until or a do-while construct (this will allow code to be executed
once before the condition is tested). However, you can combine a while True with a break to achieve the same
purpose.

a = 10
while True:
 a = a-1
 print(a)
 if a<7:
 break
print('Done.')

This will print:

9
8
7
6
Done.

Section 16.8: Looping and Unpacking
If you want to loop over a list of tuples for example:

collection = [('a', 'b', 'c'), ('x', 'y', 'z'), ('1', '2', '3')]

instead of doing something like this:

for item in collection:
 i1 = item[0]
 i2 = item[1]
 i3 = item[2]
 # logic

or something like this:

for item in collection:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 99

 i1, i2, i3 = item
 # logic

You can simply do this:

for i1, i2, i3 in collection:
 # logic

This will also work for most types of iterables, not just tuples.

Section 16.9: Iterating dierent portion of a list with dierent
step size
Suppose you have a long list of elements and you are only interested in every other element of the list. Perhaps you
only want to examine the first or last elements, or a specific range of entries in your list. Python has strong indexing
built-in capabilities. Here are some examples of how to achieve these scenarios.

Here's a simple list that will be used throughout the examples:

lst = ['alpha', 'bravo', 'charlie', 'delta', 'echo']

Iteration over the whole list

To iterate over each element in the list, a for loop like below can be used:

for s in lst:
 print s[:1] # print the first letter

The for loop assigns s for each element of lst. This will print:

a
b
c
d
e

Often you need both the element and the index of that element. The enumerate keyword performs that task.

for idx, s in enumerate(lst):
 print("%s has an index of %d" % (s, idx))

The index idx will start with zero and increment for each iteration, while the s will contain the element being
processed. The previous snippet will output:

alpha has an index of 0
bravo has an index of 1
charlie has an index of 2
delta has an index of 3
echo has an index of 4

Iterate over sub-list

If we want to iterate over a range (remembering that Python uses zero-based indexing), use the range keyword.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 100

for i in range(2,4):
 print("lst at %d contains %s" % (i, lst[i]))

This would output:

lst at 2 contains charlie
lst at 3 contains delta

The list may also be sliced. The following slice notation goes from element at index 1 to the end with a step of 2.
The two for loops give the same result.

for s in lst[1::2]:
 print(s)

for i in range(1, len(lst), 2):
 print(lst[i])

The above snippet outputs:

bravo
delta

Indexing and slicing is a topic of its own.

Section 16.10: While Loop
A while loop will cause the loop statements to be executed until the loop condition is falsey. The following code will
execute the loop statements a total of 4 times.

i = 0
while i < 4:
 #loop statements
 i = i + 1

While the above loop can easily be translated into a more elegant for loop, while loops are useful for checking if
some condition has been met. The following loop will continue to execute until myObject is ready.

myObject = anObject()
while myObject.isNotReady():
 myObject.tryToGetReady()

while loops can also run without a condition by using numbers (complex or real) or True:

import cmath

complex_num = cmath.sqrt(-1)
while complex_num: # You can also replace complex_num with any number, True or a value of any
type
 print(complex_num) # Prints 1j forever

If the condition is always true the while loop will run forever (infinite loop) if it is not terminated by a break or return
statement or an exception.

while True:
 print "Infinite loop"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 101

Infinite loop
Infinite loop
Infinite loop
...

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 102

Chapter 17: Arrays
Parameter Details
b Represents signed integer of size 1 byte
B Represents unsigned integer of size 1 byte
c Represents character of size 1 byte
u Represents unicode character of size 2 bytes
h Represents signed integer of size 2 bytes
H Represents unsigned integer of size 2 bytes
i Represents signed integer of size 2 bytes
I Represents unsigned integer of size 2 bytes
w Represents unicode character of size 4 bytes
l Represents signed integer of size 4 bytes
L Represents unsigned integer of size 4 bytes
f Represents floating point of size 4 bytes
d Represents floating point of size 8 bytes

"Arrays" in Python are not the arrays in conventional programming languages like C and Java, but closer to lists. A
list can be a collection of either homogeneous or heterogeneous elements, and may contain ints, strings or other
lists.

Section 17.1: Access individual elements through indexes
Individual elements can be accessed through indexes. Python arrays are zero-indexed. Here is an example:

my_array = array('i', [1,2,3,4,5])
print(my_array[1])
2
print(my_array[2])
3
print(my_array[0])
1

Section 17.2: Basic Introduction to Arrays
An array is a data structure that stores values of same data type. In Python, this is the main difference between
arrays and lists.

While python lists can contain values corresponding to different data types, arrays in python can only contain
values corresponding to same data type. In this tutorial, we will understand the Python arrays with few examples.

If you are new to Python, get started with the Python Introduction article.

To use arrays in python language, you need to import the standard array module. This is because array is not a
fundamental data type like strings, integer etc. Here is how you can import array module in python :

from array import *

Once you have imported the array module, you can declare an array. Here is how you do it:

arrayIdentifierName = array(typecode, [Initializers])

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 103

In the declaration above, arrayIdentifierName is the name of array, typecode lets python know the type of array
and Initializers are the values with which array is initialized.

Typecodes are the codes that are used to define the type of array values or the type of array. The table in the
parameters section shows the possible values you can use when declaring an array and it's type.

Here is a real world example of python array declaration :

my_array = array('i',[1,2,3,4])

In the example above, typecode used is i. This typecode represents signed integer whose size is 2 bytes.

Here is a simple example of an array containing 5 integers

from array import *
my_array = array('i', [1,2,3,4,5])
for i in my_array:
 print(i)
1
2
3
4
5

Section 17.3: Append any value to the array using append()
method
my_array = array('i', [1,2,3,4,5])
my_array.append(6)
array('i', [1, 2, 3, 4, 5, 6])

Note that the value 6 was appended to the existing array values.

Section 17.4: Insert value in an array using insert() method
We can use the insert() method to insert a value at any index of the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.insert(0,0)
#array('i', [0, 1, 2, 3, 4, 5])

In the above example, the value 0 was inserted at index 0. Note that the first argument is the index while second
argument is the value.

Section 17.5: Extend python array using extend() method
A python array can be extended with more than one value using extend() method. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_extnd_array = array('i', [7,8,9,10])
my_array.extend(my_extnd_array)
array('i', [1, 2, 3, 4, 5, 7, 8, 9, 10])

We see that the array my_array was extended with values from my_extnd_array.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 104

Section 17.6: Add items from list into array using fromlist()
method
Here is an example:

my_array = array('i', [1,2,3,4,5])
c=[11,12,13]
my_array.fromlist(c)
array('i', [1, 2, 3, 4, 5, 11, 12, 13])

So we see that the values 11,12 and 13 were added from list c to my_array.

Section 17.7: Remove any array element using remove()
method
Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.remove(4)
array('i', [1, 2, 3, 5])

We see that the element 4 was removed from the array.

Section 17.8: Remove last array element using pop() method
pop removes the last element from the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.pop()
array('i', [1, 2, 3, 4])

So we see that the last element (5) was popped out of array.

Section 17.9: Fetch any element through its index using index()
method
index() returns first index of the matching value. Remember that arrays are zero-indexed.

my_array = array('i', [1,2,3,4,5])
print(my_array.index(5))
5
my_array = array('i', [1,2,3,3,5])
print(my_array.index(3))
3

Note in that second example that only one index was returned, even though the value exists twice in the array

Section 17.10: Reverse a python array using reverse() method
The reverse() method does what the name says it will do - reverses the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.reverse()
array('i', [5, 4, 3, 2, 1])

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 105

Section 17.11: Get array buer information through
buer_info() method
This method provides you the array buffer start address in memory and number of elements in array. Here is an
example:

my_array = array('i', [1,2,3,4,5])
my_array.buffer_info()
(33881712, 5)

Section 17.12: Check for number of occurrences of an element
using count() method
count() will return the number of times and element appears in an array. In the following example we see that the
value 3 occurs twice.

my_array = array('i', [1,2,3,3,5])
my_array.count(3)
2

Section 17.13: Convert array to string using tostring() method
tostring() converts the array to a string.

my_char_array = array('c', ['g','e','e','k'])
array('c', 'geek')
print(my_char_array.tostring())
geek

Section 17.14: Convert array to a python list with same
elements using tolist() method
When you need a Python list object, you can utilize the tolist() method to convert your array to a list.

my_array = array('i', [1,2,3,4,5])
c = my_array.tolist()
[1, 2, 3, 4, 5]

Section 17.15: Append a string to char array using fromstring()
method
You are able to append a string to a character array using fromstring()

my_char_array = array('c', ['g','e','e','k'])
my_char_array.fromstring("stuff")
print(my_char_array)
#array('c', 'geekstuff')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 106

Chapter 18: Multidimensional arrays
Section 18.1: Lists in lists
A good way to visualize a 2d array is as a list of lists. Something like this:

lst=[[1,2,3],[4,5,6],[7,8,9]]

here the outer list lst has three things in it. each of those things is another list: The first one is: [1,2,3], the second
one is: [4,5,6] and the third one is: [7,8,9]. You can access these lists the same way you would access another
other element of a list, like this:

print (lst[0])
#output: [1, 2, 3]

print (lst[1])
#output: [4, 5, 6]

print (lst[2])
#output: [7, 8, 9]

You can then access the different elements in each of those lists the same way:

print (lst[0][0])
#output: 1

print (lst[0][1])
#output: 2

Here the first number inside the [] brackets means get the list in that position. In the above example we used the
number 0 to mean get the list in the 0th position which is [1,2,3]. The second set of [] brackets means get the
item in that position from the inner list. In this case we used both 0 and 1 the 0th position in the list we got is the
number 1 and in the 1st position it is 2

You can also set values inside these lists the same way:

lst[0]=[10,11,12]

Now the list is [[10,11,12],[4,5,6],[7,8,9]]. In this example we changed the whole first list to be a completely
new list.

lst[1][2]=15

Now the list is [[10,11,12],[4,5,15],[7,8,9]]. In this example we changed a single element inside of one of the
inner lists. First we went into the list at position 1 and changed the element within it at position 2, which was 6 now
it's 15.

Section 18.2: Lists in lists in lists in..
This behaviour can be extended. Here is a 3-dimensional array:

[[[111,112,113],[121,122,123],[131,132,133]],[[211,212,213],[221,222,223],[231,232,233]],[[311,312,
313],[321,322,323],[331,332,333]]]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 107

As is probably obvious, this gets a bit hard to read. Use backslashes to break up the different dimensions:

[[[111,112,113],[121,122,123],[131,132,133]],\
 [[211,212,213],[221,222,223],[231,232,233]],\
 [[311,312,313],[321,322,323],[331,332,333]]]

By nesting the lists like this, you can extend to arbitrarily high dimensions.

Accessing is similar to 2D arrays:

print(myarray)
print(myarray[1])
print(myarray[2][1])
print(myarray[1][0][2])
etc.

And editing is also similar:

myarray[1]=new_n-1_d_list
myarray[2][1]=new_n-2_d_list
myarray[1][0][2]=new_n-3_d_list #or a single number if you're dealing with 3D arrays
etc.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 108

Chapter 19: Dictionary
Parameter Details
key The desired key to lookup

value The value to set or return

Section 19.1: Introduction to Dictionary
A dictionary is an example of a key value store also known as Mapping in Python. It allows you to store and retrieve
elements by referencing a key. As dictionaries are referenced by key, they have very fast lookups. As they are
primarily used for referencing items by key, they are not sorted.

creating a dict

Dictionaries can be initiated in many ways:

literal syntax
d = {} # empty dict
d = {'key': 'value'} # dict with initial values

Python 3.x Version ≥ 3.5

Also unpacking one or multiple dictionaries with the literal syntax is possible

makes a shallow copy of otherdict
d = {**otherdict}
also updates the shallow copy with the contents of the yetanotherdict.
d = {**otherdict, **yetanotherdict}

dict comprehension
d = {k:v for k,v in [('key', 'value',)]}

see also: Comprehensions

built-in class: dict()
d = dict() # empty dict
d = dict(key='value') # explicit keyword arguments
d = dict([('key', 'value')]) # passing in a list of key/value pairs
make a shallow copy of another dict (only possible if keys are only strings!)
d = dict(**otherdict)

modifying a dict

To add items to a dictionary, simply create a new key with a value:

d['newkey'] = 42

It also possible to add list and dictionary as value:

d['new_list'] = [1, 2, 3]
d['new_dict'] = {'nested_dict': 1}

To delete an item, delete the key from the dictionary:

del d['newkey']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 109

Section 19.2: Avoiding KeyError Exceptions
One common pitfall when using dictionaries is to access a non-existent key. This typically results in a KeyError
exception

mydict = {}
mydict['not there']

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'not there'

One way to avoid key errors is to use the dict.get method, which allows you to specify a default value to return in
the case of an absent key.

value = mydict.get(key, default_value)

Which returns mydict[key] if it exists, but otherwise returns default_value. Note that this doesn't add key to
mydict. So if you want to retain that key value pair, you should use mydict.setdefault(key, default_value),
which does store the key value pair.

mydict = {}
print(mydict)
{}
print(mydict.get("foo", "bar"))
bar
print(mydict)
{}
print(mydict.setdefault("foo", "bar"))
bar
print(mydict)
{'foo': 'bar'}

An alternative way to deal with the problem is catching the exception

try:
 value = mydict[key]
except KeyError:
 value = default_value

You could also check if the key is in the dictionary.

if key in mydict:
 value = mydict[key]
else:
 value = default_value

Do note, however, that in multi-threaded environments it is possible for the key to be removed from the dictionary
after you check, creating a race condition where the exception can still be thrown.

Another option is to use a subclass of dict, collections.defaultdict, that has a default_factory to create new entries in
the dict when given a new_key.

Section 19.3: Iterating Over a Dictionary
If you use a dictionary as an iterator (e.g. in a for statement), it traverses the keys of the dictionary. For example:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 110

d = {'a': 1, 'b': 2, 'c':3}
for key in d:
 print(key, d[key])
c 3
b 2
a 1

The same is true when used in a comprehension

print([key for key in d])
['c', 'b', 'a']

Python 3.x Version ≥ 3.0

The items() method can be used to loop over both the key and value simultaneously:

for key, value in d.items():
 print(key, value)
c 3
b 2
a 1

While the values() method can be used to iterate over only the values, as would be expected:

for key, value in d.values():
 print(key, value)
 # 3
 # 2
 # 1

Python 2.x Version ≥ 2.2

Here, the methods keys(), values() and items() return lists, and there are the three extra methods iterkeys()
itervalues() and iteritems() to return iterators.

Section 19.4: Dictionary with default values
Available in the standard library as defaultdict

from collections import defaultdict

d = defaultdict(int)
d['key'] # 0
d['key'] = 5
d['key'] # 5

d = defaultdict(lambda: 'empty')
d['key'] # 'empty'
d['key'] = 'full'
d['key'] # 'full'

[*] Alternatively, if you must use the built-in dict class, using dict.setdefault() will allow you to create a default
whenever you access a key that did not exist before:

>>> d = {}
{}
>>> d.setdefault('Another_key', []).append("This worked!")
>>> d

https://docs.python.org/3/library/collections.html#collections.defaultdict
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 111

{'Another_key': ['This worked!']}

Keep in mind that if you have many values to add, dict.setdefault() will create a new instance of the initial value
(in this example a []) every time it's called - which may create unnecessary workloads.

[*] Python Cookbook, 3rd edition, by David Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian
Jones, 978-1-449-34037-7.

Section 19.5: Merging dictionaries
Consider the following dictionaries:

>>> fish = {'name': "Nemo", 'hands': "fins", 'special': "gills"}
>>> dog = {'name': "Clifford", 'hands': "paws", 'color': "red"}

Python 3.5+
>>> fishdog = {**fish, **dog}
>>> fishdog
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

As this example demonstrates, duplicate keys map to their lattermost value (for example "Clifford" overrides
"Nemo").

Python 3.3+
>>> from collections import ChainMap
>>> dict(ChainMap(fish, dog))
{'hands': 'fins', 'color': 'red', 'special': 'gills', 'name': 'Nemo'}

With this technique the foremost value takes precedence for a given key rather than the last ("Clifford" is thrown
out in favor of "Nemo").

Python 2.x, 3.x
>>> from itertools import chain
>>> dict(chain(fish.items(), dog.items()))
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

This uses the lattermost value, as with the **-based technique for merging ("Clifford" overrides "Nemo").

>>> fish.update(dog)
>>> fish
{'color': 'red', 'hands': 'paws', 'name': 'Clifford', 'special': 'gills'}

dict.update uses the latter dict to overwrite the previous one.

Section 19.6: Accessing keys and values
When working with dictionaries, it's often necessary to access all the keys and values in the dictionary, either in a
for loop, a list comprehension, or just as a plain list.

Given a dictionary like:

mydict = {
 'a': '1',

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 112

 'b': '2'
}

You can get a list of keys using the keys() method:

print(mydict.keys())
Python2: ['a', 'b']
Python3: dict_keys(['b', 'a'])

If instead you want a list of values, use the values() method:

print(mydict.values())
Python2: ['1', '2']
Python3: dict_values(['2', '1'])

If you want to work with both the key and its corresponding value, you can use the items() method:

print(mydict.items())
Python2: [('a', '1'), ('b', '2')]
Python3: dict_items([('b', '2'), ('a', '1')])

NOTE: Because a dict is unsorted, keys(), values(), and items() have no sort order. Use sort(), sorted(), or an
OrderedDict if you care about the order that these methods return.

Python 2/3 Difference: In Python 3, these methods return special iterable objects, not lists, and are the equivalent
of the Python 2 iterkeys(), itervalues(), and iteritems() methods. These objects can be used like lists for the
most part, though there are some differences. See PEP 3106 for more details.

Section 19.7: Accessing values of a dictionary
dictionary = {"Hello": 1234, "World": 5678}
print(dictionary["Hello"])

The above code will print 1234.

The string "Hello" in this example is called a key. It is used to lookup a value in the dict by placing the key in
square brackets.

The number 1234 is seen after the respective colon in the dict definition. This is called the value that "Hello" maps
to in this dict.

Looking up a value like this with a key that does not exist will raise a KeyError exception, halting execution if
uncaught. If we want to access a value without risking a KeyError, we can use the dictionary.get method. By
default if the key does not exist, the method will return None. We can pass it a second value to return instead of
None in the event of a failed lookup.

w = dictionary.get("whatever")
x = dictionary.get("whatever", "nuh-uh")

In this example w will get the value None and x will get the value "nuh-uh".

Section 19.8: Creating a dictionary
Rules for creating a dictionary:

https://www.python.org/dev/peps/pep-3106/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 113

Every key must be unique (otherwise it will be overridden)
Every key must be hashable (can use the hash function to hash it; otherwise TypeError will be thrown)
There is no particular order for the keys.

Creating and populating it with values
stock = {'eggs': 5, 'milk': 2}

Or creating an empty dictionary
dictionary = {}

And populating it after
dictionary['eggs'] = 5
dictionary['milk'] = 2

Values can also be lists
mydict = {'a': [1, 2, 3], 'b': ['one', 'two', 'three']}

Use list.append() method to add new elements to the values list
mydict['a'].append(4) # => {'a': [1, 2, 3, 4], 'b': ['one', 'two', 'three']}
mydict['b'].append('four') # => {'a': [1, 2, 3, 4], 'b': ['one', 'two', 'three', 'four']}

We can also create a dictionary using a list of two-items tuples
iterable = [('eggs', 5), ('milk', 2)]
dictionary = dict(iterables)

Or using keyword argument:
dictionary = dict(eggs=5, milk=2)

Another way will be to use the dict.fromkeys:
dictionary = dict.fromkeys((milk, eggs)) # => {'milk': None, 'eggs': None}
dictionary = dict.fromkeys((milk, eggs), (2, 5)) # => {'milk': 2, 'eggs': 5}

Section 19.9: Creating an ordered dictionary
You can create an ordered dictionary which will follow a determined order when iterating over the keys in the
dictionary.

Use OrderedDict from the collections module. This will always return the dictionary elements in the original
insertion order when iterated over.

from collections import OrderedDict

d = OrderedDict()
d['first'] = 1
d['second'] = 2
d['third'] = 3
d['last'] = 4

Outputs "first 1", "second 2", "third 3", "last 4"
for key in d:
 print(key, d[key])

Section 19.10: Unpacking dictionaries using the ** operator
You can use the ** keyword argument unpacking operator to deliver the key-value pairs in a dictionary into a
function's arguments. A simplified example from the official documentation:

>>>

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 114

>>> def parrot(voltage, state, action):
... print("This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)

This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

As of Python 3.5 you can also use this syntax to merge an arbitrary number of dict objects.

>>> fish = {'name': "Nemo", 'hands': "fins", 'special': "gills"}
>>> dog = {'name': "Clifford", 'hands': "paws", 'color': "red"}
>>> fishdog = {**fish, **dog}
>>> fishdog

{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

As this example demonstrates, duplicate keys map to their lattermost value (for example "Clifford" overrides
"Nemo").

Section 19.11: The trailing comma
Like lists and tuples, you can include a trailing comma in your dictionary.

role = {"By day": "A typical programmer",
 "By night": "Still a typical programmer", }

PEP 8 dictates that you should leave a space between the trailing comma and the closing brace.

Section 19.12: The dict() constructor
The dict() constructor can be used to create dictionaries from keyword arguments, or from a single iterable of
key-value pairs, or from a single dictionary and keyword arguments.

dict(a=1, b=2, c=3) # {'a': 1, 'b': 2, 'c': 3}
dict([('d', 4), ('e', 5), ('f', 6)]) # {'d': 4, 'e': 5, 'f': 6}
dict([('a', 1)], b=2, c=3) # {'a': 1, 'b': 2, 'c': 3}
dict({'a' : 1, 'b' : 2}, c=3) # {'a': 1, 'b': 2, 'c': 3}

Section 19.13: Dictionaries Example
Dictionaries map keys to values.

car = {}
car["wheels"] = 4
car["color"] = "Red"
car["model"] = "Corvette"

Dictionary values can be accessed by their keys.

print "Little " + car["color"] + " " + car["model"] + "!"
This would print out "Little Red Corvette!"

Dictionaries can also be created in a JSON style:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 115

car = {"wheels": 4, "color": "Red", "model": "Corvette"}

Dictionary values can be iterated over:

for key in car:
 print key + ": " + car[key]

wheels: 4
color: Red
model: Corvette

Section 19.14: All combinations of dictionary values
options = {
 "x": ["a", "b"],
 "y": [10, 20, 30]
}

Given a dictionary such as the one shown above, where there is a list representing a set of values to explore for the
corresponding key. Suppose you want to explore "x"="a" with "y"=10, then "x"="a" with"y"=10, and so on until
you have explored all possible combinations.

You can create a list that returns all such combinations of values using the following code.

import itertools

options = {
 "x": ["a", "b"],
 "y": [10, 20, 30]}

keys = options.keys()
values = (options[key] for key in keys)
combinations = [dict(zip(keys, combination)) for combination in itertools.product(*values)]
print combinations

This gives us the following list stored in the variable combinations:

[{'x': 'a', 'y': 10},
 {'x': 'b', 'y': 10},
 {'x': 'a', 'y': 20},
 {'x': 'b', 'y': 20},
 {'x': 'a', 'y': 30},
 {'x': 'b', 'y': 30}]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F

GoalKicker.com – Python® Notes for Professionals 117

Chapter 20: List
The Python List is a general data structure widely used in Python programs. They are found in other languages,
often referred to as dynamic arrays. They are both mutable and a sequence data type that allows them to be indexed
and sliced. The list can contain different types of objects, including other list objects.

Section 20.1: List methods and supported operators
Starting with a given list a:

a = [1, 2, 3, 4, 5]

append(value) – appends a new element to the end of the list.1.

Append values 6, 7, and 7 to the list
a.append(6)
a.append(7)
a.append(7)
a: [1, 2, 3, 4, 5, 6, 7, 7]

Append another list
b = [8, 9]
a.append(b)
a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]]

Append an element of a different type, as list elements do not need to have the same type
my_string = "hello world"
a.append(my_string)
a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9], "hello world"]

Note that the append() method only appends one new element to the end of the list. If you append a list to
another list, the list that you append becomes a single element at the end of the first list.

Appending a list to another list
a = [1, 2, 3, 4, 5, 6, 7, 7]
b = [8, 9]
a.append(b)
a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]]
a[8]
Returns: [8,9]

extend(enumerable) – extends the list by appending elements from another enumerable.2.

a = [1, 2, 3, 4, 5, 6, 7, 7]
b = [8, 9, 10]

Extend list by appending all elements from b
a.extend(b)
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

Extend list with elements from a non-list enumerable:
a.extend(range(3))
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2]

Lists can also be concatenated with the + operator. Note that this does not modify any of the original lists:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 118

a = [1, 2, 3, 4, 5, 6] + [7, 7] + b
a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

index(value, [startIndex]) – gets the index of the first occurrence of the input value. If the input value is3.
not in the list a ValueError exception is raised. If a second argument is provided, the search is started at that
specified index.

a.index(7)
Returns: 6

a.index(49) # ValueError, because 49 is not in a.

a.index(7, 7)
Returns: 7

a.index(7, 8) # ValueError, because there is no 7 starting at index 8

insert(index, value) – inserts value just before the specified index. Thus after the insertion the new4.
element occupies position index.

a.insert(0, 0) # insert 0 at position 0
a.insert(2, 5) # insert 5 at position 2
a: [0, 1, 5, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

pop([index]) – removes and returns the item at index. With no argument it removes and returns the last5.
element of the list.

a.pop(2)
Returns: 5
a: [0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]
a.pop(8)
Returns: 7
a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

With no argument:
a.pop()
Returns: 10
a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

remove(value) – removes the first occurrence of the specified value. If the provided value cannot be found, a6.
ValueError is raised.

a.remove(0)
a.remove(9)
a: [1, 2, 3, 4, 5, 6, 7, 8]
a.remove(10)
ValueError, because 10 is not in a

reverse() – reverses the list in-place and returns None.7.

a.reverse()
a: [8, 7, 6, 5, 4, 3, 2, 1]

There are also other ways of reversing a list.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 119

count(value) – counts the number of occurrences of some value in the list.8.

a.count(7)
Returns: 2

sort() – sorts the list in numerical and lexicographical order and returns None.9.

a.sort()
a = [1, 2, 3, 4, 5, 6, 7, 8]
Sorts the list in numerical order

Lists can also be reversed when sorted using the reverse=True flag in the sort() method.

a.sort(reverse=True)
a = [8, 7, 6, 5, 4, 3, 2, 1]

If you want to sort by attributes of items, you can use the key keyword argument:

import datetime

class Person(object):
 def __init__(self, name, birthday, height):
 self.name = name
 self.birthday = birthday
 self.height = height

 def __repr__(self):
 return self.name

l = [Person("John Cena", datetime.date(1992, 9, 12), 175),
 Person("Chuck Norris", datetime.date(1990, 8, 28), 180),
 Person("Jon Skeet", datetime.date(1991, 7, 6), 185)]

l.sort(key=lambda item: item.name)
l: [Chuck Norris, John Cena, Jon Skeet]

l.sort(key=lambda item: item.birthday)
l: [Chuck Norris, Jon Skeet, John Cena]

l.sort(key=lambda item: item.height)
l: [John Cena, Chuck Norris, Jon Skeet]

In case of list of dicts the concept is the same:

import datetime

l = [{'name':'John Cena', 'birthday': datetime.date(1992, 9, 12),'height': 175},
 {'name': 'Chuck Norris', 'birthday': datetime.date(1990, 8, 28),'height': 180},
 {'name': 'Jon Skeet', 'birthday': datetime.date(1991, 7, 6), 'height': 185}]

l.sort(key=lambda item: item['name'])
l: [Chuck Norris, John Cena, Jon Skeet]

l.sort(key=lambda item: item['birthday'])
l: [Chuck Norris, Jon Skeet, John Cena]

l.sort(key=lambda item: item['height'])
l: [John Cena, Chuck Norris, Jon Skeet]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 120

Sort by sub dict:

import datetime

l = [{'name':'John Cena', 'birthday': datetime.date(1992, 9, 12),'size': {'height': 175,
'weight': 100}},
 {'name': 'Chuck Norris', 'birthday': datetime.date(1990, 8, 28),'size' : {'height': 180,
'weight': 90}},
 {'name': 'Jon Skeet', 'birthday': datetime.date(1991, 7, 6), 'size': {'height': 185,
'weight': 110}}]

l.sort(key=lambda item: item['size']['height'])
l: [John Cena, Chuck Norris, Jon Skeet]

Better way to sort using attrgetter and itemgetter

Lists can also be sorted using attrgetter and itemgetter functions from the operator module. These can help
improve readability and reusability. Here are some examples,

from operator import itemgetter,attrgetter

people = [{'name':'chandan','age':20,'salary':2000},
 {'name':'chetan','age':18,'salary':5000},
 {'name':'guru','age':30,'salary':3000}]
by_age = itemgetter('age')
by_salary = itemgetter('salary')

people.sort(key=by_age) #in-place sorting by age
people.sort(key=by_salary) #in-place sorting by salary

itemgetter can also be given an index. This is helpful if you want to sort based on indices of a tuple.

list_of_tuples = [(1,2), (3,4), (5,0)]
list_of_tuples.sort(key=itemgetter(1))
print(list_of_tuples) #[(5, 0), (1, 2), (3, 4)]

Use the attrgetter if you want to sort by attributes of an object,

persons = [Person("John Cena", datetime.date(1992, 9, 12), 175),
 Person("Chuck Norris", datetime.date(1990, 8, 28), 180),
 Person("Jon Skeet", datetime.date(1991, 7, 6), 185)] #reusing Person class from above
example

person.sort(key=attrgetter('name')) #sort by name
by_birthday = attrgetter('birthday')
person.sort(key=by_birthday) #sort by birthday

clear() – removes all items from the list10.

a.clear()
a = []

Replication – multiplying an existing list by an integer will produce a larger list consisting of that many copies11.
of the original. This can be useful for example for list initialization:

b = ["blah"] * 3
b = ["blah", "blah", "blah"]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 121

b = [1, 3, 5] * 5
[1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5]

Take care doing this if your list contains references to objects (eg a list of lists), see Common Pitfalls - List
multiplication and common references.

Element deletion – it is possible to delete multiple elements in the list using the del keyword and slice12.
notation:

a = list(range(10))
del a[::2]
a = [1, 3, 5, 7, 9]
del a[-1]
a = [1, 3, 5, 7]
del a[:]
a = []

Copying13.

The default assignment "=" assigns a reference of the original list to the new name. That is, the original name
and new name are both pointing to the same list object. Changes made through any of them will be reflected
in another. This is often not what you intended.

b = a
a.append(6)
b: [1, 2, 3, 4, 5, 6]

If you want to create a copy of the list you have below options.

You can slice it:

new_list = old_list[:]

You can use the built in list() function:

new_list = list(old_list)

You can use generic copy.copy():

import copy
new_list = copy.copy(old_list) #inserts references to the objects found in the original.

This is a little slower than list() because it has to find out the datatype of old_list first.

If the list contains objects and you want to copy them as well, use generic copy.deepcopy():

import copy
new_list = copy.deepcopy(old_list) #inserts copies of the objects found in the original.

Obviously the slowest and most memory-needing method, but sometimes unavoidable.

Python 3.x Version ≥ 3.0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 122

copy() – Returns a shallow copy of the list

 aa = a.copy()
 # aa = [1, 2, 3, 4, 5]

Section 20.2: Accessing list values
Python lists are zero-indexed, and act like arrays in other languages.

lst = [1, 2, 3, 4]
lst[0] # 1
lst[1] # 2

Attempting to access an index outside the bounds of the list will raise an IndexError.

lst[4] # IndexError: list index out of range

Negative indices are interpreted as counting from the end of the list.

lst[-1] # 4
lst[-2] # 3
lst[-5] # IndexError: list index out of range

This is functionally equivalent to

lst[len(lst)-1] # 4

Lists allow to use slice notation as lst[start:end:step]. The output of the slice notation is a new list containing
elements from index start to end-1. If options are omitted start defaults to beginning of list, end to end of list and
step to 1:

lst[1:] # [2, 3, 4]
lst[:3] # [1, 2, 3]
lst[::2] # [1, 3]
lst[::-1] # [4, 3, 2, 1]
lst[-1:0:-1] # [4, 3, 2]
lst[5:8] # [] since starting index is greater than length of lst, returns empty list
lst[1:10] # [2, 3, 4] same as omitting ending index

With this in mind, you can print a reversed version of the list by calling

lst[::-1] # [4, 3, 2, 1]

When using step lengths of negative amounts, the starting index has to be greater than the ending index otherwise
the result will be an empty list.

lst[3:1:-1] # [4, 3]

Using negative step indices are equivalent to the following code:

reversed(lst)[0:2] # 0 = 1 -1
 # 2 = 3 -1

The indices used are 1 less than those used in negative indexing and are reversed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 123

Advanced slicing

When lists are sliced the __getitem__() method of the list object is called, with a slice object. Python has a builtin
slice method to generate slice objects. We can use this to store a slice and reuse it later like so,

data = 'chandan purohit 22 2000' #assuming data fields of fixed length
name_slice = slice(0,19)
age_slice = slice(19,21)
salary_slice = slice(22,None)

#now we can have more readable slices
print(data[name_slice]) #chandan purohit
print(data[age_slice]) #'22'
print(data[salary_slice]) #'2000'

This can be of great use by providing slicing functionality to our objects by overriding __getitem__ in our class.

Section 20.3: Checking if list is empty
The emptiness of a list is associated to the boolean False, so you don't have to check len(lst) == 0, but just lst
or not lst

lst = []
if not lst:
 print("list is empty")

Output: list is empty

Section 20.4: Iterating over a list
Python supports using a for loop directly on a list:

my_list = ['foo', 'bar', 'baz']
for item in my_list:
 print(item)

Output: foo
Output: bar
Output: baz

You can also get the position of each item at the same time:

for (index, item) in enumerate(my_list):
 print('The item in position {} is: {}'.format(index, item))

Output: The item in position 0 is: foo
Output: The item in position 1 is: bar
Output: The item in position 2 is: baz

The other way of iterating a list based on the index value:

for i in range(0,len(my_list)):
 print(my_list[i])
#output:
>>>
foo
bar

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 124

baz

Note that changing items in a list while iterating on it may have unexpected results:

for item in my_list:
 if item == 'foo':
 del my_list[0]
 print(item)

Output: foo
Output: baz

In this last example, we deleted the first item at the first iteration, but that caused bar to be skipped.

Section 20.5: Checking whether an item is in a list
Python makes it very simple to check whether an item is in a list. Simply use the in operator.

lst = ['test', 'twest', 'tweast', 'treast']

'test' in lst
Out: True

'toast' in lst
Out: False

Note: the in operator on sets is asymptotically faster than on lists. If you need to use it many times on
potentially large lists, you may want to convert your list to a set, and test the presence of elements on
the set.

slst = set(lst)
'test' in slst
Out: True

Section 20.6: Any and All
You can use all() to determine if all the values in an iterable evaluate to True

nums = [1, 1, 0, 1]
all(nums)
False
chars = ['a', 'b', 'c', 'd']
all(chars)
True

Likewise, any() determines if one or more values in an iterable evaluate to True

nums = [1, 1, 0, 1]
any(nums)
True
vals = [None, None, None, False]
any(vals)
False

While this example uses a list, it is important to note these built-ins work with any iterable, including generators.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 125

vals = [1, 2, 3, 4]
any(val > 12 for val in vals)
False
any((val * 2) > 6 for val in vals)
True

Section 20.7: Reversing list elements
You can use the reversed function which returns an iterator to the reversed list:

In [3]: rev = reversed(numbers)

In [4]: rev
Out[4]: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Note that the list "numbers" remains unchanged by this operation, and remains in the same order it was originally.

To reverse in place, you can also use the reverse method.

You can also reverse a list (actually obtaining a copy, the original list is unaffected) by using the slicing syntax,
setting the third argument (the step) as -1:

In [1]: numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

In [2]: numbers[::-1]
Out[2]: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Section 20.8: Concatenate and Merge lists
The simplest way to concatenate list1 and list2:1.

merged = list1 + list2

zip returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument2.
sequences or iterables:

alist = ['a1', 'a2', 'a3']
blist = ['b1', 'b2', 'b3']

for a, b in zip(alist, blist):
 print(a, b)

Output:
a1 b1
a2 b2
a3 b3

If the lists have different lengths then the result will include only as many elements as the shortest one:

alist = ['a1', 'a2', 'a3']
blist = ['b1', 'b2', 'b3', 'b4']
for a, b in zip(alist, blist):
 print(a, b)

Output:
a1 b1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 126

a2 b2
a3 b3

alist = []
len(list(zip(alist, blist)))

Output:
0

For padding lists of unequal length to the longest one with Nones use itertools.zip_longest
(itertools.izip_longest in Python 2)

alist = ['a1', 'a2', 'a3']
blist = ['b1']
clist = ['c1', 'c2', 'c3', 'c4']

for a,b,c in itertools.zip_longest(alist, blist, clist):
 print(a, b, c)

Output:
a1 b1 c1
a2 None c2
a3 None c3
None None c4

Insert to a specific index values:3.

 alist = [123, 'xyz', 'zara', 'abc']
 alist.insert(3, [2009])
 print("Final List :", alist)

Output:

 Final List : [123, 'xyz', 'zara', 2009, 'abc']

Section 20.9: Length of a list
Use len() to get the one-dimensional length of a list.

len(['one', 'two']) # returns 2

len(['one', [2, 3], 'four']) # returns 3, not 4

len() also works on strings, dictionaries, and other data structures similar to lists.

Note that len() is a built-in function, not a method of a list object.

Also note that the cost of len() is O(1), meaning it will take the same amount of time to get the length of a list
regardless of its length.

Section 20.10: Remove duplicate values in list
Removing duplicate values in a list can be done by converting the list to a set (that is an unordered collection of
distinct objects). If a list data structure is needed, then the set can be converted back to a list using the function
list():

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 127

names = ["aixk", "duke", "edik", "tofp", "duke"]
list(set(names))
Out: ['duke', 'tofp', 'aixk', 'edik']

Note that by converting a list to a set the original ordering is lost.

To preserve the order of the list one can use an OrderedDict

import collections
>>> collections.OrderedDict.fromkeys(names).keys()
Out: ['aixk', 'duke', 'edik', 'tofp']

Section 20.11: Comparison of lists
It's possible to compare lists and other sequences lexicographically using comparison operators. Both operands
must be of the same type.

[1, 10, 100] < [2, 10, 100]
True, because 1 < 2
[1, 10, 100] < [1, 10, 100]
False, because the lists are equal
[1, 10, 100] <= [1, 10, 100]
True, because the lists are equal
[1, 10, 100] < [1, 10, 101]
True, because 100 < 101
[1, 10, 100] < [0, 10, 100]
False, because 0 < 1

If one of the lists is contained at the start of the other, the shortest list wins.

[1, 10] < [1, 10, 100]
True

Section 20.12: Accessing values in nested list
Starting with a three-dimensional list:

alist = [[[1,2],[3,4]], [[5,6,7],[8,9,10], [12, 13, 14]]]

Accessing items in the list:

print(alist[0][0][1])
#2
#Accesses second element in the first list in the first list

print(alist[1][1][2])
#10
#Accesses the third element in the second list in the second list

Performing support operations:

alist[0][0].append(11)
print(alist[0][0][2])
#11
#Appends 11 to the end of the first list in the first list

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 128

Using nested for loops to print the list:

for row in alist: #One way to loop through nested lists
 for col in row:
 print(col)
#[1, 2, 11]
#[3, 4]
#[5, 6, 7]
#[8, 9, 10]
#[12, 13, 14]

Note that this operation can be used in a list comprehension or even as a generator to produce efficiencies, e.g.:

[col for row in alist for col in row]
#[[1, 2, 11], [3, 4], [5, 6, 7], [8, 9, 10], [12, 13, 14]]

Not all items in the outer lists have to be lists themselves:

alist[1].insert(2, 15)
#Inserts 15 into the third position in the second list

Another way to use nested for loops. The other way is better but I've needed to use this on occasion:

for row in range(len(alist)): #A less Pythonic way to loop through lists
 for col in range(len(alist[row])):
 print(alist[row][col])

#[1, 2, 11]
#[3, 4]
#[5, 6, 7]
#[8, 9, 10]
#15
#[12, 13, 14]

Using slices in nested list:

print(alist[1][1:])
#[[8, 9, 10], 15, [12, 13, 14]]
#Slices still work

The final list:

print(alist)
#[[[1, 2, 11], [3, 4]], [[5, 6, 7], [8, 9, 10], 15, [12, 13, 14]]]

Section 20.13: Initializing a List to a Fixed Number of Elements
For immutable elements (e.g. None, string literals etc.):

my_list = [None] * 10
my_list = ['test'] * 10

For mutable elements, the same construct will result in all elements of the list referring to the same object, for
example, for a set:

>>> my_list=[{1}] * 10

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 129

>>> print(my_list)
[{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}]
>>> my_list[0].add(2)
>>> print(my_list)
[{1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}]

Instead, to initialize the list with a fixed number of different mutable objects, use:

my_list=[{1} for _ in range(10)]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 130

Chapter 21: List comprehensions
List comprehensions in Python are concise, syntactic constructs. They can be utilized to generate lists from other
lists by applying functions to each element in the list. The following section explains and demonstrates the use of
these expressions.

Section 21.1: List Comprehensions
A list comprehension creates a new list by applying an expression to each element of an iterable. The most basic
form is:

[<expression> for <element> in <iterable>]

There's also an optional 'if' condition:

[<expression> for <element> in <iterable> if <condition>]

Each <element> in the <iterable> is plugged in to the <expression> if the (optional) <condition> evaluates to true
. All results are returned at once in the new list. Generator expressions are evaluated lazily, but list comprehensions
evaluate the entire iterator immediately - consuming memory proportional to the iterator's length.

To create a list of squared integers:

squares = [x * x for x in (1, 2, 3, 4)]
squares: [1, 4, 9, 16]

The for expression sets x to each value in turn from (1, 2, 3, 4). The result of the expression x * x is appended
to an internal list. The internal list is assigned to the variable squares when completed.

Besides a speed increase (as explained here), a list comprehension is roughly equivalent to the following for-loop:

squares = []
for x in (1, 2, 3, 4):
 squares.append(x * x)
squares: [1, 4, 9, 16]

The expression applied to each element can be as complex as needed:

Get a list of uppercase characters from a string
[s.upper() for s in "Hello World"]
['H', 'E', 'L', 'L', 'O', ' ', 'W', 'O', 'R', 'L', 'D']

Strip off any commas from the end of strings in a list
[w.strip(',') for w in ['these,', 'words,,', 'mostly', 'have,commas,']]
['these', 'words', 'mostly', 'have,commas']

Organize letters in words more reasonably - in an alphabetical order
sentence = "Beautiful is better than ugly"
["".join(sorted(word, key = lambda x: x.lower())) for word in sentence.split()]
['aBefiltuu', 'is', 'beertt', 'ahnt', 'gluy']

else

else can be used in List comprehension constructs, but be careful regarding the syntax. The if/else clauses should

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#Loops
http://stackoverflow.com/questions/39518899/3-array-generators-faster-than-1-for-loop/39519661#39519661
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 131

be used before for loop, not after:

create a list of characters in apple, replacing non vowels with '*'
Ex - 'apple' --> ['a', '*', '*', '*' ,'e']

[x for x in 'apple' if x in 'aeiou' else '*']
#SyntaxError: invalid syntax

When using if/else together use them before the loop
[x if x in 'aeiou' else '*' for x in 'apple']
#['a', '*', '*', '*', 'e']

Note this uses a different language construct, a conditional expression, which itself is not part of the
comprehension syntax. Whereas the if after the for…in is a part of list comprehensions and used to filter
elements from the source iterable.

Double Iteration

Order of double iteration [... for x in ... for y in ...] is either natural or counter-intuitive. The rule of
thumb is to follow an equivalent for loop:

def foo(i):
 return i, i + 0.5

for i in range(3):
 for x in foo(i):
 yield str(x)

This becomes:

[str(x)
 for i in range(3)
 for x in foo(i)
]

This can be compressed into one line as [str(x) for i in range(3) for x in foo(i)]

In-place Mutation and Other Side Effects

Before using list comprehension, understand the difference between functions called for their side effects
(mutating, or in-place functions) which usually return None, and functions that return an interesting value.

Many functions (especially pure functions) simply take an object and return some object. An in-place function
modifies the existing object, which is called a side effect. Other examples include input and output operations such
as printing.

list.sort() sorts a list in-place (meaning that it modifies the original list) and returns the value None. Therefore, it
won't work as expected in a list comprehension:

[x.sort() for x in [[2, 1], [4, 3], [0, 1]]]
[None, None, None]

Instead, sorted() returns a sorted list rather than sorting in-place:

http://docs.python.org/3/reference/expressions.html#conditional-expressions
http://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Pure_function
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/stdtypes.html#list.sort
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 132

[sorted(x) for x in [[2, 1], [4, 3], [0, 1]]]
[[1, 2], [3, 4], [0, 1]]

Using comprehensions for side-effects is possible, such as I/O or in-place functions. Yet a for loop is usually more
readable. While this works in Python 3:

[print(x) for x in (1, 2, 3)]

Instead use:

for x in (1, 2, 3):
 print(x)

In some situations, side effect functions are suitable for list comprehension. random.randrange() has the side
effect of changing the state of the random number generator, but it also returns an interesting value. Additionally,
next() can be called on an iterator.

The following random value generator is not pure, yet makes sense as the random generator is reset every time the
expression is evaluated:

from random import randrange
[randrange(1, 7) for _ in range(10)]
[2, 3, 2, 1, 1, 5, 2, 4, 3, 5]

Whitespace in list comprehensions

More complicated list comprehensions can reach an undesired length, or become less readable. Although less
common in examples, it is possible to break a list comprehension into multiple lines like so:

[
 x for x
 in 'foo'
 if x not in 'bar'
]

Section 21.2: Conditional List Comprehensions
Given a list comprehension you can append one or more if conditions to filter values.

[<expression> for <element> in <iterable> if <condition>]

For each <element> in <iterable>; if <condition> evaluates to True, add <expression> (usually a function of
<element>) to the returned list.

For example, this can be used to extract only even numbers from a sequence of integers:

[x for x in range(10) if x % 2 == 0]
Out: [0, 2, 4, 6, 8]

Live demo

The above code is equivalent to:

even_numbers = []

https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://coliru.stacked-crooked.com/a/8ea85b7b87f57876
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 133

for x in range(10):
 if x % 2 == 0:
 even_numbers.append(x)

print(even_numbers)
Out: [0, 2, 4, 6, 8]

Also, a conditional list comprehension of the form [e for x in y if c] (where e and c are expressions in terms of
x) is equivalent to list(filter(lambda x: c, map(lambda x: e, y))).

Despite providing the same result, pay attention to the fact that the former example is almost 2x faster than the
latter one. For those who are curious, this is a nice explanation of the reason why.

Note that this is quite different from the ... if ... else ... conditional expression (sometimes known as a
ternary expression) that you can use for the <expression> part of the list comprehension. Consider the following
example:

[x if x % 2 == 0 else None for x in range(10)]
Out: [0, None, 2, None, 4, None, 6, None, 8, None]

Live demo

Here the conditional expression isn't a filter, but rather an operator determining the value to be used for the list
items:

<value-if-condition-is-true> if <condition> else <value-if-condition-is-false>

This becomes more obvious if you combine it with other operators:

[2 * (x if x % 2 == 0 else -1) + 1 for x in range(10)]
Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

Live demo

If you are using Python 2.7, xrange may be better than range for several reasons as described in the xrange
documentation.

[2 * (x if x % 2 == 0 else -1) + 1 for x in xrange(10)]
Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

The above code is equivalent to:

numbers = []
for x in range(10):
 if x % 2 == 0:
 temp = x
 else:
 temp = -1
 numbers.append(2 * temp + 1)
print(numbers)
Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

One can combine ternary expressions and if conditions. The ternary operator works on the filtered result:

[x if x > 2 else '*' for x in range(10) if x % 2 == 0]
Out: ['*', '*', 4, 6, 8]

http://stackoverflow.com/questions/39518899/3-array-generators-faster-than-1-for-loop/39519661#39519661
http://coliru.stacked-crooked.com/a/38edffb6f855e3fc
http://coliru.stacked-crooked.com/a/59802eec8ad5deb8
https://docs.python.org/2/library/functions.html#xrange
https://docs.python.org/2/library/functions.html#xrange
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 134

The same couldn't have been achieved just by ternary operator only:

[x if (x > 2 and x % 2 == 0) else '*' for x in range(10)]
Out:['*', '*', '*', '*', 4, '*', 6, '*', 8, '*']

See also: Filters, which often provide a sufficient alternative to conditional list comprehensions.

Section 21.3: Avoid repetitive and expensive operations using
conditional clause
Consider the below list comprehension:

>>> def f(x):
... import time
... time.sleep(.1) # Simulate expensive function
... return x**2

>>> [f(x) for x in range(1000) if f(x) > 10]
[16, 25, 36, ...]

This results in two calls to f(x) for 1,000 values of x: one call for generating the value and the other for checking the
if condition. If f(x) is a particularly expensive operation, this can have significant performance implications.
Worse, if calling f() has side effects, it can have surprising results.

Instead, you should evaluate the expensive operation only once for each value of x by generating an intermediate
iterable (generator expression) as follows:

>>> [v for v in (f(x) for x in range(1000)) if v > 10]
[16, 25, 36, ...]

Or, using the builtin map equivalent:

>>> [v for v in map(f, range(1000)) if v > 10]
[16, 25, 36, ...]

Another way that could result in a more readable code is to put the partial result (v in the previous example) in an
iterable (such as a list or a tuple) and then iterate over it. Since v will be the only element in the iterable, the result is
that we now have a reference to the output of our slow function computed only once:

>>> [v for x in range(1000) for v in [f(x)] if v > 10]
[16, 25, 36, ...]

However, in practice, the logic of code can be more complicated and it's important to keep it readable. In general, a
separate generator function is recommended over a complex one-liner:

>>> def process_prime_numbers(iterable):
... for x in iterable:
... if is_prime(x):
... yield f(x)
...
>>> [x for x in process_prime_numbers(range(1000)) if x > 10]
[11, 13, 17, 19, ...]

Another way to prevent computing f(x) multiple times is to use the @functools.lru_cache()(Python 3.2+)
decorator on f(x). This way since the output of f for the input x has already been computed once, the second

https://docs.python.org/3.5/library/functions.html#map
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 135

function invocation of the original list comprehension will be as fast as a dictionary lookup. This approach uses
memoization to improve efficiency, which is comparable to using generator expressions.

Say you have to flatten a list

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]

Some of the methods could be:

reduce(lambda x, y: x+y, l)

sum(l, [])

list(itertools.chain(*l))

However list comprehension would provide the best time complexity.

[item for sublist in l for item in sublist]

The shortcuts based on + (including the implied use in sum) are, of necessity, O(L^2) when there are L sublists -- as
the intermediate result list keeps getting longer, at each step a new intermediate result list object gets allocated,
and all the items in the previous intermediate result must be copied over (as well as a few new ones added at the
end). So (for simplicity and without actual loss of generality) say you have L sublists of I items each: the first I items
are copied back and forth L-1 times, the second I items L-2 times, and so on; total number of copies is I times the
sum of x for x from 1 to L excluded, i.e., I * (L**2)/2.

The list comprehension just generates one list, once, and copies each item over (from its original place of residence
to the result list) also exactly once.

Section 21.4: Dictionary Comprehensions
A dictionary comprehension is similar to a list comprehension except that it produces a dictionary object instead of
a list.

A basic example:

Python 2.x Version ≥ 2.7

{x: x * x for x in (1, 2, 3, 4)}
Out: {1: 1, 2: 4, 3: 9, 4: 16}

which is just another way of writing:

dict((x, x * x) for x in (1, 2, 3, 4))
Out: {1: 1, 2: 4, 3: 9, 4: 16}

As with a list comprehension, we can use a conditional statement inside the dict comprehension to produce only
the dict elements meeting some criterion.

Python 2.x Version ≥ 2.7

{name: len(name) for name in ('Stack', 'Overflow', 'Exchange') if len(name) > 6}
Out: {'Exchange': 8, 'Overflow': 8}

Or, rewritten using a generator expression.

https://en.wikipedia.org/wiki/Memoization
https://www.python.org/dev/peps/pep-0274/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 136

dict((name, len(name)) for name in ('Stack', 'Overflow', 'Exchange') if len(name) > 6)
Out: {'Exchange': 8, 'Overflow': 8}

Starting with a dictionary and using dictionary comprehension as a key-value pair filter

Python 2.x Version ≥ 2.7

initial_dict = {'x': 1, 'y': 2}
{key: value for key, value in initial_dict.items() if key == 'x'}
Out: {'x': 1}

Switching key and value of dictionary (invert dictionary)

If you have a dict containing simple hashable values (duplicate values may have unexpected results):

my_dict = {1: 'a', 2: 'b', 3: 'c'}

and you wanted to swap the keys and values you can take several approaches depending on your coding style:

swapped = {v: k for k, v in my_dict.items()}

swapped = dict((v, k) for k, v in my_dict.iteritems())

swapped = dict(zip(my_dict.values(), my_dict))

swapped = dict(zip(my_dict.values(), my_dict.keys()))

swapped = dict(map(reversed, my_dict.items()))

print(swapped)
Out: {a: 1, b: 2, c: 3}

Python 2.x Version ≥ 2.3

If your dictionary is large, consider importing itertools and utilize izip or imap.

Merging Dictionaries

Combine dictionaries and optionally override old values with a nested dictionary comprehension.

dict1 = {'w': 1, 'x': 1}
dict2 = {'x': 2, 'y': 2, 'z': 2}

{k: v for d in [dict1, dict2] for k, v in d.items()}
Out: {'w': 1, 'x': 2, 'y': 2, 'z': 2}

However, dictionary unpacking (PEP 448) may be a preferred.

Python 3.x Version ≥ 3.5

{**dict1, **dict2}
Out: {'w': 1, 'x': 2, 'y': 2, 'z': 2}

Note: dictionary comprehensions were added in Python 3.0 and backported to 2.7+, unlike list comprehensions,
which were added in 2.0. Versions < 2.7 can use generator expressions and the dict() builtin to simulate the
behavior of dictionary comprehensions.

Section 21.5: List Comprehensions with Nested Loops
List Comprehensions can use nested for loops. You can code any number of nested for loops within a list
comprehension, and each for loop may have an optional associated if test. When doing so, the order of the for

https://docs.python.org/2/library/itertools.html
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0274/
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 137

constructs is the same order as when writing a series of nested for statements. The general structure of list
comprehensions looks like this:

[expression for target1 in iterable1 [if condition1]
 for target2 in iterable2 [if condition2]...
 for targetN in iterableN [if conditionN]]

For example, the following code flattening a list of lists using multiple for statements:

data = [[1, 2], [3, 4], [5, 6]]
output = []
for each_list in data:
 for element in each_list:
 output.append(element)
print(output)
Out: [1, 2, 3, 4, 5, 6]

can be equivalently written as a list comprehension with multiple for constructs:

data = [[1, 2], [3, 4], [5, 6]]
output = [element for each_list in data for element in each_list]
print(output)
Out: [1, 2, 3, 4, 5, 6]

Live Demo

In both the expanded form and the list comprehension, the outer loop (first for statement) comes first.

In addition to being more compact, the nested comprehension is also significantly faster.

In [1]: data = [[1,2],[3,4],[5,6]]
In [2]: def f():
 ...: output=[]
 ...: for each_list in data:
 ...: for element in each_list:
 ...: output.append(element)
 ...: return output
In [3]: timeit f()
1000000 loops, best of 3: 1.37 µs per loop
In [4]: timeit [inner for outer in data for inner in outer]
1000000 loops, best of 3: 632 ns per loop

The overhead for the function call above is about 140ns.

Inline ifs are nested similarly, and may occur in any position after the first for:

data = [[1], [2, 3], [4, 5]]
output = [element for each_list in data
 if len(each_list) == 2
 for element in each_list
 if element != 5]
print(output)
Out: [2, 3, 4]

Live Demo

For the sake of readability, however, you should consider using traditional for-loops. This is especially true when
nesting is more than 2 levels deep, and/or the logic of the comprehension is too complex. multiple nested loop list

https://ideone.com/R7uwEP
https://ideone.com/kPO2Zy
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 138

comprehension could be error prone or it gives unexpected result.

Section 21.6: Generator Expressions
Generator expressions are very similar to list comprehensions. The main difference is that it does not create a full
set of results at once; it creates a generator object which can then be iterated over.

For instance, see the difference in the following code:

list comprehension
[x**2 for x in range(10)]
Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Python 2.x Version ≥ 2.4

generator comprehension
(x**2 for x in xrange(10))
Output: <generator object <genexpr> at 0x11b4b7c80>

These are two very different objects:

the list comprehension returns a list object whereas the generator comprehension returns a generator.

generator objects cannot be indexed and makes use of the next function to get items in order.

Note: We use xrange since it too creates a generator object. If we would use range, a list would be created. Also,
xrange exists only in later version of python 2. In python 3, range just returns a generator. For more information,
see the Differences between range and xrange functions example.

Python 2.x Version ≥ 2.4

g = (x**2 for x in xrange(10))
print(g[0])

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'generator' object has no attribute '__getitem__'

g.next() # 0
g.next() # 1
g.next() # 4
...
g.next() # 81

g.next() # Throws StopIteration Exception

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

Python 3.x Version ≥ 3.0

NOTE: The function g.next() should be substituted by next(g) and xrange with range since
Iterator.next() and xrange() do not exist in Python 3.

Although both of these can be iterated in a similar way:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 139

for i in [x**2 for x in range(10)]:
 print(i)

"""
Out:
0
1
4
...
81
"""

Python 2.x Version ≥ 2.4

for i in (x**2 for x in xrange(10)):
 print(i)

"""
Out:
0
1
4
.
.
.
81
"""

Use cases

Generator expressions are lazily evaluated, which means that they generate and return each value only when the
generator is iterated. This is often useful when iterating through large datasets, avoiding the need to create a
duplicate of the dataset in memory:

for square in (x**2 for x in range(1000000)):
 #do something

Another common use case is to avoid iterating over an entire iterable if doing so is not necessary. In this example,
an item is retrieved from a remote API with each iteration of get_objects(). Thousands of objects may exist, must
be retrieved one-by-one, and we only need to know if an object matching a pattern exists. By using a generator
expression, when we encounter an object matching the pattern.

def get_objects():
 """Gets objects from an API one by one"""
 while True:
 yield get_next_item()

def object_matches_pattern(obj):
 # perform potentially complex calculation
 return matches_pattern

def right_item_exists():
 items = (object_matched_pattern(each) for each in get_objects())
 for item in items:
 if item.is_the_right_one:

 return True
 return False

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 140

Section 21.7: Set Comprehensions
Set comprehension is similar to list and dictionary comprehension, but it produces a set, which is an unordered
collection of unique elements.

Python 2.x Version ≥ 2.7

A set containing every value in range(5):
{x for x in range(5)}
Out: {0, 1, 2, 3, 4}

A set of even numbers between 1 and 10:
{x for x in range(1, 11) if x % 2 == 0}
Out: {2, 4, 6, 8, 10}

Unique alphabetic characters in a string of text:
text = "When in the Course of human events it becomes necessary for one people..."
{ch.lower() for ch in text if ch.isalpha()}
Out: set(['a', 'c', 'b', 'e', 'f', 'i', 'h', 'm', 'l', 'o',
'n', 'p', 's', 'r', 'u', 't', 'w', 'v', 'y'])

Live Demo

Keep in mind that sets are unordered. This means that the order of the results in the set may differ from the one
presented in the above examples.

Note: Set comprehension is available since python 2.7+, unlike list comprehensions, which were added in 2.0. In
Python 2.2 to Python 2.6, the set() function can be used with a generator expression to produce the same result:

Python 2.x Version ≥ 2.2

set(x for x in range(5))
Out: {0, 1, 2, 3, 4}

Section 21.8: Refactoring filter and map to list
comprehensions
The filter or map functions should often be replaced by list comprehensions. Guido Van Rossum describes this
well in an open letter in 2005:

filter(P, S) is almost always written clearer as [x for x in S if P(x)], and this has the huge
advantage that the most common usages involve predicates that are comparisons, e.g. x==42, and
defining a lambda for that just requires much more effort for the reader (plus the lambda is slower than
the list comprehension). Even more so for map(F, S) which becomes [F(x) for x in S]. Of course, in
many cases you'd be able to use generator expressions instead.

The following lines of code are considered "not pythonic" and will raise errors in many python linters.

filter(lambda x: x % 2 == 0, range(10)) # even numbers < 10
map(lambda x: 2*x, range(10)) # multiply each number by two
reduce(lambda x,y: x+y, range(10)) # sum of all elements in list

Taking what we have learned from the previous quote, we can break down these filter and map expressions into
their equivalent list comprehensions; also removing the lambda functions from each - making the code more
readable in the process.

https://docs.python.org/2/tutorial/datastructures.html#sets
https://ideone.com/Fd95Zl
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 141

Filter:
P(x) = x % 2 == 0
S = range(10)
[x for x in range(10) if x % 2 == 0]

Map
F(x) = 2*x
S = range(10)
[2*x for x in range(10)]

Readability becomes even more apparent when dealing with chaining functions. Where due to readability, the
results of one map or filter function should be passed as a result to the next; with simple cases, these can be
replaced with a single list comprehension. Further, we can easily tell from the list comprehension what the outcome
of our process is, where there is more cognitive load when reasoning about the chained Map & Filter process.

Map & Filter
filtered = filter(lambda x: x % 2 == 0, range(10))
results = map(lambda x: 2*x, filtered)

List comprehension
results = [2*x for x in range(10) if x % 2 == 0]

Refactoring - Quick Reference

Map

map(F, S) == [F(x) for x in S]

Filter

filter(P, S) == [x for x in S if P(x)]

where F and P are functions which respectively transform input values and return a bool

Section 21.9: Comprehensions involving tuples
The for clause of a list comprehension can specify more than one variable:

[x + y for x, y in [(1, 2), (3, 4), (5, 6)]]
Out: [3, 7, 11]

[x + y for x, y in zip([1, 3, 5], [2, 4, 6])]
Out: [3, 7, 11]

This is just like regular for loops:

for x, y in [(1,2), (3,4), (5,6)]:
 print(x+y)
3
7
11

Note however, if the expression that begins the comprehension is a tuple then it must be parenthesized:

[x, y for x, y in [(1, 2), (3, 4), (5, 6)]]

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 142

SyntaxError: invalid syntax

[(x, y) for x, y in [(1, 2), (3, 4), (5, 6)]]
Out: [(1, 2), (3, 4), (5, 6)]

Section 21.10: Counting Occurrences Using Comprehension
When we want to count the number of items in an iterable, that meet some condition, we can use comprehension
to produce an idiomatic syntax:

Count the numbers in `range(1000)` that are even and contain the digit `9`:
print (sum(
 1 for x in range(1000)
 if x % 2 == 0 and
 '9' in str(x)
))
Out: 95

The basic concept can be summarized as:

Iterate over the elements in range(1000).1.
Concatenate all the needed if conditions.2.
Use 1 as expression to return a 1 for each item that meets the conditions.3.
Sum up all the 1s to determine number of items that meet the conditions.4.

Note: Here we are not collecting the 1s in a list (note the absence of square brackets), but we are passing the ones
directly to the sum function that is summing them up. This is called a generator expression, which is similar to a
Comprehension.

Section 21.11: Changing Types in a List
Quantitative data is often read in as strings that must be converted to numeric types before processing. The types
of all list items can be converted with either a List Comprehension or the map() function.

Convert a list of strings to integers.
items = ["1","2","3","4"]
[int(item) for item in items]
Out: [1, 2, 3, 4]

Convert a list of strings to float.
items = ["1","2","3","4"]
map(float, items)
Out:[1.0, 2.0, 3.0, 4.0]

Section 21.12: Nested List Comprehensions
Nested list comprehensions, unlike list comprehensions with nested loops, are List comprehensions within a list
comprehension. The initial expression can be any arbitrary expression, including another list comprehension.

#List Comprehension with nested loop
[x + y for x in [1, 2, 3] for y in [3, 4, 5]]
#Out: [4, 5, 6, 5, 6, 7, 6, 7, 8]

#Nested List Comprehension
[[x + y for x in [1, 2, 3]] for y in [3, 4, 5]]
#Out: [[4, 5, 6], [5, 6, 7], [6, 7, 8]]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 143

The Nested example is equivalent to

l = []
for y in [3, 4, 5]:
 temp = []
 for x in [1, 2, 3]:
 temp.append(x + y)
 l.append(temp)

One example where a nested comprehension can be used it to transpose a matrix.

matrix = [[1,2,3],
 [4,5,6],
 [7,8,9]]

[[row[i] for row in matrix] for i in range(len(matrix))]
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Like nested for loops, there is no limit to how deep comprehensions can be nested.

[[[i + j + k for k in 'cd'] for j in 'ab'] for i in '12']
Out: [[['1ac', '1ad'], ['1bc', '1bd']], [['2ac', '2ad'], ['2bc', '2bd']]]

Section 21.13: Iterate two or more list simultaneously within
list comprehension
For iterating more than two lists simultaneously within list comprehension, one may use zip() as:

>>> list_1 = [1, 2, 3 , 4]
>>> list_2 = ['a', 'b', 'c', 'd']
>>> list_3 = ['6', '7', '8', '9']

Two lists
>>> [(i, j) for i, j in zip(list_1, list_2)]
[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]

Three lists
>>> [(i, j, k) for i, j, k in zip(list_1, list_2, list_3)]
[(1, 'a', '6'), (2, 'b', '7'), (3, 'c', '8'), (4, 'd', '9')]

so on ...

https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/functions.html#zip
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 144

Chapter 22: List slicing (selecting parts of
lists)
Section 22.1: Using the third "step" argument
lst = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

lst[::2]
Output: ['a', 'c', 'e', 'g']

lst[::3]
Output: ['a', 'd', 'g']

Section 22.2: Selecting a sublist from a list
lst = ['a', 'b', 'c', 'd', 'e']

lst[2:4]
Output: ['c', 'd']

lst[2:]
Output: ['c', 'd', 'e']

lst[:4]
Output: ['a', 'b', 'c', 'd']

Section 22.3: Reversing a list with slicing
a = [1, 2, 3, 4, 5]

steps through the list backwards (step=-1)
b = a[::-1]

built-in list method to reverse 'a'
a.reverse()

if a = b:
 print(True)

print(b)

Output:
True
[5, 4, 3, 2, 1]

Section 22.4: Shifting a list using slicing
def shift_list(array, s):
 """Shifts the elements of a list to the left or right.

 Args:
 array - the list to shift
 s - the amount to shift the list ('+': right-shift, '-': left-shift)

 Returns:
 shifted_array - the shifted list

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 145

 """
 # calculate actual shift amount (e.g., 11 --> 1 if length of the array is 5)
 s %= len(array)

 # reverse the shift direction to be more intuitive
 s *= -1

 # shift array with list slicing
 shifted_array = array[s:] + array[:s]

 return shifted_array

my_array = [1, 2, 3, 4, 5]

negative numbers
shift_list(my_array, -7)
>>> [3, 4, 5, 1, 2]

no shift on numbers equal to the size of the array
shift_list(my_array, 5)
>>> [1, 2, 3, 4, 5]

works on positive numbers
shift_list(my_array, 3)
>>> [3, 4, 5, 1, 2]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 146

Chapter 23: groupby()
Parameter Details
iterable Any python iterable

key Function(criteria) on which to group the iterable

In Python, the itertools.groupby() method allows developers to group values of an iterable class based on a
specified property into another iterable set of values.

Section 23.1: Example 4
In this example we see what happens when we use different types of iterable.

things = [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", "harley"), \
 ("vehicle", "speed boat"), ("vehicle", "school bus")]
dic = {}
f = lambda x: x[0]
for key, group in groupby(sorted(things, key=f), f):
 dic[key] = list(group)
dic

Results in

{'animal': [('animal', 'bear'), ('animal', 'duck')],
 'plant': [('plant', 'cactus')],
 'vehicle': [('vehicle', 'harley'),
 ('vehicle', 'speed boat'),
 ('vehicle', 'school bus')]}

This example below is essentially the same as the one above it. The only difference is that I have changed all the
tuples to lists.

things = [["animal", "bear"], ["animal", "duck"], ["vehicle", "harley"], ["plant", "cactus"], \
 ["vehicle", "speed boat"], ["vehicle", "school bus"]]
dic = {}
f = lambda x: x[0]
for key, group in groupby(sorted(things, key=f), f):
 dic[key] = list(group)
dic

Results

{'animal': [['animal', 'bear'], ['animal', 'duck']],
 'plant': [['plant', 'cactus']],
 'vehicle': [['vehicle', 'harley'],
 ['vehicle', 'speed boat'],
 ['vehicle', 'school bus']]}

Section 23.2: Example 2
This example illustrates how the default key is chosen if we do not specify any

c = groupby(['goat', 'dog', 'cow', 1, 1, 2, 3, 11, 10, ('persons', 'man', 'woman')])
dic = {}
for k, v in c:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 147

 dic[k] = list(v)
dic

Results in

{1: [1, 1],
 2: [2],
 3: [3],
 ('persons', 'man', 'woman'): [('persons', 'man', 'woman')],
 'cow': ['cow'],
 'dog': ['dog'],
 10: [10],
 11: [11],
 'goat': ['goat']}

Notice here that the tuple as a whole counts as one key in this list

Section 23.3: Example 3
Notice in this example that mulato and camel don't show up in our result. Only the last element with the specified
key shows up. The last result for c actually wipes out two previous results. But watch the new version where I have
the data sorted first on same key.

list_things = ['goat', 'dog', 'donkey', 'mulato', 'cow', 'cat', ('persons', 'man', 'woman'), \
 'wombat', 'mongoose', 'malloo', 'camel']
c = groupby(list_things, key=lambda x: x[0])
dic = {}
for k, v in c:
 dic[k] = list(v)
dic

Results in

{'c': ['camel'],
 'd': ['dog', 'donkey'],
 'g': ['goat'],
 'm': ['mongoose', 'malloo'],
 'persons': [('persons', 'man', 'woman')],
 'w': ['wombat']}

Sorted Version

list_things = ['goat', 'dog', 'donkey', 'mulato', 'cow', 'cat', ('persons', 'man', 'woman'), \
 'wombat', 'mongoose', 'malloo', 'camel']
sorted_list = sorted(list_things, key = lambda x: x[0])
print(sorted_list)
print()
c = groupby(sorted_list, key=lambda x: x[0])
dic = {}
for k, v in c:
 dic[k] = list(v)
dic

Results in

['cow', 'cat', 'camel', 'dog', 'donkey', 'goat', 'mulato', 'mongoose', 'malloo', ('persons', 'man',
'woman'), 'wombat']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 148

{'c': ['cow', 'cat', 'camel'],
 'd': ['dog', 'donkey'],
 'g': ['goat'],
 'm': ['mulato', 'mongoose', 'malloo'],
 'persons': [('persons', 'man', 'woman')],
 'w': ['wombat']}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 149

Chapter 24: Linked lists
A linked list is a collection of nodes, each made up of a reference and a value. Nodes are strung together into a
sequence using their references. Linked lists can be used to implement more complex data structures like lists,
stacks, queues, and associative arrays.

Section 24.1: Single linked list example
This example implements a linked list with many of the same methods as that of the built-in list object.

class Node:
 def __init__(self, val):
 self.data = val
 self.next = None

 def getData(self):
 return self.data

 def getNext(self):
 return self.next

 def setData(self, val):
 self.data = val

 def setNext(self, val):
 self.next = val

class LinkedList:
 def __init__(self):
 self.head = None

 def isEmpty(self):
 """Check if the list is empty"""
 return self.head is None

 def add(self, item):
 """Add the item to the list"""
 new_node = Node(item)
 new_node.setNext(self.head)
 self.head = new_node

 def size(self):
 """Return the length/size of the list"""
 count = 0
 current = self.head
 while current is not None:
 count += 1
 current = current.getNext()
 return count

 def search(self, item):
 """Search for item in list. If found, return True. If not found, return False"""
 current = self.head
 found = False
 while current is not None and not found:
 if current.getData() is item:
 found = True
 else:
 current = current.getNext()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 150

 return found

 def remove(self, item):
 """Remove item from list. If item is not found in list, raise ValueError"""
 current = self.head
 previous = None
 found = False
 while current is not None and not found:
 if current.getData() is item:
 found = True
 else:
 previous = current
 current = current.getNext()
 if found:
 if previous is None:
 self.head = current.getNext()
 else:
 previous.setNext(current.getNext())
 else:
 raise ValueError
 print 'Value not found.'

 def insert(self, position, item):
 """
 Insert item at position specified. If position specified is
 out of bounds, raise IndexError
 """
 if position > self.size() - 1:
 raise IndexError
 print "Index out of bounds."
 current = self.head
 previous = None
 pos = 0
 if position is 0:
 self.add(item)
 else:
 new_node = Node(item)
 while pos < position:
 pos += 1
 previous = current
 current = current.getNext()
 previous.setNext(new_node)
 new_node.setNext(current)

 def index(self, item):
 """
 Return the index where item is found.
 If item is not found, return None.
 """
 current = self.head
 pos = 0
 found = False
 while current is not None and not found:
 if current.getData() is item:
 found = True
 else:
 current = current.getNext()
 pos += 1
 if found:
 pass
 else:
 pos = None

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 151

 return pos

 def pop(self, position = None):
 """
 If no argument is provided, return and remove the item at the head.
 If position is provided, return and remove the item at that position.
 If index is out of bounds, raise IndexError
 """
 if position > self.size():
 print 'Index out of bounds'
 raise IndexError

 current = self.head
 if position is None:
 ret = current.getData()
 self.head = current.getNext()
 else:
 pos = 0
 previous = None
 while pos < position:
 previous = current
 current = current.getNext()
 pos += 1
 ret = current.getData()
 previous.setNext(current.getNext())
 print ret
 return ret

 def append(self, item):
 """Append item to the end of the list"""
 current = self.head
 previous = None
 pos = 0
 length = self.size()
 while pos < length:
 previous = current
 current = current.getNext()
 pos += 1
 new_node = Node(item)
 if previous is None:
 new_node.setNext(current)
 self.head = new_node
 else:
 previous.setNext(new_node)

 def printList(self):
 """Print the list"""
 current = self.head
 while current is not None:
 print current.getData()
 current = current.getNext()

Usage functions much like that of the built-in list.

ll = LinkedList()
ll.add('l')
ll.add('H')
ll.insert(1,'e')
ll.append('l')
ll.append('o')
ll.printList()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 152

H
e
l
l
o

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F

GoalKicker.com – Python® Notes for Professionals 154

Chapter 25: Linked List Node
Section 25.1: Write a simple Linked List Node in python
A linked list is either:

the empty list, represented by None, or
a node that contains a cargo object and a reference to a linked list.

#! /usr/bin/env python

class Node:
 def __init__(self, cargo=None, next=None):
 self.car = cargo
 self.cdr = next
 def __str__(self):
 return str(self.car)

 def display(lst):
 if lst:
 w("%s " % lst)
 display(lst.cdr)
 else:
 w("nil\n")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 155

Chapter 26: Filter
Parameter Details

function callable that determines the condition or None then use the identity function for filtering (positional-
only)

iterable iterable that will be filtered (positional-only)

Section 26.1: Basic use of filter
To filter discards elements of a sequence based on some criteria:

names = ['Fred', 'Wilma', 'Barney']

def long_name(name):
 return len(name) > 5

Python 2.x Version ≥ 2.0

filter(long_name, names)
Out: ['Barney']

[name for name in names if len(name) > 5] # equivalent list comprehension
Out: ['Barney']

from itertools import ifilter
ifilter(long_name, names) # as generator (similar to python 3.x filter builtin)
Out: <itertools.ifilter at 0x4197e10>
list(ifilter(long_name, names)) # equivalent to filter with lists
Out: ['Barney']

(name for name in names if len(name) > 5) # equivalent generator expression
Out: <generator object <genexpr> at 0x0000000003FD5D38>

Python 2.x Version ≥ 2.6

Besides the options for older python 2.x versions there is a future_builtin function:
from future_builtins import filter
filter(long_name, names) # identical to itertools.ifilter
Out: <itertools.ifilter at 0x3eb0ba8>

Python 3.x Version ≥ 3.0

filter(long_name, names) # returns a generator
Out: <filter at 0x1fc6e443470>
list(filter(long_name, names)) # cast to list
Out: ['Barney']

(name for name in names if len(name) > 5) # equivalent generator expression
Out: <generator object <genexpr> at 0x000001C6F49BF4C0>

Section 26.2: Filter without function
If the function parameter is None, then the identity function will be used:

list(filter(None, [1, 0, 2, [], '', 'a'])) # discards 0, [] and ''
Out: [1, 2, 'a']

Python 2.x Version ≥ 2.0.1

[i for i in [1, 0, 2, [], '', 'a'] if i] # equivalent list comprehension

Python 3.x Version ≥ 3.0.0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 156

(i for i in [1, 0, 2, [], '', 'a'] if i) # equivalent generator expression

Section 26.3: Filter as short-circuit check
filter (python 3.x) and ifilter (python 2.x) return a generator so they can be very handy when creating a short-
circuit test like or or and:

Python 2.x Version ≥ 2.0.1

 # not recommended in real use but keeps the example short:
from itertools import ifilter as filter

Python 2.x Version ≥ 2.6.1

 from future_builtins import filter

To find the first element that is smaller than 100:

car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)]
def find_something_smaller_than(name_value_tuple):
 print('Check {0}, {1}$'.format(*name_value_tuple)
 return name_value_tuple[1] < 100
next(filter(find_something_smaller_than, car_shop))
Print: Check Toyota, 1000$
Check rectangular tire, 80$
Out: ('rectangular tire', 80)

The next-function gives the next (in this case first) element of and is therefore the reason why it's short-circuit.

Section 26.4: Complementary function: filterfalse, ifilterfalse
There is a complementary function for filter in the itertools-module:

Python 2.x Version ≥ 2.0.1

 # not recommended in real use but keeps the example valid for python 2.x and python 3.x
from itertools import ifilterfalse as filterfalse

Python 3.x Version ≥ 3.0.0

from itertools import filterfalse

which works exactly like the generator filter but keeps only the elements that are False:

Usage without function (None):
list(filterfalse(None, [1, 0, 2, [], '', 'a'])) # discards 1, 2, 'a'
Out: [0, [], '']

Usage with function
names = ['Fred', 'Wilma', 'Barney']

def long_name(name):
 return len(name) > 5

list(filterfalse(long_name, names))
Out: ['Fred', 'Wilma']

Short-circuit usage with next:
car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)]
def find_something_smaller_than(name_value_tuple):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 157

 print('Check {0}, {1}$'.format(*name_value_tuple)
 return name_value_tuple[1] < 100
next(filterfalse(find_something_smaller_than, car_shop))
Print: Check Toyota, 1000$
Out: ('Toyota', 1000)

Using an equivalent generator:
car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)]
generator = (car for car in car_shop if not car[1] < 100)
next(generator)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 158

Chapter 27: Heapq
Section 27.1: Largest and smallest items in a collection
To find the largest items in a collection, heapq module has a function called nlargest, we pass it two arguments, the
first one is the number of items that we want to retrieve, the second one is the collection name:

import heapq

numbers = [1, 4, 2, 100, 20, 50, 32, 200, 150, 8]
print(heapq.nlargest(4, numbers)) # [200, 150, 100, 50]

Similarly, to find the smallest items in a collection, we use nsmallest function:

print(heapq.nsmallest(4, numbers)) # [1, 2, 4, 8]

Both nlargest and nsmallest functions take an optional argument (key parameter) for complicated data
structures. The following example shows the use of age property to retrieve the oldest and the youngest people
from people dictionary:

people = [
 {'firstname': 'John', 'lastname': 'Doe', 'age': 30},
 {'firstname': 'Jane', 'lastname': 'Doe', 'age': 25},
 {'firstname': 'Janie', 'lastname': 'Doe', 'age': 10},
 {'firstname': 'Jane', 'lastname': 'Roe', 'age': 22},
 {'firstname': 'Johnny', 'lastname': 'Doe', 'age': 12},
 {'firstname': 'John', 'lastname': 'Roe', 'age': 45}
]

oldest = heapq.nlargest(2, people, key=lambda s: s['age'])
print(oldest)
Output: [{'firstname': 'John', 'age': 45, 'lastname': 'Roe'}, {'firstname': 'John', 'age': 30,
'lastname': 'Doe'}]

youngest = heapq.nsmallest(2, people, key=lambda s: s['age'])
print(youngest)
Output: [{'firstname': 'Janie', 'age': 10, 'lastname': 'Doe'}, {'firstname': 'Johnny', 'age': 12,
'lastname': 'Doe'}]

Section 27.2: Smallest item in a collection
The most interesting property of a heap is that its smallest element is always the first element: heap[0]

import heapq

numbers = [10, 4, 2, 100, 20, 50, 32, 200, 150, 8]

heapq.heapify(numbers)
print(numbers)
Output: [2, 4, 10, 100, 8, 50, 32, 200, 150, 20]

heapq.heappop(numbers) # 2
print(numbers)
Output: [4, 8, 10, 100, 20, 50, 32, 200, 150]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 159

heapq.heappop(numbers) # 4
print(numbers)
Output: [8, 20, 10, 100, 150, 50, 32, 200]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 160

Chapter 28: Tuple
A tuple is an immutable list of values. Tuples are one of Python's simplest and most common collection types, and
can be created with the comma operator (value = 1, 2, 3).

Section 28.1: Tuple
Syntactically, a tuple is a comma-separated list of values:

t = 'a', 'b', 'c', 'd', 'e'

Although not necessary, it is common to enclose tuples in parentheses:

t = ('a', 'b', 'c', 'd', 'e')

Create an empty tuple with parentheses:

t0 = ()
type(t0) # <type 'tuple'>

To create a tuple with a single element, you have to include a final comma:

t1 = 'a',
type(t1) # <type 'tuple'>

Note that a single value in parentheses is not a tuple:

t2 = ('a')
type(t2) # <type 'str'>

To create a singleton tuple it is necessary to have a trailing comma.

t2 = ('a',)
type(t2) # <type 'tuple'>

Note that for singleton tuples it's recommended (see PEP8 on trailing commas) to use parentheses. Also, no white
space after the trailing comma (see PEP8 on whitespaces)

t2 = ('a',) # PEP8-compliant
t2 = 'a', # this notation is not recommended by PEP8
t2 = ('a',) # this notation is not recommended by PEP8

Another way to create a tuple is the built-in function tuple.

t = tuple('lupins')
print(t) # ('l', 'u', 'p', 'i', 'n', 's')
t = tuple(range(3))
print(t) # (0, 1, 2)

These examples are based on material from the book Think Python by Allen B. Downey.

https://www.python.org/dev/peps/pep-0008/#when-to-use-trailing-commas
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
http://greenteapress.com/thinkpython/html/index.html
http://greenteapress.com/thinkpython/html/index.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 161

Section 28.2: Tuples are immutable
One of the main differences between lists and tuples in Python is that tuples are immutable, that is, one cannot
add or modify items once the tuple is initialized. For example:

>>> t = (1, 4, 9)
>>> t[0] = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Similarly, tuples don't have .append and .extend methods as list does. Using += is possible, but it changes the
binding of the variable, and not the tuple itself:

>>> t = (1, 2)
>>> q = t
>>> t += (3, 4)
>>> t
(1, 2, 3, 4)
>>> q
(1, 2)

Be careful when placing mutable objects, such as lists, inside tuples. This may lead to very confusing outcomes
when changing them. For example:

>>> t = (1, 2, 3, [1, 2, 3])
(1, 2, 3, [1, 2, 3])
>>> t[3] += [4, 5]

Will both raise an error and change the contents of the list within the tuple:

TypeError: 'tuple' object does not support item assignment
>>> t
(1, 2, 3, [1, 2, 3, 4, 5])

You can use the += operator to "append" to a tuple - this works by creating a new tuple with the new element you
"appended" and assign it to its current variable; the old tuple is not changed, but replaced!

This avoids converting to and from a list, but this is slow and is a bad practice, especially if you're going to append
multiple times.

Section 28.3: Packing and Unpacking Tuples
Tuples in Python are values separated by commas. Enclosing parentheses for inputting tuples are optional, so the
two assignments

a = 1, 2, 3 # a is the tuple (1, 2, 3)

and

a = (1, 2, 3) # a is the tuple (1, 2, 3)

are equivalent. The assignment a = 1, 2, 3 is also called packing because it packs values together in a tuple.

Note that a one-value tuple is also a tuple. To tell Python that a variable is a tuple and not a single value you can use

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 162

a trailing comma

a = 1 # a is the value 1
a = 1, # a is the tuple (1,)

A comma is needed also if you use parentheses

a = (1,) # a is the tuple (1,)
a = (1) # a is the value 1 and not a tuple

To unpack values from a tuple and do multiple assignments use

unpacking AKA multiple assignment
x, y, z = (1, 2, 3)
x == 1
y == 2
z == 3

The symbol _ can be used as a disposable variable name if one only needs some elements of a tuple, acting as a
placeholder:

a = 1, 2, 3, 4
_, x, y, _ = a
x == 2
y == 3

Single element tuples:

x, = 1, # x is the value 1
x = 1, # x is the tuple (1,)

In Python 3 a target variable with a * prefix can be used as a catch-all variable (see Unpacking Iterables):

Python 3.x Version ≥ 3.0

first, *more, last = (1, 2, 3, 4, 5)
first == 1
more == [2, 3, 4]
last == 5

Section 28.4: Built-in Tuple Functions
Tuples support the following build-in functions

Comparison

If elements are of the same type, python performs the comparison and returns the result. If elements are different
types, it checks whether they are numbers.

If numbers, perform comparison.
If either element is a number, then the other element is returned.
Otherwise, types are sorted alphabetically .

If we reached the end of one of the lists, the longer list is "larger." If both list are same it returns 0.

tuple1 = ('a', 'b', 'c', 'd', 'e')
tuple2 = ('1','2','3')

https://www.python.org/dev/peps/pep-3132/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 163

tuple3 = ('a', 'b', 'c', 'd', 'e')

cmp(tuple1, tuple2)
Out: 1

cmp(tuple2, tuple1)
Out: -1

cmp(tuple1, tuple3)
Out: 0

Tuple Length

The function len returns the total length of the tuple

len(tuple1)
Out: 5

Max of a tuple

The function max returns item from the tuple with the max value

max(tuple1)
Out: 'e'

max(tuple2)
Out: '3'

Min of a tuple

The function min returns the item from the tuple with the min value

min(tuple1)
Out: 'a'

min(tuple2)
Out: '1'

Convert a list into tuple

The built-in function tuple converts a list into a tuple.

list = [1,2,3,4,5]
tuple(list)
Out: (1, 2, 3, 4, 5)

Tuple concatenation

Use + to concatenate two tuples

tuple1 + tuple2
Out: ('a', 'b', 'c', 'd', 'e', '1', '2', '3')

Section 28.5: Tuple Are Element-wise Hashable and Equatable
hash((1, 2)) # ok
hash(([], {"hello"}) # not ok, since lists and sets are not hashabe

Thus a tuple can be put inside a set or as a key in a dict only if each of its elements can.

{ (1, 2) } # ok

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 164

{ ([], {"hello"})) # not ok

Section 28.6: Indexing Tuples
x = (1, 2, 3)
x[0] # 1
x[1] # 2
x[2] # 3
x[3] # IndexError: tuple index out of range

Indexing with negative numbers will start from the last element as -1:

x[-1] # 3
x[-2] # 2
x[-3] # 1
x[-4] # IndexError: tuple index out of range

Indexing a range of elements

print(x[:-1]) # (1, 2)
print(x[-1:]) # (3,)
print(x[1:3]) # (2, 3)

Section 28.7: Reversing Elements
Reverse elements within a tuple

colors = "red", "green", "blue"
rev = colors[::-1]
rev: ("blue", "green", "red")
colors = rev
colors: ("blue", "green", "red")

Or using reversed (reversed gives an iterable which is converted to a tuple):

rev = tuple(reversed(colors))
rev: ("blue", "green", "red")
colors = rev
colors: ("blue", "green", "red")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 165

Chapter 29: Basic Input and Output
Section 29.1: Using the print function
Python 3.x Version ≥ 3.0

In Python 3, print functionality is in the form of a function:

print("This string will be displayed in the output")
This string will be displayed in the output

print("You can print \n escape characters too.")
You can print escape characters too.

Python 2.x Version ≥ 2.3

In Python 2, print was originally a statement, as shown below.

print "This string will be displayed in the output"
This string will be displayed in the output

print "You can print \n escape characters too."
You can print escape characters too.

Note: using from __future__ import print_function in Python 2 will allow users to use the print() function the
same as Python 3 code. This is only available in Python 2.6 and above.

Section 29.2: Input from a File
Input can also be read from files. Files can be opened using the built-in function open. Using a with <command> as
<name> syntax (called a 'Context Manager') makes using open and getting a handle for the file super easy:

with open('somefile.txt', 'r') as fileobj:
 # write code here using fileobj

This ensures that when code execution leaves the block the file is automatically closed.

Files can be opened in different modes. In the above example the file is opened as read-only. To open an existing
file for reading only use r. If you want to read that file as bytes use rb. To append data to an existing file use a. Use
w to create a file or overwrite any existing files of the same name. You can use r+ to open a file for both reading and
writing. The first argument of open() is the filename, the second is the mode. If mode is left blank, it will default to
r.

let's create an example file:
with open('shoppinglist.txt', 'w') as fileobj:
 fileobj.write('tomato\npasta\ngarlic')

with open('shoppinglist.txt', 'r') as fileobj:
 # this method makes a list where each line
 # of the file is an element in the list
 lines = fileobj.readlines()

print(lines)
['tomato\n', 'pasta\n', 'garlic']

with open('shoppinglist.txt', 'r') as fileobj:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 166

 # here we read the whole content into one string:
 content = fileobj.read()
 # get a list of lines, just like int the previous example:
 lines = content.split('\n')

print(lines)
['tomato', 'pasta', 'garlic']

If the size of the file is tiny, it is safe to read the whole file contents into memory. If the file is very large it is often
better to read line-by-line or by chunks, and process the input in the same loop. To do that:

with open('shoppinglist.txt', 'r') as fileobj:
 # this method reads line by line:
 lines = []
 for line in fileobj:
 lines.append(line.strip())

When reading files, be aware of the operating system-specific line-break characters. Although for line in
fileobj automatically strips them off, it is always safe to call strip() on the lines read, as it is shown above.

Opened files (fileobj in the above examples) always point to a specific location in the file. When they are first
opened the file handle points to the very beginning of the file, which is the position 0. The file handle can display its
current position with tell:

fileobj = open('shoppinglist.txt', 'r')
pos = fileobj.tell()
print('We are at %u.' % pos) # We are at 0.

Upon reading all the content, the file handler's position will be pointed at the end of the file:

content = fileobj.read()
end = fileobj.tell()
print('This file was %u characters long.' % end)
This file was 22 characters long.
fileobj.close()

The file handler position can be set to whatever is needed:

fileobj = open('shoppinglist.txt', 'r')
fileobj.seek(7)
pos = fileobj.tell()
print('We are at character #%u.' % pos)

You can also read any length from the file content during a given call. To do this pass an argument for read().
When read() is called with no argument it will read until the end of the file. If you pass an argument it will read that
number of bytes or characters, depending on the mode (rb and r respectively):

reads the next 4 characters
starting at the current position
next4 = fileobj.read(4)
what we got?
print(next4) # 'cucu'
where we are now?
pos = fileobj.tell()
print('We are at %u.' % pos) # We are at 11, as we was at 7, and read 4 chars.

fileobj.close()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 167

To demonstrate the difference between characters and bytes:

with open('shoppinglist.txt', 'r') as fileobj:
 print(type(fileobj.read())) # <class 'str'>

with open('shoppinglist.txt', 'rb') as fileobj:
 print(type(fileobj.read())) # <class 'bytes'>

Section 29.3: Read from stdin
Python programs can read from unix pipelines. Here is a simple example how to read from stdin:

import sys

for line in sys.stdin:
 print(line)

Be aware that sys.stdin is a stream. It means that the for-loop will only terminate when the stream has ended.

You can now pipe the output of another program into your python program as follows:

$ cat myfile | python myprogram.py

In this example cat myfile can be any unix command that outputs to stdout.

Alternatively, using the fileinput module can come in handy:

import fileinput
for line in fileinput.input():
 process(line)

Section 29.4: Using input() and raw_input()
Python 2.x Version ≥ 2.3

raw_input will wait for the user to enter text and then return the result as a string.

foo = raw_input("Put a message here that asks the user for input")

In the above example foo will store whatever input the user provides.

Python 3.x Version ≥ 3.0

input will wait for the user to enter text and then return the result as a string.

foo = input("Put a message here that asks the user for input")

In the above example foo will store whatever input the user provides.

Section 29.5: Function to prompt user for a number
def input_number(msg, err_msg=None):
 while True:
 try:

https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://docs.python.org/2/library/sys.html#sys.stdin
https://docs.python.org/2/library/fileinput.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 168

 return float(raw_input(msg))
 except ValueError:
 if err_msg is not None:
 print(err_msg)

def input_number(msg, err_msg=None):
 while True:
 try:
 return float(input(msg))
 except ValueError:
 if err_msg is not None:
 print(err_msg)

And to use it:

user_number = input_number("input a number: ", "that's not a number!")

Or, if you do not want an "error message":

user_number = input_number("input a number: ")

Section 29.6: Printing a string without a newline at the end
Python 2.x Version ≥ 2.3

In Python 2.x, to continue a line with print, end the print statement with a comma. It will automatically add a
space.

print "Hello,",
print "World!"
Hello, World!

Python 3.x Version ≥ 3.0

In Python 3.x, the print function has an optional end parameter that is what it prints at the end of the given string.
By default it's a newline character, so equivalent to this:

print("Hello, ", end="\n")
print("World!")
Hello,
World!

But you could pass in other strings

print("Hello, ", end="")
print("World!")
Hello, World!

print("Hello, ", end="
")
print("World!")
Hello,
World!

print("Hello, ", end="BREAK")
print("World!")
Hello, BREAKWorld!

If you want more control over the output, you can use sys.stdout.write:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 169

import sys

sys.stdout.write("Hello, ")
sys.stdout.write("World!")
Hello, World!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F

GoalKicker.com – Python® Notes for Professionals 171

Chapter 30: Files & Folders I/O
Parameter Details

filename the path to your file or, if the file is in the working directory, the filename of your file

access_mode a string value that determines how the file is opened

buffering an integer value used for optional line buffering

When it comes to storing, reading, or communicating data, working with the files of an operating system is both
necessary and easy with Python. Unlike other languages where file input and output requires complex reading and
writing objects, Python simplifies the process only needing commands to open, read/write and close the file. This
topic explains how Python can interface with files on the operating system.

Section 30.1: File modes
There are different modes you can open a file with, specified by the mode parameter. These include:

'r' - reading mode. The default. It allows you only to read the file, not to modify it. When using this mode the
file must exist.

'w' - writing mode. It will create a new file if it does not exist, otherwise will erase the file and allow you to
write to it.

'a' - append mode. It will write data to the end of the file. It does not erase the file, and the file must exist for
this mode.

'rb' - reading mode in binary. This is similar to r except that the reading is forced in binary mode. This is
also a default choice.

'r+' - reading mode plus writing mode at the same time. This allows you to read and write into files at the
same time without having to use r and w.

'rb+' - reading and writing mode in binary. The same as r+ except the data is in binary

'wb' - writing mode in binary. The same as w except the data is in binary.

'w+' - writing and reading mode. The exact same as r+ but if the file does not exist, a new one is made.
Otherwise, the file is overwritten.

'wb+' - writing and reading mode in binary mode. The same as w+ but the data is in binary.

'ab' - appending in binary mode. Similar to a except that the data is in binary.

'a+' - appending and reading mode. Similar to w+ as it will create a new file if the file does not exist.
Otherwise, the file pointer is at the end of the file if it exists.

'ab+' - appending and reading mode in binary. The same as a+ except that the data is in binary.

 with open(filename, 'r') as f:
 f.read()
 with open(filename, 'w') as f:
 f.write(filedata)
 with open(filename, 'a') as f:
 f.write('\\n' + newdata)

r r+ w w+ a a+
Read ✔ ✔ ✘ ✔ ✘ ✔

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 172

Write ✘ ✔ ✔ ✔ ✔ ✔
Creates file ✘ ✘ ✔ ✔ ✔ ✔
Erases file ✘ ✘ ✔ ✔ ✘ ✘
Initial position Start Start Start Start End End

Python 3 added a new mode for exclusive creation so that you will not accidentally truncate or overwrite and
existing file.

'x' - open for exclusive creation, will raise FileExistsError if the file already exists
'xb' - open for exclusive creation writing mode in binary. The same as x except the data is in binary.
'x+' - reading and writing mode. Similar to w+ as it will create a new file if the file does not exist. Otherwise,
will raise FileExistsError.
'xb+' - writing and reading mode. The exact same as x+ but the data is binary

x x+
Read ✘ ✔
Write ✔ ✔
Creates file ✔ ✔
Erases file ✘ ✘
Initial position Start Start

Allow one to write your file open code in a more pythonic manner:

Python 3.x Version ≥ 3.3

try:
 with open("fname", "r") as fout:
 # Work with your open file
except FileExistsError:
 # Your error handling goes here

In Python 2 you would have done something like

Python 2.x Version ≥ 2.0

import os.path
if os.path.isfile(fname):
 with open("fname", "w") as fout:
 # Work with your open file
else:
 # Your error handling goes here

Section 30.2: Reading a file line-by-line
The simplest way to iterate over a file line-by-line:

with open('myfile.txt', 'r') as fp:
 for line in fp:
 print(line)

readline() allows for more granular control over line-by-line iteration. The example below is equivalent to the one
above:

with open('myfile.txt', 'r') as fp:
 while True:
 cur_line = fp.readline()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 173

 # If the result is an empty string
 if cur_line == '':
 # We have reached the end of the file
 break
 print(cur_line)

Using the for loop iterator and readline() together is considered bad practice.

More commonly, the readlines() method is used to store an iterable collection of the file's lines:

with open("myfile.txt", "r") as fp:
 lines = fp.readlines()
for i in range(len(lines)):
 print("Line " + str(i) + ": " + line)

This would print the following:

Line 0: hello

Line 1: world

Section 30.3: Iterate files (recursively)
To iterate all files, including in sub directories, use os.walk:

import os
for root, folders, files in os.walk(root_dir):
 for filename in files:
 print root, filename

root_dir can be "." to start from current directory, or any other path to start from.

Python 3.x Version ≥ 3.5

If you also wish to get information about the file, you may use the more efficient method os.scandir like so:

for entry in os.scandir(path):
 if not entry.name.startswith('.') and entry.is_file():
 print(entry.name)

Section 30.4: Getting the full contents of a file
The preferred method of file i/o is to use the with keyword. This will ensure the file handle is closed once the
reading or writing has been completed.

with open('myfile.txt') as in_file:
 content = in_file.read()

print(content)

or, to handle closing the file manually, you can forgo with and simply call close yourself:

in_file = open('myfile.txt', 'r')
content = in_file.read()
print(content)

https://docs.python.org/3/library/os.html#os.scandir
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 174

in_file.close()

Keep in mind that without using a with statement, you might accidentally keep the file open in case an unexpected
exception arises like so:

in_file = open('myfile.txt', 'r')
raise Exception("oops")
in_file.close() # This will never be called

Section 30.5: Writing to a file
with open('myfile.txt', 'w') as f:
 f.write("Line 1")
 f.write("Line 2")
 f.write("Line 3")
 f.write("Line 4")

If you open myfile.txt, you will see that its contents are:

Line 1Line 2Line 3Line 4

Python doesn't automatically add line breaks, you need to do that manually:

with open('myfile.txt', 'w') as f:
 f.write("Line 1\n")
 f.write("Line 2\n")
 f.write("Line 3\n")
 f.write("Line 4\n")

Line 1
Line 2
Line 3
Line 4

Do not use os.linesep as a line terminator when writing files opened in text mode (the default); use \n instead.

If you want to specify an encoding, you simply add the encoding parameter to the open function:

with open('my_file.txt', 'w', encoding='utf-8') as f:
 f.write('utf-8 text')

It is also possible to use the print statement to write to a file. The mechanics are different in Python 2 vs Python 3,
but the concept is the same in that you can take the output that would have gone to the screen and send it to a file
instead.

Python 3.x Version ≥ 3.0

with open('fred.txt', 'w') as outfile:
 s = "I'm Not Dead Yet!"
 print(s) # writes to stdout
 print(s, file = outfile) # writes to outfile

 #Note: it is possible to specify the file parameter AND write to the screen
 #by making sure file ends up with a None value either directly or via a variable

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 175

 myfile = None
 print(s, file = myfile) # writes to stdout
 print(s, file = None) # writes to stdout

In Python 2 you would have done something like

Python 2.x Version ≥ 2.0

outfile = open('fred.txt', 'w')
s = "I'm Not Dead Yet!"
print s # writes to stdout
print >> outfile, s # writes to outfile

Unlike using the write function, the print function does automatically add line breaks.

Section 30.6: Check whether a file or path exists
Employ the EAFP coding style and try to open it.

import errno

try:
 with open(path) as f:
 # File exists
except IOError as e:
 # Raise the exception if it is not ENOENT (No such file or directory)
 if e.errno != errno.ENOENT:
 raise
 # No such file or directory

This will also avoid race-conditions if another process deleted the file between the check and when it is used. This
race condition could happen in the following cases:

Using the os module:

import os
os.path.isfile('/path/to/some/file.txt')

Python 3.x Version ≥ 3.4

Using pathlib:

import pathlib
path = pathlib.Path('/path/to/some/file.txt')
if path.is_file():
 ...

To check whether a given path exists or not, you can follow the above EAFP procedure, or explicitly check the path:

import os
path = "/home/myFiles/directory1"

if os.path.exists(path):
 ## Do stuff

https://docs.python.org/glossary.html#term-eafp
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 176

Section 30.7: Random File Access Using mmap
Using the mmap module allows the user to randomly access locations in a file by mapping the file into memory. This
is an alternative to using normal file operations.

import mmap

with open('filename.ext', 'r') as fd:
 # 0: map the whole file
 mm = mmap.mmap(fd.fileno(), 0)

 # print characters at indices 5 through 10
 print mm[5:10]

 # print the line starting from mm's current position
 print mm.readline()

 # write a character to the 5th index
 mm[5] = 'a'

 # return mm's position to the beginning of the file
 mm.seek(0)

 # close the mmap object
 mm.close()

Section 30.8: Replacing text in a file
import fileinput

replacements = {'Search1': 'Replace1',
 'Search2': 'Replace2'}

for line in fileinput.input('filename.txt', inplace=True):
 for search_for in replacements:
 replace_with = replacements[search_for]
 line = line.replace(search_for, replace_with)
 print(line, end='')

Section 30.9: Checking if a file is empty
>>> import os
>>> os.stat(path_to_file).st_size == 0

or

>>> import os
>>> os.path.getsize(path_to_file) > 0

However, both will throw an exception if the file does not exist. To avoid having to catch such an error, do this:

import os
def is_empty_file(fpath):
 return os.path.isfile(fpath) and os.path.getsize(fpath) > 0

which will return a bool value.

https://docs.python.org/2/library/mmap.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 177

Section 30.10: Read a file between a range of lines
So let's suppose you want to iterate only between some specific lines of a file

You can make use of itertools for that

import itertools

with open('myfile.txt', 'r') as f:
 for line in itertools.islice(f, 12, 30):
 # do something here

This will read through the lines 13 to 20 as in python indexing starts from 0. So line number 1 is indexed as 0

As can also read some extra lines by making use of the next() keyword here.

And when you are using the file object as an iterable, please don't use the readline() statement here as the two
techniques of traversing a file are not to be mixed together

Section 30.11: Copy a directory tree
import shutil
source='//192.168.1.2/Daily Reports'
destination='D:\\Reports\\Today'
shutil.copytree(source, destination)

The destination directory must not exist already.

Section 30.12: Copying contents of one file to a dierent file
with open(input_file, 'r') as in_file, open(output_file, 'w') as out_file:
 for line in in_file:
 out_file.write(line)

Using the shutil module:

import shutil
shutil.copyfile(src, dst)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 178

Chapter 31: os.path
This module implements some useful functions on pathnames. The path parameters can be passed as either
strings, or bytes. Applications are encouraged to represent file names as (Unicode) character strings.

Section 31.1: Join Paths
To join two or more path components together, firstly import os module of python and then use following:

import os
os.path.join('a', 'b', 'c')

The advantage of using os.path is that it allows code to remain compatible over all operating systems, as this uses
the separator appropriate for the platform it's running on.

For example, the result of this command on Windows will be:

>>> os.path.join('a', 'b', 'c')
'a\b\c'

In an Unix OS:

>>> os.path.join('a', 'b', 'c')
'a/b/c'

Section 31.2: Path Component Manipulation
To split one component off of the path:

>>> p = os.path.join(os.getcwd(), 'foo.txt')
>>> p
'/Users/csaftoiu/tmp/foo.txt'
>>> os.path.dirname(p)
'/Users/csaftoiu/tmp'
>>> os.path.basename(p)
'foo.txt'
>>> os.path.split(os.getcwd())
('/Users/csaftoiu/tmp', 'foo.txt')
>>> os.path.splitext(os.path.basename(p))
('foo', '.txt')

Section 31.3: Get the parent directory
os.path.abspath(os.path.join(PATH_TO_GET_THE_PARENT, os.pardir))

Section 31.4: If the given path exists
to check if the given path exists

path = '/home/john/temp'
os.path.exists(path)
#this returns false if path doesn't exist or if the path is a broken symbolic link

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 179

Section 31.5: check if the given path is a directory, file,
symbolic link, mount point etc
to check if the given path is a directory

dirname = '/home/john/python'
os.path.isdir(dirname)

to check if the given path is a file

filename = dirname + 'main.py'
os.path.isfile(filename)

to check if the given path is symbolic link

symlink = dirname + 'some_sym_link'
os.path.islink(symlink)

to check if the given path is a mount point

mount_path = '/home'
os.path.ismount(mount_path)

Section 31.6: Absolute Path from Relative Path
Use os.path.abspath:

>>> os.getcwd()
'/Users/csaftoiu/tmp'
>>> os.path.abspath('foo')
'/Users/csaftoiu/tmp/foo'
>>> os.path.abspath('../foo')
'/Users/csaftoiu/foo'
>>> os.path.abspath('/foo')
'/foo'

https://en.wikipedia.org/wiki/Symbolic_link
http://www.linuxtopia.org/online_books/introduction_to_linux/linux_Mount_points.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 180

Chapter 32: Iterables and Iterators
Section 32.1: Iterator vs Iterable vs Generator
An iterable is an object that can return an iterator. Any object with state that has an __iter__ method and returns
an iterator is an iterable. It may also be an object without state that implements a __getitem__ method. - The
method can take indices (starting from zero) and raise an IndexError when the indices are no longer valid.

Python's str class is an example of a __getitem__ iterable.

An Iterator is an object that produces the next value in a sequence when you call next(*object*) on some object.
Moreover, any object with a __next__ method is an iterator. An iterator raises StopIteration after exhausting the
iterator and cannot be re-used at this point.

Iterable classes:

Iterable classes define an __iter__ and a __next__ method. Example of an iterable class:

class MyIterable:

 def __iter__(self):

 return self

 def __next__(self):
 #code

#Classic iterable object in older versions of python, __getitem__ is still supported...
class MySequence:

 def __getitem__(self, index):

 if (condition):
 raise IndexError
 return (item)

 #Can produce a plain `iterator` instance by using iter(MySequence())

Trying to instantiate the abstract class from the collections module to better see this.

Example:

Python 2.x Version ≥ 2.3

import collections
>>> collections.Iterator()
>>> TypeError: Cant instantiate abstract class Iterator with abstract methods next

Python 3.x Version ≥ 3.0

>>> TypeError: Cant instantiate abstract class Iterator with abstract methods __next__

Handle Python 3 compatibility for iterable classes in Python 2 by doing the following:

Python 2.x Version ≥ 2.3

class MyIterable(object): #or collections.Iterator, which I'd recommend....

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 181

 def __iter__(self):

 return self

 def next(self): #code

 __next__ = next

Both of these are now iterators and can be looped through:

ex1 = MyIterableClass()
ex2 = MySequence()

for (item) in (ex1): #code
for (item) in (ex2): #code

Generators are simple ways to create iterators. A generator is an iterator and an iterator is an iterable.

Section 32.2: Extract values one by one
Start with iter() built-in to get iterator over iterable and use next() to get elements one by one until
StopIteration is raised signifying the end:

s = {1, 2} # or list or generator or even iterator
i = iter(s) # get iterator
a = next(i) # a = 1
b = next(i) # b = 2
c = next(i) # raises StopIteration

Section 32.3: Iterating over entire iterable
s = {1, 2, 3}

get every element in s
for a in s:
 print a # prints 1, then 2, then 3

copy into list
l1 = list(s) # l1 = [1, 2, 3]

use list comprehension
l2 = [a * 2 for a in s if a > 2] # l2 = [6]

Section 32.4: Verify only one element in iterable
Use unpacking to extract the first element and ensure it's the only one:

a, = iterable

def foo():
 yield 1

a, = foo() # a = 1

nums = [1, 2, 3]
a, = nums # ValueError: too many values to unpack

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 182

Section 32.5: What can be iterable
Iterable can be anything for which items are received one by one, forward only. Built-in Python collections are
iterable:

[1, 2, 3] # list, iterate over items
(1, 2, 3) # tuple
{1, 2, 3} # set
{1: 2, 3: 4} # dict, iterate over keys

Generators return iterables:

def foo(): # foo isn't iterable yet...
 yield 1

res = foo() # ...but res already is

Section 32.6: Iterator isn't reentrant!
def gen():
 yield 1

iterable = gen()
for a in iterable:
 print a

What was the first item of iterable? No way to get it now.
Only to get a new iterator
gen()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 183

Chapter 33: Functions
Parameter Details

arg1, ..., argN Regular arguments

*args Unnamed positional arguments

kw1, ..., kwN Keyword-only arguments

**kwargs The rest of keyword arguments

Functions in Python provide organized, reusable and modular code to perform a set of specific actions. Functions
simplify the coding process, prevent redundant logic, and make the code easier to follow. This topic describes the
declaration and utilization of functions in Python.

Python has many built-in functions like print(), input(), len(). Besides built-ins you can also create your own
functions to do more specific jobs—these are called user-defined functions.

Section 33.1: Defining and calling simple functions
Using the def statement is the most common way to define a function in python. This statement is a so called single
clause compound statement with the following syntax:

def function_name(parameters):
 statement(s)

function_name is known as the identifier of the function. Since a function definition is an executable statement its
execution binds the function name to the function object which can be called later on using the identifier.

parameters is an optional list of identifiers that get bound to the values supplied as arguments when the function is
called. A function may have an arbitrary number of arguments which are separated by commas.

statement(s) – also known as the function body – are a nonempty sequence of statements executed each time the
function is called. This means a function body cannot be empty, just like any indented block.

Here’s an example of a simple function definition which purpose is to print Hello each time it’s called:

def greet():
 print("Hello")

Now let’s call the defined greet() function:

greet()
Out: Hello

That’s another example of a function definition which takes one single argument and displays the passed in value
each time the function is called:

def greet_two(greeting):
 print(greeting)

After that the greet_two() function must be called with an argument:

greet_two("Howdy")
Out: Howdy

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 184

Also you can give a default value to that function argument:

def greet_two(greeting="Howdy"):
 print(greeting)

Now you can call the function without giving a value:

greet_two()
Out: Howdy

You'll notice that unlike many other languages, you do not need to explicitly declare a return type of the function.
Python functions can return values of any type via the return keyword. One function can return any number of
different types!

def many_types(x):
 if x < 0:
 return "Hello!"
 else:
 return 0

print(many_types(1))
print(many_types(-1))

Output:
0
Hello!

As long as this is handled correctly by the caller, this is perfectly valid Python code.

A function that reaches the end of execution without a return statement will always return None:

def do_nothing():
 pass

print(do_nothing())
Out: None

As mentioned previously a function definition must have a function body, a nonempty sequence of statements.
Therefore the pass statement is used as function body, which is a null operation – when it is executed, nothing
happens. It does what it means, it skips. It is useful as a placeholder when a statement is required syntactically, but
no code needs to be executed.

Section 33.2: Defining a function with an arbitrary number of
arguments
Arbitrary number of positional arguments:

Defining a function capable of taking an arbitrary number of arguments can be done by prefixing one of the
arguments with a *

def func(*args):
 # args will be a tuple containing all values that are passed in
 for i in args:
 print(i)

func(1, 2, 3) # Calling it with 3 arguments

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 185

Out: 1
2
3

list_of_arg_values = [1, 2, 3]
func(*list_of_arg_values) # Calling it with list of values, * expands the list
Out: 1
2
3

func() # Calling it without arguments
No Output

You can't provide a default for args, for example func(*args=[1, 2, 3]) will raise a syntax error (won't even
compile).

You can't provide these by name when calling the function, for example func(*args=[1, 2, 3]) will raise a
TypeError.

But if you already have your arguments in an array (or any other Iterable), you can invoke your function like this:
func(*my_stuff).

These arguments (*args) can be accessed by index, for example args[0] will return the first argument

Arbitrary number of keyword arguments

You can take an arbitrary number of arguments with a name by defining an argument in the definition with two *
in front of it:

def func(**kwargs):
 # kwargs will be a dictionary containing the names as keys and the values as values
 for name, value in kwargs.items():
 print(name, value)

func(value1=1, value2=2, value3=3) # Calling it with 3 arguments
Out: value1 1
value2 2
value3 3

func() # Calling it without arguments
No Out put

my_dict = {'foo': 1, 'bar': 2}
func(**my_dict) # Calling it with a dictionary
Out: foo 1
bar 2

You can't provide these without names, for example func(1, 2, 3) will raise a TypeError.

kwargs is a plain native python dictionary. For example, args['value1'] will give the value for argument value1. Be
sure to check beforehand that there is such an argument or a KeyError will be raised.

Warning

You can mix these with other optional and required arguments but the order inside the definition matters.

The positional/keyword arguments come first. (Required arguments).
Then comes the arbitrary *arg arguments. (Optional).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 186

Then keyword-only arguments come next. (Required).
Finally the arbitrary keyword **kwargs come. (Optional).

|-positional-|-optional-|---keyword-only--|-optional-|
def func(arg1, arg2=10 , *args, kwarg1, kwarg2=2, **kwargs):
 pass

arg1 must be given, otherwise a TypeError is raised. It can be given as positional (func(10)) or keyword
argument (func(arg1=10)).
kwarg1 must also be given, but it can only be provided as keyword-argument: func(kwarg1=10).
arg2 and kwarg2 are optional. If the value is to be changed the same rules as for arg1 (either positional or
keyword) and kwarg1 (only keyword) apply.
*args catches additional positional parameters. But note, that arg1 and arg2 must be provided as positional
arguments to pass arguments to *args: func(1, 1, 1, 1).
**kwargs catches all additional keyword parameters. In this case any parameter that is not arg1, arg2,
kwarg1 or kwarg2. For example: func(kwarg3=10).
In Python 3, you can use * alone to indicate that all subsequent arguments must be specified as keywords.
For instance the math.isclose function in Python 3.5 and higher is defined using def math.isclose (a, b,
*, rel_tol=1e-09, abs_tol=0.0), which means the first two arguments can be supplied positionally but the
optional third and fourth parameters can only be supplied as keyword arguments.

Python 2.x doesn't support keyword-only parameters. This behavior can be emulated with kwargs:

def func(arg1, arg2=10, **kwargs):
 try:
 kwarg1 = kwargs.pop("kwarg1")
 except KeyError:
 raise TypeError("missing required keyword-only argument: 'kwarg1'")

 kwarg2 = kwargs.pop("kwarg2", 2)
 # function body ...

Note on Naming

The convention of naming optional positional arguments args and optional keyword arguments kwargs is just a
convention you can use any names you like but it is useful to follow the convention so that others know what you
are doing, or even yourself later so please do.

Note on Uniqueness

Any function can be defined with none or one *args and none or one **kwargs but not with more than one of
each. Also *args must be the last positional argument and **kwargs must be the last parameter. Attempting to use
more than one of either will result in a Syntax Error exception.

Note on Nesting Functions with Optional Arguments

It is possible to nest such functions and the usual convention is to remove the items that the code has already
handled but if you are passing down the parameters you need to pass optional positional args with a * prefix and
optional keyword args with a ** prefix, otherwise args with be passed as a list or tuple and kwargs as a single
dictionary. e.g.:

def fn(**kwargs):
 print(kwargs)
 f1(**kwargs)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 187

def f1(**kwargs):
 print(len(kwargs))

fn(a=1, b=2)
Out:
{'a': 1, 'b': 2}
2

Section 33.3: Lambda (Inline/Anonymous) Functions
The lambda keyword creates an inline function that contains a single expression. The value of this expression is
what the function returns when invoked.

Consider the function:

def greeting():
 return "Hello"

which, when called as:

print(greeting())

prints:

Hello

This can be written as a lambda function as follows:

greet_me = lambda: "Hello"

See note at the bottom of this section regarding the assignment of lambdas to variables. Generally, don't
do it.

This creates an inline function with the name greet_me that returns Hello. Note that you don't write return when
creating a function with lambda. The value after : is automatically returned.

Once assigned to a variable, it can be used just like a regular function:

print(greet_me())

prints:

Hello

lambdas can take arguments, too:

strip_and_upper_case = lambda s: s.strip().upper()

strip_and_upper_case(" Hello ")

returns the string:

HELLO

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 188

They can also take arbitrary number of arguments / keyword arguments, like normal functions.

greeting = lambda x, *args, **kwargs: print(x, args, kwargs)
greeting('hello', 'world', world='world')

prints:

hello ('world',) {'world': 'world'}

lambdas are commonly used for short functions that are convenient to define at the point where they are called
(typically with sorted, filter and map).

For example, this line sorts a list of strings ignoring their case and ignoring whitespace at the beginning and at the
end:

sorted([" foo ", " bAR", "BaZ "], key=lambda s: s.strip().upper())
Out:
[' bAR', 'BaZ ', ' foo ']

Sort list just ignoring whitespaces:

sorted([" foo ", " bAR", "BaZ "], key=lambda s: s.strip())
Out:
['BaZ ', ' bAR', ' foo ']

Examples with map:

sorted(map(lambda s: s.strip().upper(), [" foo ", " bAR", "BaZ "]))
Out:
['BAR', 'BAZ', 'FOO']

sorted(map(lambda s: s.strip(), [" foo ", " bAR", "BaZ "]))
Out:
['BaZ', 'bAR', 'foo']

Examples with numerical lists:

my_list = [3, -4, -2, 5, 1, 7]
sorted(my_list, key=lambda x: abs(x))
Out:
[1, -2, 3, -4, 5, 7]

list(filter(lambda x: x>0, my_list))
Out:
[3, 5, 1, 7]

list(map(lambda x: abs(x), my_list))
Out:
[3, 4, 2, 5, 1, 7]

One can call other functions (with/without arguments) from inside a lambda function.

def foo(msg):
 print(msg)

greet = lambda x = "hello world": foo(x)
greet()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 189

prints:

hello world

This is useful because lambda may contain only one expression and by using a subsidiary function one can run
multiple statements.

NOTE

Bear in mind that PEP-8 (the official Python style guide) does not recommend assigning lambdas to variables (as we
did in the first two examples):

Always use a def statement instead of an assignment statement that binds a lambda expression directly
to an identifier.

Yes:

def f(x): return 2*x

No:

f = lambda x: 2*x

The first form means that the name of the resulting function object is specifically f instead of the generic
<lambda>. This is more useful for tracebacks and string representations in general. The use of the
assignment statement eliminates the sole benefit a lambda expression can offer over an explicit def
statement (i.e. that it can be embedded inside a larger expression).

Section 33.4: Defining a function with optional arguments
Optional arguments can be defined by assigning (using =) a default value to the argument-name:

def make(action='nothing'):
 return action

Calling this function is possible in 3 different ways:

make("fun")
Out: fun

make(action="sleep")
Out: sleep

The argument is optional so the function will use the default value if the argument is
not passed in.
make()
Out: nothing

Warning

Mutable types (list, dict, set, etc.) should be treated with care when given as default attribute. Any
mutation of the default argument will change it permanently. See Defining a function with optional
mutable arguments.

https://www.python.org/dev/peps/pep-0008/#programming-recommendations
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 190

Section 33.5: Defining a function with optional mutable
arguments
There is a problem when using optional arguments with a mutable default type (described in Defining a function
with optional arguments), which can potentially lead to unexpected behaviour.

Explanation

This problem arises because a function's default arguments are initialised once, at the point when the function is
defined, and not (like many other languages) when the function is called. The default values are stored inside the
function object's __defaults__ member variable.

def f(a, b=42, c=[]):
 pass

print(f.__defaults__)
Out: (42, [])

For immutable types (see Argument passing and mutability) this is not a problem because there is no way to
mutate the variable; it can only ever be reassigned, leaving the original value unchanged. Hence, subsequent are
guaranteed to have the same default value. However, for a mutable type, the original value can mutate, by making
calls to its various member functions. Therefore, successive calls to the function are not guaranteed to have the
initial default value.

def append(elem, to=[]):
 to.append(elem) # This call to append() mutates the default variable "to"
 return to

append(1)
Out: [1]

append(2) # Appends it to the internally stored list
Out: [1, 2]

append(3, []) # Using a new created list gives the expected result
Out: [3]

Calling it again without argument will append to the internally stored list again
append(4)
Out: [1, 2, 4]

Note: Some IDEs like PyCharm will issue a warning when a mutable type is specified as a default
attribute.

Solution

If you want to ensure that the default argument is always the one you specify in the function definition, then the
solution is to always use an immutable type as your default argument.

A common idiom to achieve this when a mutable type is needed as the default, is to use None (immutable) as the
default argument and then assign the actual default value to the argument variable if it is equal to None.

def append(elem, to=None):
 if to is None:
 to = []

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 191

 to.append(elem)
 return to

Section 33.6: Argument passing and mutability
First, some terminology:

argument (actual parameter): the actual variable being passed to a function;
parameter (formal parameter): the receiving variable that is used in a function.

In Python, arguments are passed by assignment (as opposed to other languages, where arguments can be
passed by value/reference/pointer).

Mutating a parameter will mutate the argument (if the argument's type is mutable).

def foo(x): # here x is the parameter
 x[0] = 9 # This mutates the list labelled by both x and y
 print(x)

y = [4, 5, 6]
foo(y) # call foo with y as argument
Out: [9, 5, 6] # list labelled by x has been mutated
print(y)
Out: [9, 5, 6] # list labelled by y has been mutated too

Reassigning the parameter won’t reassign the argument.

def foo(x): # here x is the parameter, when we call foo(y) we assign y to x
 x[0] = 9 # This mutates the list labelled by both x and y
 x = [1, 2, 3] # x is now labeling a different list (y is unaffected)
 x[2] = 8 # This mutates x's list, not y's list

y = [4, 5, 6] # y is the argument, x is the parameter
foo(y) # Pretend that we wrote "x = y", then go to line 1
y
Out: [9, 5, 6]

In Python, we don’t really assign values to variables, instead we bind (i.e. assign, attach) variables
(considered as names) to objects.

Immutable: Integers, strings, tuples, and so on. All operations make copies.
Mutable: Lists, dictionaries, sets, and so on. Operations may or may not mutate.

x = [3, 1, 9]
y = x
x.append(5) # Mutates the list labelled by x and y, both x and y are bound to [3, 1, 9]
x.sort() # Mutates the list labelled by x and y (in-place sorting)
x = x + [4] # Does not mutate the list (makes a copy for x only, not y)
z = x # z is x ([1, 3, 9, 4])
x += [6] # Mutates the list labelled by both x and z (uses the extend function).
x = sorted(x) # Does not mutate the list (makes a copy for x only).
x
Out: [1, 3, 4, 5, 6, 9]
y
Out: [1, 3, 5, 9]
z

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 192

Out: [1, 3, 5, 9, 4, 6]

Section 33.7: Returning values from functions
Functions can return a value that you can use directly:

def give_me_five():
 return 5

print(give_me_five()) # Print the returned value
Out: 5

or save the value for later use:

num = give_me_five()
print(num) # Print the saved returned value
Out: 5

or use the value for any operations:

print(give_me_five() + 10)
Out: 15

If return is encountered in the function the function will be exited immediately and subsequent operations will not
be evaluated:

def give_me_another_five():
 return 5
 print('This statement will not be printed. Ever.')

print(give_me_another_five())
Out: 5

You can also return multiple values (in the form of a tuple):

def give_me_two_fives():
 return 5, 5 # Returns two 5

first, second = give_me_two_fives()
print(first)
Out: 5
print(second)
Out: 5

A function with no return statement implicitly returns None. Similarly a function with a return statement, but no
return value or variable returns None.

Section 33.8: Closure
Closures in Python are created by function calls. Here, the call to makeInc creates a binding for x that is referenced
inside the function inc. Each call to makeInc creates a new instance of this function, but each instance has a link to a
different binding of x.

def makeInc(x):
 def inc(y):
 # x is "attached" in the definition of inc

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 193

 return y + x

 return inc

incOne = makeInc(1)
incFive = makeInc(5)

incOne(5) # returns 6
incFive(5) # returns 10

Notice that while in a regular closure the enclosed function fully inherits all variables from its enclosing
environment, in this construct the enclosed function has only read access to the inherited variables but cannot
make assignments to them

def makeInc(x):
 def inc(y):
 # incrementing x is not allowed
 x += y
 return x

 return inc

incOne = makeInc(1)
incOne(5) # UnboundLocalError: local variable 'x' referenced before assignment

Python 3 offers the nonlocal statement (Nonlocal Variables) for realizing a full closure with nested functions.

Python 3.x Version ≥ 3.0

def makeInc(x):
 def inc(y):
 nonlocal x
 # now assigning a value to x is allowed
 x += y
 return x

 return inc

incOne = makeInc(1)
incOne(5) # returns 6

Section 33.9: Forcing the use of named parameters
All parameters specified after the first asterisk in the function signature are keyword-only.

def f(*a, b):
 pass

f(1, 2, 3)
TypeError: f() missing 1 required keyword-only argument: 'b'

In Python 3 it's possible to put a single asterisk in the function signature to ensure that the remaining arguments
may only be passed using keyword arguments.

def f(a, b, *, c):
 pass

f(1, 2, 3)
TypeError: f() takes 2 positional arguments but 3 were given

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 194

f(1, 2, c=3)
No error

Section 33.10: Nested functions
Functions in python are first-class objects. They can be defined in any scope

def fibonacci(n):
 def step(a,b):
 return b, a+b
 a, b = 0, 1
 for i in range(n):
 a, b = step(a, b)
 return a

Functions capture their enclosing scope can be passed around like any other sort of object

def make_adder(n):
 def adder(x):
 return n + x
 return adder
add5 = make_adder(5)
add6 = make_adder(6)
add5(10)
#Out: 15
add6(10)
#Out: 16

def repeatedly_apply(func, n, x):
 for i in range(n):
 x = func(x)
 return x

repeatedly_apply(add5, 5, 1)
#Out: 26

Section 33.11: Recursion limit
There is a limit to the depth of possible recursion, which depends on the Python implementation. When the limit is
reached, a RuntimeError exception is raised:

def cursing(depth):
 try:
 cursing(depth + 1) # actually, re-cursing
 except RuntimeError as RE:
 print('I recursed {} times!'.format(depth))

cursing(0)
Out: I recursed 1083 times!

It is possible to change the recursion depth limit by using sys.setrecursionlimit(limit) and check this limit by
sys.getrecursionlimit().

sys.setrecursionlimit(2000)
cursing(0)
Out: I recursed 1997 times!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 195

From Python 3.5, the exception is a RecursionError, which is derived from RuntimeError.

Section 33.12: Recursive Lambda using assigned variable
One method for creating recursive lambda functions involves assigning the function to a variable and then
referencing that variable within the function itself. A common example of this is the recursive calculation of the
factorial of a number - such as shown in the following code:

lambda_factorial = lambda i:1 if i==0 else i*lambda_factorial(i-1)
print(lambda_factorial(4)) # 4 * 3 * 2 * 1 = 12 * 2 = 24

Description of code

The lambda function, through its variable assignment, is passed a value (4) which it evaluates and returns 1 if it is 0
or else it returns the current value (i) * another calculation by the lambda function of the value - 1 (i-1). This
continues until the passed value is decremented to 0 (return 1). A process which can be visualized as:

Section 33.13: Recursive functions
A recursive function is a function that calls itself in its definition. For example the mathematical function, factorial,
defined by factorial(n) = n*(n-1)*(n-2)*...*3*2*1. can be programmed as

http://i.stack.imgur.com/uitTM.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 196

def factorial(n):
 #n here should be an integer
 if n == 0:
 return 1
 else:
 return n*factorial(n-1)

the outputs here are:

factorial(0)
#out 1
factorial(1)
#out 1
factorial(2)
#out 2
factorial(3)
#out 6

as expected. Notice that this function is recursive because the second return factorial(n-1), where the function
calls itself in its definition.

Some recursive functions can be implemented using lambda, the factorial function using lambda would be
something like this:

factorial = lambda n: 1 if n == 0 else n*factorial(n-1)

The function outputs the same as above.

Section 33.14: Defining a function with arguments
Arguments are defined in parentheses after the function name:

def divide(dividend, divisor): # The names of the function and its arguments
 # The arguments are available by name in the body of the function
 print(dividend / divisor)

The function name and its list of arguments are called the signature of the function. Each named argument is
effectively a local variable of the function.

When calling the function, give values for the arguments by listing them in order

divide(10, 2)
output: 5

or specify them in any order using the names from the function definition:

divide(divisor=2, dividend=10)
output: 5

Section 33.15: Iterable and dictionary unpacking
Functions allow you to specify these types of parameters: positional, named, variable positional, Keyword args
(kwargs). Here is a clear and concise use of each type.

def unpacking(a, b, c=45, d=60, *args, **kwargs):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 197

 print(a, b, c, d, args, kwargs)

>>> unpacking(1, 2)
1 2 45 60 () {}
>>> unpacking(1, 2, 3, 4)
1 2 3 4 () {}
>>> unpacking(1, 2, c=3, d=4)
1 2 3 4 () {}
>>> unpacking(1, 2, d=4, c=3)
1 2 3 4 () {}

>>> pair = (3,)
>>> unpacking(1, 2, *pair, d=4)
1 2 3 4 () {}
>>> unpacking(1, 2, d=4, *pair)
1 2 3 4 () {}
>>> unpacking(1, 2, *pair, c=3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'c'
>>> unpacking(1, 2, c=3, *pair)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'c'

>>> args_list = [3]
>>> unpacking(1, 2, *args_list, d=4)
1 2 3 4 () {}
>>> unpacking(1, 2, d=4, *args_list)
1 2 3 4 () {}
>>> unpacking(1, 2, c=3, *args_list)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'c'
>>> unpacking(1, 2, *args_list, c=3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'c'

>>> pair = (3, 4)
>>> unpacking(1, 2, *pair)
1 2 3 4 () {}
>>> unpacking(1, 2, 3, 4, *pair)
1 2 3 4 (3, 4) {}
>>> unpacking(1, 2, d=4, *pair)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'd'
>>> unpacking(1, 2, *pair, d=4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'd'

>>> args_list = [3, 4]
>>> unpacking(1, 2, *args_list)
1 2 3 4 () {}
>>> unpacking(1, 2, 3, 4, *args_list)
1 2 3 4 (3, 4) {}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 198

>>> unpacking(1, 2, d=4, *args_list)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'd'
>>> unpacking(1, 2, *args_list, d=4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'd'

>>> arg_dict = {'c':3, 'd':4}
>>> unpacking(1, 2, **arg_dict)
1 2 3 4 () {}
>>> arg_dict = {'d':4, 'c':3}
>>> unpacking(1, 2, **arg_dict)
1 2 3 4 () {}
>>> arg_dict = {'c':3, 'd':4, 'not_a_parameter': 75}
>>> unpacking(1, 2, **arg_dict)
1 2 3 4 () {'not_a_parameter': 75}

>>> unpacking(1, 2, *pair, **arg_dict)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'd'
>>> unpacking(1, 2, 3, 4, **arg_dict)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'd'

Positional arguments take priority over any other form of argument passing
>>> unpacking(1, 2, **arg_dict, c=3)
1 2 3 4 () {'not_a_parameter': 75}
>>> unpacking(1, 2, 3, **arg_dict, c=3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unpacking() got multiple values for argument 'c'

Section 33.16: Defining a function with multiple arguments
One can give a function as many arguments as one wants, the only fixed rules are that each argument name must
be unique and that optional arguments must be after the not-optional ones:

def func(value1, value2, optionalvalue=10):
 return '{0} {1} {2}'.format(value1, value2, optionalvalue1)

When calling the function you can either give each keyword without the name but then the order matters:

print(func(1, 'a', 100))
Out: 1 a 100

print(func('abc', 14))
abc 14 10

Or combine giving the arguments with name and without. Then the ones with name must follow those without but
the order of the ones with name doesn't matter:

print(func('This', optionalvalue='StackOverflow Documentation', value2='is'))
Out: This is StackOverflow Documentation

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 199

Chapter 34: Defining functions with list
arguments
Section 34.1: Function and Call
Lists as arguments are just another variable:

def func(myList):
 for item in myList:
 print(item)

and can be passed in the function call itself:

func([1,2,3,5,7])

1
2
3
5
7

Or as a variable:

aList = ['a','b','c','d']
func(aList)

a
b
c
d

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F

GoalKicker.com – Python® Notes for Professionals 201

Chapter 35: Functional Programming in
Python
Functional programming decomposes a problem into a set of functions. Ideally, functions only take inputs and
produce outputs, and don’t have any internal state that affects the output produced for a given input.below are
functional techniques common to many languages: such as lambda, map, reduce.

Section 35.1: Lambda Function
An anonymous, inlined function defined with lambda. The parameters of the lambda are defined to the left of the
colon. The function body is defined to the right of the colon. The result of running the function body is (implicitly)
returned.

s=lambda x:x*x
s(2) =>4

Section 35.2: Map Function
Map takes a function and a collection of items. It makes a new, empty collection, runs the function on each item in
the original collection and inserts each return value into the new collection. It returns the new collection.

This is a simple map that takes a list of names and returns a list of the lengths of those names:

name_lengths = map(len, ["Mary", "Isla", "Sam"])
print(name_lengths) =>[4, 4, 3]

Section 35.3: Reduce Function
Reduce takes a function and a collection of items. It returns a value that is created by combining the items.

This is a simple reduce. It returns the sum of all the items in the collection.

total = reduce(lambda a, x: a + x, [0, 1, 2, 3, 4])
print(total) =>10

Section 35.4: Filter Function
Filter takes a function and a collection. It returns a collection of every item for which the function returned True.

arr=[1,2,3,4,5,6]
[i for i in filter(lambda x:x>4,arr)] # outputs[5,6]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 202

Chapter 36: Partial functions
Param details
x the number to be raised

y the exponent

raise the function to be specialized

As you probably know if you came from OOP school, specializing an abstract class and use it is a practice you
should keep in mind when writing your code.

What if you could define an abstract function and specialize it in order to create different versions of it? Thinks it as
a sort of function Inheritance where you bind specific params to make them reliable for a specific scenario.

Section 36.1: Raise the power
Let's suppose we want raise x to a number y.

You'd write this as:

def raise_power(x, y):
 return x**y

What if your y value can assume a finite set of values?

Let's suppose y can be one of [3,4,5] and let's say you don't want offer end user the possibility to use such function
since it is very computationally intensive. In fact you would check if provided y assumes a valid value and rewrite
your function as:

def raise(x, y):
 if y in (3,4,5):
 return x**y
 raise NumberNotInRangeException("You should provide a valid exponent")

Messy? Let's use the abstract form and specialize it to all three cases: let's implement them partially.

from functors import partial
raise_to_three = partial(raise, y=3)
raise_to_four = partial(raise, y=4)
raise_to_five = partial(raise, y=5)

What happens here? We fixed the y params and we defined three different functions.

No need to use the abstract function defined above (you could make it private) but you could use partial applied
functions to deal with raising a number to a fixed value.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 203

Chapter 37: Decorators
Parameter Details
f The function to be decorated (wrapped)

Decorator functions are software design patterns. They dynamically alter the functionality of a function, method, or
class without having to directly use subclasses or change the source code of the decorated function. When used
correctly, decorators can become powerful tools in the development process. This topic covers implementation and
applications of decorator functions in Python.

Section 37.1: Decorator function
Decorators augment the behavior of other functions or methods. Any function that takes a function as a parameter
and returns an augmented function can be used as a decorator.

This simplest decorator does nothing to the function being decorated. Such
minimal decorators can occasionally be used as a kind of code markers.
def super_secret_function(f):
 return f

@super_secret_function
def my_function():
 print("This is my secret function.")

The @-notation is syntactic sugar that is equivalent to the following:

my_function = super_secret_function(my_function)

It is important to bear this in mind in order to understand how the decorators work. This "unsugared" syntax makes
it clear why the decorator function takes a function as an argument, and why it should return another function. It
also demonstrates what would happen if you don't return a function:

def disabled(f):
 """
 This function returns nothing, and hence removes the decorated function
 from the local scope.
 """
 pass

@disabled
def my_function():
 print("This function can no longer be called...")

my_function()
TypeError: 'NoneType' object is not callable

Thus, we usually define a new function inside the decorator and return it. This new function would first do
something that it needs to do, then call the original function, and finally process the return value. Consider this
simple decorator function that prints the arguments that the original function receives, then calls it.

#This is the decorator
def print_args(func):
 def inner_func(*args, **kwargs):
 print(args)
 print(kwargs)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 204

 return func(*args, **kwargs) #Call the original function with its arguments.
 return inner_func

@print_args
def multiply(num_a, num_b):
 return num_a * num_b

print(multiply(3, 5))
#Output:
(3,5) - This is actually the 'args' that the function receives.
{} - This is the 'kwargs', empty because we didn't specify keyword arguments.
15 - The result of the function.

Section 37.2: Decorator class
As mentioned in the introduction, a decorator is a function that can be applied to another function to augment its
behavior. The syntactic sugar is equivalent to the following: my_func = decorator(my_func). But what if the
decorator was instead a class? The syntax would still work, except that now my_func gets replaced with an instance
of the decorator class. If this class implements the __call__() magic method, then it would still be possible to use
my_func as if it was a function:

class Decorator(object):
 """Simple decorator class."""

 def __init__(self, func):
 self.func = func

 def __call__(self, *args, **kwargs):
 print('Before the function call.')
 res = self.func(*args, **kwargs)
 print('After the function call.')
 return res

@Decorator
def testfunc():
 print('Inside the function.')

testfunc()
Before the function call.
Inside the function.
After the function call.

Note that a function decorated with a class decorator will no longer be considered a "function" from type-checking
perspective:

import types
isinstance(testfunc, types.FunctionType)
False
type(testfunc)
<class '__main__.Decorator'>

Decorating Methods

For decorating methods you need to define an additional __get__-method:

from types import MethodType

class Decorator(object):
 def __init__(self, func):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 205

 self.func = func

 def __call__(self, *args, **kwargs):
 print('Inside the decorator.')
 return self.func(*args, **kwargs)

 def __get__(self, instance, cls):
 # Return a Method if it is called on an instance
 return self if instance is None else MethodType(self, instance)

class Test(object):
 @Decorator
 def __init__(self):
 pass

a = Test()

Inside the decorator.

Warning!

Class Decorators only produce one instance for a specific function so decorating a method with a class decorator
will share the same decorator between all instances of that class:

from types import MethodType

class CountCallsDecorator(object):
 def __init__(self, func):
 self.func = func
 self.ncalls = 0 # Number of calls of this method

 def __call__(self, *args, **kwargs):
 self.ncalls += 1 # Increment the calls counter
 return self.func(*args, **kwargs)

 def __get__(self, instance, cls):
 return self if instance is None else MethodType(self, instance)

class Test(object):
 def __init__(self):
 pass

 @CountCallsDecorator
 def do_something(self):
 return 'something was done'

a = Test()
a.do_something()
a.do_something.ncalls # 1
b = Test()
b.do_something()
b.do_something.ncalls # 2

Section 37.3: Decorator with arguments (decorator factory)
A decorator takes just one argument: the function to be decorated. There is no way to pass other arguments.

But additional arguments are often desired. The trick is then to make a function which takes arbitrary arguments

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 206

and returns a decorator.

Decorator functions
def decoratorfactory(message):
 def decorator(func):
 def wrapped_func(*args, **kwargs):
 print('The decorator wants to tell you: {}'.format(message))
 return func(*args, **kwargs)
 return wrapped_func
 return decorator

@decoratorfactory('Hello World')
def test():
 pass

test()

The decorator wants to tell you: Hello World

Important Note:

With such decorator factories you must call the decorator with a pair of parentheses:

@decoratorfactory # Without parentheses
def test():
 pass

test()

TypeError: decorator() missing 1 required positional argument: 'func'

Decorator classes
def decoratorfactory(*decorator_args, **decorator_kwargs):

 class Decorator(object):
 def __init__(self, func):
 self.func = func

 def __call__(self, *args, **kwargs):
 print('Inside the decorator with arguments {}'.format(decorator_args))
 return self.func(*args, **kwargs)

 return Decorator

@decoratorfactory(10)
def test():
 pass

test()

Inside the decorator with arguments (10,)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 207

Section 37.4: Making a decorator look like the decorated
function
Decorators normally strip function metadata as they aren't the same. This can cause problems when using meta-
programming to dynamically access function metadata. Metadata also includes function's docstrings and its name.
functools.wraps makes the decorated function look like the original function by copying several attributes to the
wrapper function.

from functools import wraps

The two methods of wrapping a decorator are achieving the same thing in hiding that the original function has
been decorated. There is no reason to prefer the function version to the class version unless you're already using
one over the other.

As a function
def decorator(func):
 # Copies the docstring, name, annotations and module to the decorator
 @wraps(func)
 def wrapped_func(*args, **kwargs):
 return func(*args, **kwargs)
 return wrapped_func

@decorator
def test():
 pass

test.__name__

'test'

As a class
class Decorator(object):
 def __init__(self, func):
 # Copies name, module, annotations and docstring to the instance.
 self._wrapped = wraps(func)(self)

 def __call__(self, *args, **kwargs):
 return self._wrapped(*args, **kwargs)

@Decorator
def test():
 """Docstring of test."""
 pass

test.__doc__

'Docstring of test.'

Section 37.5: Using a decorator to time a function
import time
def timer(func):
 def inner(*args, **kwargs):

https://docs.python.org/3.5/library/functools.html#functools.wraps
https://docs.python.org/3.5/library/functools.html#functools.wraps
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 208

 t1 = time.time()
 f = func(*args, **kwargs)
 t2 = time.time()
 print 'Runtime took {0} seconds'.format(t2-t1)
 return f
 return inner

@timer
def example_function():
 #do stuff

example_function()

Section 37.6: Create singleton class with a decorator
A singleton is a pattern that restricts the instantiation of a class to one instance/object. Using a decorator, we can
define a class as a singleton by forcing the class to either return an existing instance of the class or create a new
instance (if it doesn't exist).

def singleton(cls):
 instance = [None]
 def wrapper(*args, **kwargs):
 if instance[0] is None:
 instance[0] = cls(*args, **kwargs)
 return instance[0]

 return wrapper

This decorator can be added to any class declaration and will make sure that at most one instance of the class is
created. Any subsequent calls will return the already existing class instance.

@singleton
class SomeSingletonClass:
 x = 2
 def __init__(self):
 print("Created!")

instance = SomeSingletonClass() # prints: Created!
instance = SomeSingletonClass() # doesn't print anything
print(instance.x) # 2

instance.x = 3
print(SomeSingletonClass().x) # 3

So it doesn't matter whether you refer to the class instance via your local variable or whether you create another
"instance", you always get the same object.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 209

Chapter 38: Classes
Python offers itself not only as a popular scripting language, but also supports the object-oriented programming
paradigm. Classes describe data and provide methods to manipulate that data, all encompassed under a single
object. Furthermore, classes allow for abstraction by separating concrete implementation details from abstract
representations of data.

Code utilizing classes is generally easier to read, understand, and maintain.

Section 38.1: Introduction to classes
A class, functions as a template that defines the basic characteristics of a particular object. Here's an example:

class Person(object):
 """A simple class.""" # docstring
 species = "Homo Sapiens" # class attribute

 def __init__(self, name): # special method
 """This is the initializer. It's a special
 method (see below).
 """
 self.name = name # instance attribute

 def __str__(self): # special method
 """This method is run when Python tries
 to cast the object to a string. Return
 this string when using print(), etc.
 """
 return self.name

 def rename(self, renamed): # regular method
 """Reassign and print the name attribute."""
 self.name = renamed
 print("Now my name is {}".format(self.name))

There are a few things to note when looking at the above example.

The class is made up of attributes (data) and methods (functions).1.
Attributes and methods are simply defined as normal variables and functions.2.
As noted in the corresponding docstring, the __init__() method is called the initializer. It's equivalent to the3.
constructor in other object oriented languages, and is the method that is first run when you create a new
object, or new instance of the class.
Attributes that apply to the whole class are defined first, and are called class attributes.4.
Attributes that apply to a specific instance of a class (an object) are called instance attributes. They are5.
generally defined inside __init__(); this is not necessary, but it is recommended (since attributes defined
outside of __init__() run the risk of being accessed before they are defined).
Every method, included in the class definition passes the object in question as its first parameter. The word6.
self is used for this parameter (usage of self is actually by convention, as the word self has no inherent
meaning in Python, but this is one of Python's most respected conventions, and you should always follow it).
Those used to object-oriented programming in other languages may be surprised by a few things. One is that7.
Python has no real concept of private elements, so everything, by default, imitates the behavior of the
C++/Java public keyword. For more information, see the "Private Class Members" example on this page.
Some of the class's methods have the following form: __functionname__(self, other_stuff). All such8.
methods are called "magic methods" and are an important part of classes in Python. For instance, operator
overloading in Python is implemented with magic methods. For more information, see the relevant

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 210

documentation.

Now let's make a few instances of our Person class!

>>> # Instances
>>> kelly = Person("Kelly")
>>> joseph = Person("Joseph")
>>> john_doe = Person("John Doe")

We currently have three Person objects, kelly, joseph, and john_doe.

We can access the attributes of the class from each instance using the dot operator . Note again the difference
between class and instance attributes:

>>> # Attributes
>>> kelly.species
'Homo Sapiens'
>>> john_doe.species
'Homo Sapiens'
>>> joseph.species
'Homo Sapiens'
>>> kelly.name
'Kelly'
>>> joseph.name
'Joseph'

We can execute the methods of the class using the same dot operator .:

>>> # Methods
>>> john_doe.__str__()
'John Doe'
>>> print(john_doe)
'John Doe'
>>> john_doe.rename("John")
'Now my name is John'

Section 38.2: Bound, unbound, and static methods
The idea of bound and unbound methods was removed in Python 3. In Python 3 when you declare a method within
a class, you are using a def keyword, thus creating a function object. This is a regular function, and the surrounding
class works as its namespace. In the following example we declare method f within class A, and it becomes a
function A.f:

Python 3.x Version ≥ 3.0

class A(object):
 def f(self, x):
 return 2 * x
A.f
<function A.f at ...> (in Python 3.x)

In Python 2 the behavior was different: function objects within the class were implicitly replaced with objects of type
instancemethod, which were called unbound methods because they were not bound to any particular class instance.
It was possible to access the underlying function using .__func__ property.

Python 2.x Version ≥ 2.3

A.f

https://python-history.blogspot.com/2009/02/first-class-everything.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 211

<unbound method A.f> (in Python 2.x)
A.f.__class__
<type 'instancemethod'>
A.f.__func__
<function f at ...>

The latter behaviors are confirmed by inspection - methods are recognized as functions in Python 3, while the
distinction is upheld in Python 2.

Python 3.x Version ≥ 3.0

import inspect

inspect.isfunction(A.f)
True
inspect.ismethod(A.f)
False

Python 2.x Version ≥ 2.3

import inspect

inspect.isfunction(A.f)
False
inspect.ismethod(A.f)
True

In both versions of Python function/method A.f can be called directly, provided that you pass an instance of class A
as the first argument.

A.f(1, 7)
Python 2: TypeError: unbound method f() must be called with
A instance as first argument (got int instance instead)
Python 3: 14
a = A()
A.f(a, 20)
Python 2 & 3: 40

Now suppose a is an instance of class A, what is a.f then? Well, intuitively this should be the same method f of class
A, only it should somehow "know" that it was applied to the object a – in Python this is called method bound to a.

The nitty-gritty details are as follows: writing a.f invokes the magic __getattribute__ method of a, which first
checks whether a has an attribute named f (it doesn't), then checks the class A whether it contains a method with
such a name (it does), and creates a new object m of type method which has the reference to the original A.f in
m.__func__, and a reference to the object a in m.__self__. When this object is called as a function, it simply does
the following: m(...) => m.__func__(m.__self__, ...). Thus this object is called a bound method because when
invoked it knows to supply the object it was bound to as the first argument. (These things work same way in Python
2 and 3).

a = A()
a.f
<bound method A.f of <__main__.A object at ...>>
a.f(2)
4

Note: the bound method object a.f is recreated *every time* you call it:
a.f is a.f # False
As a performance optimization you can store the bound method in the object's
__dict__, in which case the method object will remain fixed:
a.f = a.f

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 212

a.f is a.f # True

Finally, Python has class methods and static methods – special kinds of methods. Class methods work the same
way as regular methods, except that when invoked on an object they bind to the class of the object instead of to the
object. Thus m.__self__ = type(a). When you call such bound method, it passes the class of a as the first
argument. Static methods are even simpler: they don't bind anything at all, and simply return the underlying
function without any transformations.

class D(object):
 multiplier = 2

 @classmethod
 def f(cls, x):
 return cls.multiplier * x

 @staticmethod
 def g(name):
 print("Hello, %s" % name)

D.f
<bound method type.f of <class '__main__.D'>>
D.f(12)
24
D.g
<function D.g at ...>
D.g("world")
Hello, world

Note that class methods are bound to the class even when accessed on the instance:

d = D()
d.multiplier = 1337
(D.multiplier, d.multiplier)
(2, 1337)
d.f
<bound method D.f of <class '__main__.D'>>
d.f(10)
20

It is worth noting that at the lowest level, functions, methods, staticmethods, etc. are actually descriptors that
invoke __get__, __set__ and optionally __del__ special methods. For more details on classmethods and
staticmethods:

What is the difference between @staticmethod and @classmethod in Python?
Meaning of @classmethod and @staticmethod for beginner?

Section 38.3: Basic inheritance
Inheritance in Python is based on similar ideas used in other object oriented languages like Java, C++ etc. A new
class can be derived from an existing class as follows.

class BaseClass(object):
 pass

class DerivedClass(BaseClass):
 pass

http://stackoverflow.com/questions/136097/what-is-the-difference-between-staticmethod-and-classmethod-in-python
http://stackoverflow.com/questions/12179271/python-classmethod-and-staticmethod-for-beginner
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 213

The BaseClass is the already existing (parent) class, and the DerivedClass is the new (child) class that inherits (or
subclasses) attributes from BaseClass. Note: As of Python 2.2, all classes implicitly inherit from the object class,
which is the base class for all built-in types.

We define a parent Rectangle class in the example below, which implicitly inherits from object:

class Rectangle():
 def __init__(self, w, h):
 self.w = w
 self.h = h

 def area(self):
 return self.w * self.h

 def perimeter(self):
 return 2 * (self.w + self.h)

The Rectangle class can be used as a base class for defining a Square class, as a square is a special case of
rectangle.

class Square(Rectangle):
 def __init__(self, s):
 # call parent constructor, w and h are both s
 super(Square, self).__init__(s, s)
 self.s = s

The Square class will automatically inherit all attributes of the Rectangle class as well as the object class. super() is
used to call the __init__() method of Rectangle class, essentially calling any overridden method of the base class.
Note: in Python 3, super() does not require arguments.

Derived class objects can access and modify the attributes of its base classes:

r.area()
Output: 12
r.perimeter()
Output: 14

s.area()
Output: 4
s.perimeter()
Output: 8

Built-in functions that work with inheritance

issubclass(DerivedClass, BaseClass): returns True if DerivedClass is a subclass of the BaseClass

isinstance(s, Class): returns True if s is an instance of Class or any of the derived classes of Class

subclass check
issubclass(Square, Rectangle)
Output: True

instantiate
r = Rectangle(3, 4)
s = Square(2)

isinstance(r, Rectangle)
Output: True
isinstance(r, Square)

https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 214

Output: False
A rectangle is not a square

isinstance(s, Rectangle)
Output: True
A square is a rectangle
isinstance(s, Square)
Output: True

Section 38.4: Monkey Patching
In this case, "monkey patching" means adding a new variable or method to a class after it's been defined. For
instance, say we defined class A as

class A(object):
 def __init__(self, num):
 self.num = num

 def __add__(self, other):
 return A(self.num + other.num)

But now we want to add another function later in the code. Suppose this function is as follows.

def get_num(self):
 return self.num

But how do we add this as a method in A? That's simple we just essentially place that function into A with an
assignment statement.

A.get_num = get_num

Why does this work? Because functions are objects just like any other object, and methods are functions that
belong to the class.

The function get_num shall be available to all existing (already created) as well to the new instances of A

These additions are available on all instances of that class (or its subclasses) automatically. For example:

foo = A(42)

A.get_num = get_num

bar = A(6);

foo.get_num() # 42

bar.get_num() # 6

Note that, unlike some other languages, this technique does not work for certain built-in types, and it is not
considered good style.

Section 38.5: New-style vs. old-style classes
Python 2.x Version ≥ 2.2.0

New-style classes were introduced in Python 2.2 to unify classes and types. They inherit from the top-level object

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 215

type. A new-style class is a user-defined type, and is very similar to built-in types.

new-style class
class New(object):
 pass

new-style instance
new = New()

new.__class__
<class '__main__.New'>
type(new)
<class '__main__.New'>
issubclass(New, object)
True

Old-style classes do not inherit from object. Old-style instances are always implemented with a built-in instance
type.

old-style class
class Old:
 pass

old-style instance
old = Old()

old.__class__
<class __main__.Old at ...>
type(old)
<type 'instance'>
issubclass(Old, object)
False

Python 3.x Version ≥ 3.0.0

In Python 3, old-style classes were removed.

New-style classes in Python 3 implicitly inherit from object, so there is no need to specify MyClass(object)
anymore.

class MyClass:
 pass

my_inst = MyClass()

type(my_inst)
<class '__main__.MyClass'>
my_inst.__class__
<class '__main__.MyClass'>
issubclass(MyClass, object)
True

Section 38.6: Class methods: alternate initializers
Class methods present alternate ways to build instances of classes. To illustrate, let's look at an example.

Let's suppose we have a relatively simple Person class:

class Person(object):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 216

 def __init__(self, first_name, last_name, age):
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.full_name = first_name + " " + last_name

 def greet(self):
 print("Hello, my name is " + self.full_name + ".")

It might be handy to have a way to build instances of this class specifying a full name instead of first and last name
separately. One way to do this would be to have last_name be an optional parameter, and assuming that if it isn't
given, we passed the full name in:

class Person(object):

 def __init__(self, first_name, age, last_name=None):
 if last_name is None:
 self.first_name, self.last_name = first_name.split(" ", 2)
 else:
 self.first_name = first_name
 self.last_name = last_name

 self.full_name = self.first_name + " " + self.last_name
 self.age = age

 def greet(self):
 print("Hello, my name is " + self.full_name + ".")

However, there are two main problems with this bit of code:

The parameters first_name and last_name are now misleading, since you can enter a full name for1.
first_name. Also, if there are more cases and/or more parameters that have this kind of flexibility, the
if/elif/else branching can get annoying fast.

Not quite as important, but still worth pointing out: what if last_name is None, but first_name doesn't split2.
into two or more things via spaces? We have yet another layer of input validation and/or exception
handling...

Enter class methods. Rather than having a single initializer, we will create a separate initializer, called
from_full_name, and decorate it with the (built-in) classmethod decorator.

class Person(object):

 def __init__(self, first_name, last_name, age):
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.full_name = first_name + " " + last_name

 @classmethod
 def from_full_name(cls, name, age):
 if " " not in name:
 raise ValueError
 first_name, last_name = name.split(" ", 2)
 return cls(first_name, last_name, age)

 def greet(self):
 print("Hello, my name is " + self.full_name + ".")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 217

Notice cls instead of self as the first argument to from_full_name. Class methods are applied to the overall class,
not an instance of a given class (which is what self usually denotes). So, if cls is our Person class, then the returned
value from the from_full_name class method is Person(first_name, last_name, age), which uses Person's
__init__ to create an instance of the Person class. In particular, if we were to make a subclass Employee of Person,
then from_full_name would work in the Employee class as well.

To show that this works as expected, let's create instances of Person in more than one way without the branching
in __init__:

In [2]: bob = Person("Bob", "Bobberson", 42)

In [3]: alice = Person.from_full_name("Alice Henderson", 31)

In [4]: bob.greet()
Hello, my name is Bob Bobberson.

In [5]: alice.greet()
Hello, my name is Alice Henderson.

Other references:

Python @classmethod and @staticmethod for beginner?

https://docs.python.org/2/library/functions.html#classmethod

https://docs.python.org/3.5/library/functions.html#classmethod

Section 38.7: Multiple Inheritance
Python uses the C3 linearization algorithm to determine the order in which to resolve class attributes, including
methods. This is known as the Method Resolution Order (MRO).

Here's a simple example:

class Foo(object):
 foo = 'attr foo of Foo'

class Bar(object):
 foo = 'attr foo of Bar' # we won't see this.
 bar = 'attr bar of Bar'

class FooBar(Foo, Bar):
 foobar = 'attr foobar of FooBar'

Now if we instantiate FooBar, if we look up the foo attribute, we see that Foo's attribute is found first

fb = FooBar()

and

>>> fb.foo
'attr foo of Foo'

Here's the MRO of FooBar:

http://stackoverflow.com/questions/12179271/python-classmethod-and-staticmethod-for-beginner
https://docs.python.org/2/library/functions.html#classmethod
https://docs.python.org/3.5/library/functions.html#classmethod
https://en.wikipedia.org/wiki/C3_linearization
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 218

>>> FooBar.mro()
[<class '__main__.FooBar'>, <class '__main__.Foo'>, <class '__main__.Bar'>, <type 'object'>]

It can be simply stated that Python's MRO algorithm is

Depth first (e.g. FooBar then Foo) unless1.
a shared parent (object) is blocked by a child (Bar) and2.
no circular relationships allowed.3.

That is, for example, Bar cannot inherit from FooBar while FooBar inherits from Bar.

For a comprehensive example in Python, see the wikipedia entry.

Another powerful feature in inheritance is super. super can fetch parent classes features.

class Foo(object):
 def foo_method(self):
 print "foo Method"

class Bar(object):
 def bar_method(self):
 print "bar Method"

class FooBar(Foo, Bar):
 def foo_method(self):
 super(FooBar, self).foo_method()

Multiple inheritance with init method of class, when every class has own init method then we try for multiple
inheritance then only init method get called of class which is inherit first.

for below example only Foo class init method getting called Bar class init not getting called

 class Foo(object):
 def __init__(self):
 print "foo init"

 class Bar(object):
 def __init__(self):
 print "bar init"

 class FooBar(Foo, Bar):
 def __init__(self):
 print "foobar init"
 super(FooBar, self).__init__()

 a = FooBar()

Output:

 foobar init
 foo init

But it doesn't mean that Bar class is not inherit. Instance of final FooBar class is also instance of Bar class and Foo
class.

print isinstance(a,FooBar)
print isinstance(a,Foo)

https://en.wikipedia.org/wiki/C3_linearization
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 219

print isinstance(a,Bar)

Output:

True
True
True

Section 38.8: Properties
Python classes support properties, which look like regular object variables, but with the possibility of attaching
custom behavior and documentation.

class MyClass(object):

 def __init__(self):
 self._my_string = ""

 @property
 def string(self):
 """A profoundly important string."""
 return self._my_string

 @string.setter
 def string(self, new_value):
 assert isinstance(new_value, str), \
 "Give me a string, not a %r!" % type(new_value)
 self._my_string = new_value

 @string.deleter
 def x(self):
 self._my_string = None

The object's of class MyClass will appear to have a property .string, however it's behavior is now tightly controlled:

mc = MyClass()
mc.string = "String!"
print(mc.string)
del mc.string

As well as the useful syntax as above, the property syntax allows for validation, or other augmentations to be added
to those attributes. This could be especially useful with public APIs - where a level of help should be given to the
user.

Another common use of properties is to enable the class to present 'virtual attributes' - attributes which aren't
actually stored but are computed only when requested.

class Character(object):
 def __init__(name, max_hp):
 self._name = name
 self._hp = max_hp
 self._max_hp = max_hp

 # Make hp read only by not providing a set method
 @property
 def hp(self):
 return self._hp

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 220

 # Make name read only by not providing a set method
 @property
 def name(self):
 return self.name

 def take_damage(self, damage):
 self.hp -= damage
 self.hp = 0 if self.hp <0 else self.hp

 @property
 def is_alive(self):
 return self.hp != 0

 @property
 def is_wounded(self):
 return self.hp < self.max_hp if self.hp > 0 else False

 @property
 def is_dead(self):
 return not self.is_alive

bilbo = Character('Bilbo Baggins', 100)
bilbo.hp
out : 100
bilbo.hp = 200
out : AttributeError: can't set attribute
hp attribute is read only.

bilbo.is_alive
out : True
bilbo.is_wounded
out : False
bilbo.is_dead
out : False

bilbo.take_damage(50)

bilbo.hp
out : 50

bilbo.is_alive
out : True
bilbo.is_wounded
out : True
bilbo.is_dead
out : False

bilbo.take_damage(50)
bilbo.hp
out : 0

bilbo.is_alive
out : False
bilbo.is_wounded
out : False
bilbo.is_dead
out : True

Section 38.9: Default values for instance variables
If the variable contains a value of an immutable type (e.g. a string) then it is okay to assign a default value like this

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 221

class Rectangle(object):
 def __init__(self, width, height, color='blue'):
 self.width = width
 self.height = height
 self.color = color

 def area(self):
 return self.width * self.height

Create some instances of the class
default_rectangle = Rectangle(2, 3)
print(default_rectangle.color) # blue

red_rectangle = Rectangle(2, 3, 'red')
print(red_rectangle.color) # red

One needs to be careful when initializing mutable objects such as lists in the constructor. Consider the following
example:

class Rectangle2D(object):
 def __init__(self, width, height, pos=[0,0], color='blue'):
 self.width = width
 self.height = height
 self.pos = pos
 self.color = color

r1 = Rectangle2D(5,3)
r2 = Rectangle2D(7,8)
r1.pos[0] = 4
r1.pos # [4, 0]
r2.pos # [4, 0] r2's pos has changed as well

This behavior is caused by the fact that in Python default parameters are bound at function execution and not at
function declaration. To get a default instance variable that's not shared among instances, one should use a
construct like this:

class Rectangle2D(object):
 def __init__(self, width, height, pos=None, color='blue'):
 self.width = width
 self.height = height
 self.pos = pos or [0, 0] # default value is [0, 0]
 self.color = color

r1 = Rectangle2D(5,3)
r2 = Rectangle2D(7,8)
r1.pos[0] = 4
r1.pos # [4, 0]
r2.pos # [0, 0] r2's pos hasn't changed

See also Mutable Default Arguments and “Least Astonishment” and the Mutable Default Argument.

Section 38.10: Class and instance variables
Instance variables are unique for each instance, while class variables are shared by all instances.

class C:
 x = 2 # class variable

http://docs.python-guide.org/en/latest/writing/gotchas/#mutable-default-arguments
http://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
http://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
http://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
http://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 222

 def __init__(self, y):
 self.y = y # instance variable

C.x
2
C.y
AttributeError: type object 'C' has no attribute 'y'

c1 = C(3)
c1.x
2
c1.y
3

c2 = C(4)
c2.x
2
c2.y
4

Class variables can be accessed on instances of this class, but assigning to the class attribute will create an instance
variable which shadows the class variable

c2.x = 4
c2.x
4
C.x
2

Note that mutating class variables from instances can lead to some unexpected consequences.

class D:
 x = []
 def __init__(self, item):
 self.x.append(item) # note that this is not an assignment!

d1 = D(1)
d2 = D(2)

d1.x
[1, 2]
d2.x
[1, 2]
D.x
[1, 2]

Section 38.11: Class composition
Class composition allows explicit relations between objects. In this example, people live in cities that belong to
countries. Composition allows people to access the number of all people living in their country:

class Country(object):
 def __init__(self):
 self.cities=[]

 def addCity(self,city):
 self.cities.append(city)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 223

class City(object):
 def __init__(self, numPeople):
 self.people = []
 self.numPeople = numPeople

 def addPerson(self, person):
 self.people.append(person)

 def join_country(self,country):
 self.country = country
 country.addCity(self)

 for i in range(self.numPeople):
 person(i).join_city(self)

class Person(object):
 def __init__(self, ID):
 self.ID=ID

 def join_city(self, city):
 self.city = city
 city.addPerson(self)

 def people_in_my_country(self):
 x= sum([len(c.people) for c in self.city.country.cities])
 return x

US=Country()
NYC=City(10).join_country(US)
SF=City(5).join_country(US)

print(US.cities[0].people[0].people_in_my_country())

15

Section 38.12: Listing All Class Members
The dir() function can be used to get a list of the members of a class:

dir(Class)

For example:

>>> dir(list)
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__',
'__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__',
'__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count',
'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

It is common to look only for "non-magic" members. This can be done using a simple comprehension that lists
members with names not starting with __:

>>> [m for m in dir(list) if not m.startswith('__')]
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse',
'sort']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 224

Caveats:

Classes can define a __dir__() method. If that method exists calling dir() will call __dir__(), otherwise Python
will try to create a list of members of the class. This means that the dir function can have unexpected results. Two
quotes of importance from the official python documentation:

If the object does not provide dir(), the function tries its best to gather information from the object’s dict
attribute, if defined, and from its type object. The resulting list is not necessarily complete, and may be
inaccurate when the object has a custom getattr().

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases. For example, metaclass attributes are not
in the result list when the argument is a class.

Section 38.13: Singleton class
A singleton is a pattern that restricts the instantiation of a class to one instance/object. For more info on python
singleton design patterns, see here.

class Singleton:
 def __new__(cls):
 try:
 it = cls.__it__
 except AttributeError:
 it = cls.__it__ = object.__new__(cls)
 return it

 def __repr__(self):
 return '<{}>'.format(self.__class__.__name__.upper())

 def __eq__(self, other):
 return other is self

Another method is to decorate your class. Following the example from this answer create a Singleton class:

class Singleton:
 """
 A non-thread-safe helper class to ease implementing singletons.
 This should be used as a decorator -- not a metaclass -- to the
 class that should be a singleton.

 The decorated class can define one `__init__` function that
 takes only the `self` argument. Other than that, there are
 no restrictions that apply to the decorated class.

 To get the singleton instance, use the `Instance` method. Trying
 to use `__call__` will result in a `TypeError` being raised.

 Limitations: The decorated class cannot be inherited from.

 """

 def __init__(self, decorated):

https://docs.python.org/3.4/library/functions.html#dir
http://python-3-patterns-idioms-test.readthedocs.io/en/latest/Singleton.html
http://stackoverflow.com/a/7346105/3462319
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 225

 self._decorated = decorated

 def Instance(self):
 """
 Returns the singleton instance. Upon its first call, it creates a
 new instance of the decorated class and calls its `__init__` method.
 On all subsequent calls, the already created instance is returned.

 """
 try:
 return self._instance
 except AttributeError:
 self._instance = self._decorated()
 return self._instance

 def __call__(self):
 raise TypeError('Singletons must be accessed through `Instance()`.')

 def __instancecheck__(self, inst):
 return isinstance(inst, self._decorated)

To use you can use the Instance method

@Singleton
class Single:
 def __init__(self):
 self.name=None
 self.val=0
 def getName(self):
 print(self.name)

x=Single.Instance()
y=Single.Instance()
x.name='I\'m single'
x.getName() # outputs I'm single
y.getName() # outputs I'm single

Section 38.14: Descriptors and Dotted Lookups
Descriptors are objects that are (usually) attributes of classes and that have any of __get__, __set__, or
__delete__ special methods.

Data Descriptors have any of __set__, or __delete__

These can control the dotted lookup on an instance, and are used to implement functions, staticmethod,
classmethod, and property. A dotted lookup (e.g. instance foo of class Foo looking up attribute bar - i.e. foo.bar)
uses the following algorithm:

bar is looked up in the class, Foo. If it is there and it is a Data Descriptor, then the data descriptor is used.1.
That's how property is able to control access to data in an instance, and instances cannot override this. If a
Data Descriptor is not there, then

bar is looked up in the instance __dict__. This is why we can override or block methods being called from an2.
instance with a dotted lookup. If bar exists in the instance, it is used. If not, we then

look in the class Foo for bar. If it is a Descriptor, then the descriptor protocol is used. This is how functions3.
(in this context, unbound methods), classmethod, and staticmethod are implemented. Else it simply returns
the object there, or there is an AttributeError

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 226

Chapter 39: Metaclasses
Metaclasses allow you to deeply modify the behaviour of Python classes (in terms of how they're defined,
instantiated, accessed, and more) by replacing the type metaclass that new classes use by default.

Section 39.1: Basic Metaclasses
When type is called with three arguments it behaves as the (meta)class it is, and creates a new instance, ie. it
produces a new class/type.

Dummy = type('OtherDummy', (), dict(x=1))
Dummy.__class__ # <type 'type'>
Dummy().__class__.__class__ # <type 'type'>

It is possible to subclass type to create an custom metaclass.

class mytype(type):
 def __init__(cls, name, bases, dict):
 # call the base initializer
 type.__init__(cls, name, bases, dict)

 # perform custom initialization...
 cls.__custom_attribute__ = 2

Now, we have a new custom mytype metaclass which can be used to create classes in the same manner as type.

MyDummy = mytype('MyDummy', (), dict(x=2))
MyDummy.__class__ # <class '__main__.mytype'>
MyDummy().__class__.__class__ # <class '__main__.mytype'>
MyDummy.__custom_attribute__ # 2

When we create a new class using the class keyword the metaclass is by default chosen based on upon the
baseclasses.

>>> class Foo(object):
... pass

>>> type(Foo)
type

In the above example the only baseclass is object so our metaclass will be the type of object, which is type. It is
possible override the default, however it depends on whether we use Python 2 or Python 3:

Python 2.x Version ≤ 2.7

A special class-level attribute __metaclass__ can be used to specify the metaclass.

class MyDummy(object):
 __metaclass__ = mytype
type(MyDummy) # <class '__main__.mytype'>

Python 3.x Version ≥ 3.0

A special metaclass keyword argument specify the metaclass.

class MyDummy(metaclass=mytype):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 227

 pass
type(MyDummy) # <class '__main__.mytype'>

Any keyword arguments (except metaclass) in the class declaration will be passed to the metaclass. Thus class
MyDummy(metaclass=mytype, x=2) will pass x=2 as a keyword argument to the mytype constructor.

Read this in-depth description of python meta-classes for more details.

Section 39.2: Singletons using metaclasses
A singleton is a pattern that restricts the instantiation of a class to one instance/object. For more info on python
singleton design patterns, see here.

class SingletonType(type):
 def __call__(cls, *args, **kwargs):
 try:
 return cls.__instance
 except AttributeError:
 cls.__instance = super(SingletonType, cls).__call__(*args, **kwargs)
 return cls.__instance

Python 2.x Version ≤ 2.7

class MySingleton(object):
 __metaclass__ = SingletonType

Python 3.x Version ≥ 3.0

class MySingleton(metaclass=SingletonType):
 pass

MySingleton() is MySingleton() # True, only one instantiation occurs

Section 39.3: Using a metaclass
Metaclass syntax
Python 2.x Version ≤ 2.7

class MyClass(object):
 __metaclass__ = SomeMetaclass

Python 3.x Version ≥ 3.0

class MyClass(metaclass=SomeMetaclass):
 pass

Python 2 and 3 compatibility with six
import six

class MyClass(six.with_metaclass(SomeMetaclass)):
 pass

Section 39.4: Introduction to Metaclasses
What is a metaclass?

In Python, everything is an object: integers, strings, lists, even functions and classes themselves are objects. And
every object is an instance of a class.

To check the class of an object x, one can call type(x), so:

http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python/6581949#6581949
http://python-3-patterns-idioms-test.readthedocs.io/en/latest/Singleton.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 228

>>> type(5)
<type 'int'>
>>> type(str)
<type 'type'>
>>> type([1, 2, 3])
<type 'list'>

>>> class C(object):
... pass
...
>>> type(C)
<type 'type'>

Most classes in python are instances of type. type itself is also a class. Such classes whose instances are also
classes are called metaclasses.

The Simplest Metaclass

OK, so there is already one metaclass in Python: type. Can we create another one?

class SimplestMetaclass(type):
 pass

class MyClass(object):
 __metaclass__ = SimplestMetaclass

That does not add any functionality, but it is a new metaclass, see that MyClass is now an instance of
SimplestMetaclass:

>>> type(MyClass)
<class '__main__.SimplestMetaclass'>

A Metaclass which does Something

A metaclass which does something usually overrides type's __new__, to modify some properties of the class to be
created, before calling the original __new__ which creates the class:

class AnotherMetaclass(type):
 def __new__(cls, name, parents, dct):
 # cls is this class
 # name is the name of the class to be created
 # parents is the list of the class's parent classes
 # dct is the list of class's attributes (methods, static variables)

 # here all of the attributes can be modified before creating the class, e.g.

 dct['x'] = 8 # now the class will have a static variable x = 8

 # return value is the new class. super will take care of that
 return super(AnotherMetaclass, cls).__new__(cls, name, parents, dct)

Section 39.5: Custom functionality with metaclasses
Functionality in metaclasses can be changed so that whenever a class is built, a string is printed to standard
output, or an exception is thrown. This metaclass will print the name of the class being built.

class VerboseMetaclass(type):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 229

 def __new__(cls, class_name, class_parents, class_dict):
 print("Creating class ", class_name)
 new_class = super().__new__(cls, class_name, class_parents, class_dict)
 return new_class

You can use the metaclass like so:

class Spam(metaclass=VerboseMetaclass):
 def eggs(self):
 print("[insert example string here]")
s = Spam()
s.eggs()

The standard output will be:

Creating class Spam
[insert example string here]

Section 39.6: The default metaclass
You may have heard that everything in Python is an object. It is true, and all objects have a class:

>>> type(1)
int

The literal 1 is an instance of int. Let's declare a class:

>>> class Foo(object):
... pass
...

Now let's instantiate it:

>>> bar = Foo()

What is the class of bar?

>>> type(bar)
Foo

Nice, bar is an instance of Foo. But what is the class of Foo itself?

>>> type(Foo)
type

Ok, Foo itself is an instance of type. How about type itself?

>>> type(type)
type

So what is a metaclass? For now let's pretend it is just a fancy name for the class of a class. Takeaways:

Everything is an object in Python, so everything has a class
The class of a class is called a metaclass
The default metaclass is type, and by far it is the most common metaclass

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 230

But why should you know about metaclasses? Well, Python itself is quite "hackable", and the concept of metaclass
is important if you are doing advanced stuff like meta-programming or if you want to control how your classes are
initialized.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F

GoalKicker.com – Python® Notes for Professionals 232

Chapter 40: String Formatting
When storing and transforming data for humans to see, string formatting can become very important. Python
offers a wide variety of string formatting methods which are outlined in this topic.

Section 40.1: Basics of String Formatting
foo = 1
bar = 'bar'
baz = 3.14

You can use str.format to format output. Bracket pairs are replaced with arguments in the order in which the
arguments are passed:

print('{}, {} and {}'.format(foo, bar, baz))
Out: "1, bar and 3.14"

Indexes can also be specified inside the brackets. The numbers correspond to indexes of the arguments passed to
the str.format function (0-based).

print('{0}, {1}, {2}, and {1}'.format(foo, bar, baz))
Out: "1, bar, 3.14, and bar"
print('{0}, {1}, {2}, and {3}'.format(foo, bar, baz))
Out: index out of range error

Named arguments can be also used:

print("X value is: {x_val}. Y value is: {y_val}.".format(x_val=2, y_val=3))
Out: "X value is: 2. Y value is: 3."

Object attributes can be referenced when passed into str.format:

class AssignValue(object):
 def __init__(self, value):
 self.value = value
my_value = AssignValue(6)
print('My value is: {0.value}'.format(my_value)) # "0" is optional
Out: "My value is: 6"

Dictionary keys can be used as well:

my_dict = {'key': 6, 'other_key': 7}
print("My other key is: {0[other_key]}".format(my_dict)) # "0" is optional
Out: "My other key is: 7"

Same applies to list and tuple indices:

my_list = ['zero', 'one', 'two']
print("2nd element is: {0[2]}".format(my_list)) # "0" is optional
Out: "2nd element is: two"

Note: In addition to str.format, Python also provides the modulo operator %--also known as the string
formatting or interpolation operator (see PEP 3101)--for formatting strings. str.format is a successor of %

https://www.python.org/dev/peps/pep-3101/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 233

and it offers greater flexibility, for instance by making it easier to carry out multiple substitutions.

In addition to argument indexes, you can also include a format specification inside the curly brackets. This is an
expression that follows special rules and must be preceded by a colon (:). See the docs for a full description of
format specification. An example of format specification is the alignment directive :~^20 (^ stands for center
alignment, total width 20, fill with ~ character):

'{:~^20}'.format('centered')
Out: '~~~~~~centered~~~~~~'

format allows behaviour not possible with %, for example repetition of arguments:

t = (12, 45, 22222, 103, 6)
print '{0} {2} {1} {2} {3} {2} {4} {2}'.format(*t)
Out: 12 22222 45 22222 103 22222 6 22222

As format is a function, it can be used as an argument in other functions:

number_list = [12,45,78]
print map('the number is {}'.format, number_list)
Out: ['the number is 12', 'the number is 45', 'the number is 78']

from datetime import datetime,timedelta

once_upon_a_time = datetime(2010, 7, 1, 12, 0, 0)
delta = timedelta(days=13, hours=8, minutes=20)

gen = (once_upon_a_time + x * delta for x in xrange(5))

print '\n'.join(map('{:%Y-%m-%d %H:%M:%S}'.format, gen))
#Out: 2010-07-01 12:00:00
2010-07-14 20:20:00
2010-07-28 04:40:00
2010-08-10 13:00:00
2010-08-23 21:20:00

Section 40.2: Alignment and padding
Python 2.x Version ≥ 2.6

The format() method can be used to change the alignment of the string. You have to do it with a format expression
of the form :[fill_char][align_operator][width] where align_operator is one of:

< forces the field to be left-aligned within width.
> forces the field to be right-aligned within width.
^ forces the field to be centered within width.
= forces the padding to be placed after the sign (numeric types only).

fill_char (if omitted default is whitespace) is the character used for the padding.

'{:~<9s}, World'.format('Hello')
'Hello~~~~, World'

'{:~>9s}, World'.format('Hello')
'~~~~Hello, World'

https://docs.python.org/2/library/string.html#format-specification-mini-language
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 234

'{:~^9s}'.format('Hello')
'~~Hello~~'

'{:0=6d}'.format(-123)
'-00123'

Note: you could achieve the same results using the string functions ljust(), rjust(), center(), zfill(), however
these functions are deprecated since version 2.5.

Section 40.3: Format literals (f-string)
Literal format strings were introduced in PEP 498 (Python3.6 and upwards), allowing you to prepend f to the
beginning of a string literal to effectively apply .format to it with all variables in the current scope.

>>> foo = 'bar'
>>> f'Foo is {foo}'
'Foo is bar'

This works with more advanced format strings too, including alignment and dot notation.

>>> f'{foo:^7s}'
' bar '

Note: The f'' does not denote a particular type like b'' for bytes or u'' for unicode in python2. The formatting is
immediately applied, resulting in a normal string.

The format strings can also be nested:

>>> price = 478.23
>>> f"{f'${price:0.2f}':*>20s}"
'*************$478.23'

The expressions in an f-string are evaluated in left-to-right order. This is detectable only if the expressions have side
effects:

>>> def fn(l, incr):
... result = l[0]
... l[0] += incr
... return result
...
>>> lst = [0]
>>> f'{fn(lst,2)} {fn(lst,3)}'
'0 2'
>>> f'{fn(lst,2)} {fn(lst,3)}'
'5 7'
>>> lst
[10]

Section 40.4: Float formatting
>>> '{0:.0f}'.format(42.12345)
'42'

>>> '{0:.1f}'.format(42.12345)
'42.1'

>>> '{0:.3f}'.format(42.12345)

https://www.python.org/dev/peps/pep-0498/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 235

'42.123'

>>> '{0:.5f}'.format(42.12345)
'42.12345'

>>> '{0:.7f}'.format(42.12345)
'42.1234500'

Same hold for other way of referencing:

>>> '{:.3f}'.format(42.12345)
'42.123'

>>> '{answer:.3f}'.format(answer=42.12345)
'42.123'

Floating point numbers can also be formatted in scientific notation or as percentages:

>>> '{0:.3e}'.format(42.12345)
'4.212e+01'

>>> '{0:.0%}'.format(42.12345)
'4212%'

You can also combine the {0} and {name} notations. This is especially useful when you want to round all variables
to a pre-specified number of decimals with 1 declaration:

>>> s = 'Hello'
>>> a, b, c = 1.12345, 2.34567, 34.5678
>>> digits = 2

>>> '{0}! {1:.{n}f}, {2:.{n}f}, {3:.{n}f}'.format(s, a, b, c, n=digits)
'Hello! 1.12, 2.35, 34.57'

Section 40.5: Named placeholders
Format strings may contain named placeholders that are interpolated using keyword arguments to format.

Using a dictionary (Python 2.x)
>>> data = {'first': 'Hodor', 'last': 'Hodor!'}
>>> '{first} {last}'.format(**data)
'Hodor Hodor!'

Using a dictionary (Python 3.2+)
>>> '{first} {last}'.format_map(data)
'Hodor Hodor!'

str.format_map allows to use dictionaries without having to unpack them first. Also the class of data (which might
be a custom type) is used instead of a newly filled dict.

Without a dictionary:
>>> '{first} {last}'.format(first='Hodor', last='Hodor!')
'Hodor Hodor!'

https://en.wikipedia.org/wiki/Scientific_notation
https://docs.python.org/3/library/stdtypes.html?highlight=format_map#str.format_map
https://docs.python.org/3/library/stdtypes.html?highlight=format_map#str.format_map
https://docs.python.org/3/library/stdtypes.html?highlight=format_map#str.format_map
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 236

Section 40.6: String formatting with datetime
Any class can configure its own string formatting syntax through the __format__ method. A type in the standard
Python library that makes handy use of this is the datetime type, where one can use strftime-like formatting
codes directly within str.format:

>>> from datetime import datetime
>>> 'North America: {dt:%m/%d/%Y}. ISO: {dt:%Y-%m-%d}.'.format(dt=datetime.now())
'North America: 07/21/2016. ISO: 2016-07-21.'

A full list of list of datetime formatters can be found in the official documentation.

Section 40.7: Formatting Numerical Values
The .format() method can interpret a number in different formats, such as:

>>> '{:c}'.format(65) # Unicode character
'A'

>>> '{:d}'.format(0x0a) # base 10
'10'

>>> '{:n}'.format(0x0a) # base 10 using current locale for separators
'10'

Format integers to different bases (hex, oct, binary)

>>> '{0:x}'.format(10) # base 16, lowercase - Hexadecimal
'a'

>>> '{0:X}'.format(10) # base 16, uppercase - Hexadecimal
'A'

>>> '{:o}'.format(10) # base 8 - Octal
'12'

>>> '{:b}'.format(10) # base 2 - Binary
'1010'

>>> '{0:#b}, {0:#o}, {0:#x}'.format(42) # With prefix
'0b101010, 0o52, 0x2a'

>>> '8 bit: {0:08b}; Three bytes: {0:06x}'.format(42) # Add zero padding
'8 bit: 00101010; Three bytes: 00002a'

Use formatting to convert an RGB float tuple to a color hex string:

>>> r, g, b = (1.0, 0.4, 0.0)
>>> '#{:02X}{:02X}{:02X}'.format(int(255 * r), int(255 * g), int(255 * b))
'#FF6600'

Only integers can be converted:

>>> '{:x}'.format(42.0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: Unknown format code 'x' for object of type 'float'

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 237

Section 40.8: Nested formatting
Some formats can take additional parameters, such as the width of the formatted string, or the alignment:

>>> '{:.>10}'.format('foo')
'.......foo'

Those can also be provided as parameters to format by nesting more {} inside the {}:

>>> '{:.>{}}'.format('foo', 10)
'.......foo'
'{:{}{}{}}'.format('foo', '*', '^', 15)
'******foo******'

In the latter example, the format string '{:{}{}{}}' is modified to '{:*^15}' (i.e. "center and pad with * to total
length of 15") before applying it to the actual string 'foo' to be formatted that way.

This can be useful in cases when parameters are not known beforehand, for instances when aligning tabular data:

>>> data = ["a", "bbbbbbb", "ccc"]
>>> m = max(map(len, data))
>>> for d in data:
... print('{:>{}}'.format(d, m))
 a
bbbbbbb
 ccc

Section 40.9: Format using Getitem and Getattr
Any data structure that supports __getitem__ can have their nested structure formatted:

person = {'first': 'Arthur', 'last': 'Dent'}
'{p[first]} {p[last]}'.format(p=person)
'Arthur Dent'

Object attributes can be accessed using getattr():

class Person(object):
 first = 'Zaphod'
 last = 'Beeblebrox'

'{p.first} {p.last}'.format(p=Person())
'Zaphod Beeblebrox'

Section 40.10: Padding and truncating strings, combined
Say you want to print variables in a 3 character column.

Note: doubling { and } escapes them.

s = """

pad
{{:3}} :{a:3}:

truncate

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 238

{{:.3}} :{e:.3}:

combined
{{:>3.3}} :{a:>3.3}:
{{:3.3}} :{a:3.3}:
{{:3.3}} :{c:3.3}:
{{:3.3}} :{e:3.3}:
"""

print (s.format(a="1"*1, c="3"*3, e="5"*5))

Output:

pad
{:3} :1 :

truncate
{:.3} :555:

combined
{:>3.3} : 1:
{:3.3} :1 :
{:3.3} :333:
{:3.3} :555:

Section 40.11: Custom formatting for a class
Note:

Everything below applies to the str.format method, as well as the format function. In the text below, the
two are interchangeable.

For every value which is passed to the format function, Python looks for a __format__ method for that argument.
Your own custom class can therefore have their own __format__ method to determine how the format function will
display and format your class and it's attributes.

This is different than the __str__ method, as in the __format__ method you can take into account the formatting
language, including alignment, field width etc, and even (if you wish) implement your own format specifiers, and
your own formatting language extensions.1

object.__format__(self, format_spec)

For example:

Example in Python 2 - but can be easily applied to Python 3

class Example(object):
 def __init__(self,a,b,c):
 self.a, self.b, self.c = a,b,c

 def __format__(self, format_spec):
 """ Implement special semantics for the 's' format specifier """
 # Reject anything that isn't an s
 if format_spec[-1] != 's':
 raise ValueError('{} format specifier not understood for this object',
format_spec[:-1])

https://docs.python.org/2.7/library/string.html#formatspec
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 239

 # Output in this example will be (<a>,,<c>)
 raw = "(" + ",".join([str(self.a), str(self.b), str(self.c)]) + ")"
 # Honor the format language by using the inbuilt string format
 # Since we know the original format_spec ends in an 's'
 # we can take advantage of the str.format method with a
 # string argument we constructed above
 return "{r:{f}}".format(r=raw, f=format_spec)

inst = Example(1,2,3)
print "{0:>20s}".format(inst)
out : (1,2,3)
Note how the right align and field width of 20 has been honored.

Note:

If your custom class does not have a custom __format__ method and an instance of the class is passed to
the format function, Python2 will always use the return value of the __str__ method or __repr__
method to determine what to print (and if neither exist then the default repr will be used), and you will
need to use the s format specifier to format this. With Python3, to pass your custom class to the format
function, you will need define __format__ method on your custom class.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 240

Chapter 41: String Methods
Section 41.1: Changing the capitalization of a string
Python's string type provides many functions that act on the capitalization of a string. These include:

str.casefold

str.upper

str.lower

str.capitalize

str.title

str.swapcase

With unicode strings (the default in Python 3), these operations are not 1:1 mappings or reversible. Most of these
operations are intended for display purposes, rather than normalization.

Python 3.x Version ≥ 3.3
str.casefold()

str.casefold creates a lowercase string that is suitable for case insensitive comparisons. This is more aggressive
than str.lower and may modify strings that are already in lowercase or cause strings to grow in length, and is not
intended for display purposes.

"XßΣ".casefold()
'xssσ'

"XßΣ".lower()
'xßς'

The transformations that take place under casefolding are defined by the Unicode Consortium in the
CaseFolding.txt file on their website.

str.upper()

str.upper takes every character in a string and converts it to its uppercase equivalent, for example:

"This is a 'string'.".upper()
"THIS IS A 'STRING'."

str.lower()

str.lower does the opposite; it takes every character in a string and converts it to its lowercase equivalent:

"This IS a 'string'.".lower()
"this is a 'string'."

str.capitalize()

str.capitalize returns a capitalized version of the string, that is, it makes the first character have upper case and
the rest lower:

"this Is A 'String'.".capitalize() # Capitalizes the first character and lowercases all others

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 241

"This is a 'string'."

str.title()

str.title returns the title cased version of the string, that is, every letter in the beginning of a word is made upper
case and all others are made lower case:

"this Is a 'String'".title()
"This Is A 'String'"

str.swapcase()

str.swapcase returns a new string object in which all lower case characters are swapped to upper case and all
upper case characters to lower:

"this iS A STRiNG".swapcase() #Swaps case of each character
"THIS Is a strIng"

Usage as str class methods

It is worth noting that these methods may be called either on string objects (as shown above) or as a class method
of the str class (with an explicit call to str.upper, etc.)

str.upper("This is a 'string'")
"THIS IS A 'STRING'"

This is most useful when applying one of these methods to many strings at once in say, a map function.

map(str.upper,["These","are","some","'strings'"])
['THESE', 'ARE', 'SOME', "'STRINGS'"]

Section 41.2: str.translate: Translating characters in a string
Python supports a translate method on the str type which allows you to specify the translation table (used for
replacements) as well as any characters which should be deleted in the process.

str.translate(table[, deletechars])
Parameter Description
table It is a lookup table that defines the mapping from one character to another.
deletechars A list of characters which are to be removed from the string.

The maketrans method (str.maketrans in Python 3 and string.maketrans in Python 2) allows you to generate a
translation table.

>>> translation_table = str.maketrans("aeiou", "12345")
>>> my_string = "This is a string!"
>>> translated = my_string.translate(translation_table)
'Th3s 3s 1 str3ng!'

The translate method returns a string which is a translated copy of the original string.

You can set the table argument to None if you only need to delete characters.

>>> 'this syntax is very useful'.translate(None, 'aeiou')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 242

'ths syntx s vry sfl'

Section 41.3: str.format and f-strings: Format values into a
string
Python provides string interpolation and formatting functionality through the str.format function, introduced in
version 2.6 and f-strings introduced in version 3.6.

Given the following variables:

i = 10
f = 1.5
s = "foo"
l = ['a', 1, 2]
d = {'a': 1, 2: 'foo'}

The following statements are all equivalent

"10 1.5 foo ['a', 1, 2] {'a': 1, 2: 'foo'}"

>>> "{} {} {} {} {}".format(i, f, s, l, d)

>>> str.format("{} {} {} {} {}", i, f, s, l, d)

>>> "{0} {1} {2} {3} {4}".format(i, f, s, l, d)

>>> "{0:d} {1:0.1f} {2} {3!r} {4!r}".format(i, f, s, l, d)

>>> "{i:d} {f:0.1f} {s} {l!r} {d!r}".format(i=i, f=f, s=s, l=l, d=d)

>>> f"{i} {f} {s} {l} {d}"

>>> f"{i:d} {f:0.1f} {s} {l!r} {d!r}"

For reference, Python also supports C-style qualifiers for string formatting. The examples below are equivalent to
those above, but the str.format versions are preferred due to benefits in flexibility, consistency of notation, and
extensibility:

"%d %0.1f %s %r %r" % (i, f, s, l, d)

"%(i)d %(f)0.1f %(s)s %(l)r %(d)r" % dict(i=i, f=f, s=s, l=l, d=d)

The braces uses for interpolation in str.format can also be numbered to reduce duplication when formatting
strings. For example, the following are equivalent:

"I am from Australia. I love cupcakes from Australia!"

>>> "I am from {}. I love cupcakes from {}!".format("Australia", "Australia")

>>> "I am from {0}. I love cupcakes from {0}!".format("Australia")

While the official python documentation is, as usual, thorough enough, pyformat.info has a great set of examples
with detailed explanations.

Additionally, the { and } characters can be escaped by using double brackets:

"{'a': 5, 'b': 6}"

http://pyformat.info
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 243

>>> "{{'{}': {}, '{}': {}}}".format("a", 5, "b", 6)

>>> f"{{'{'a'}': {5}, '{'b'}': {6}}"

See String Formatting for additional information. str.format() was proposed in PEP 3101 and f-strings in PEP 498.

Section 41.4: String module's useful constants
Python's string module provides constants for string related operations. To use them, import the string module:

>>> import string

string.ascii_letters:

Concatenation of ascii_lowercase and ascii_uppercase:

>>> string.ascii_letters
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

string.ascii_lowercase:

Contains all lower case ASCII characters:

>>> string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'

string.ascii_uppercase:

Contains all upper case ASCII characters:

>>> string.ascii_uppercase
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

string.digits:

Contains all decimal digit characters:

>>> string.digits
'0123456789'

string.hexdigits:

Contains all hex digit characters:

>>> string.hexdigits
'0123456789abcdefABCDEF'

string.octaldigits:

Contains all octal digit characters:

>>> string.octaldigits
'01234567'

https://www.python.org/dev/peps/pep-3101/
https://www.python.org/dev/peps/pep-0498/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 244

string.punctuation:

Contains all characters which are considered punctuation in the C locale:

>>> string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

string.whitespace:

Contains all ASCII characters considered whitespace:

>>> string.whitespace
' \t\n\r\x0b\x0c'

In script mode, print(string.whitespace) will print the actual characters, use str to get the string returned
above.

string.printable:

Contains all characters which are considered printable; a combination of string.digits, string.ascii_letters,
string.punctuation, and string.whitespace.

>>> string.printable
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~
\t\n\r\x0b\x0c'

Section 41.5: Stripping unwanted leading/trailing characters
from a string
Three methods are provided that offer the ability to strip leading and trailing characters from a string: str.strip,
str.rstrip and str.lstrip. All three methods have the same signature and all three return a new string object
with unwanted characters removed.

str.strip([chars])

str.strip acts on a given string and removes (strips) any leading or trailing characters contained in the argument
chars; if chars is not supplied or is None, all white space characters are removed by default. For example:

>>> " a line with leading and trailing space ".strip()
'a line with leading and trailing space'

If chars is supplied, all characters contained in it are removed from the string, which is returned. For example:

>>> ">>> a Python prompt".strip('> ') # strips '>' character and space character
'a Python prompt'

str.rstrip([chars]) and str.lstrip([chars])

These methods have similar semantics and arguments with str.strip(), their difference lies in the direction from
which they start. str.rstrip() starts from the end of the string while str.lstrip() splits from the start of the
string.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 245

For example, using str.rstrip:

>>> " spacious string ".rstrip()
' spacious string'

While, using str.lstrip:

>>> " spacious string ".rstrip()
'spacious string '

Section 41.6: Reversing a string
A string can reversed using the built-in reversed() function, which takes a string and returns an iterator in reverse
order.

>>> reversed('hello')
<reversed object at 0x0000000000000000>
>>> [char for char in reversed('hello')]
['o', 'l', 'l', 'e', 'h']

reversed() can be wrapped in a call to ''.join() to make a string from the iterator.

>>> ''.join(reversed('hello'))
'olleh'

While using reversed() might be more readable to uninitiated Python users, using extended slicing with a step of
-1 is faster and more concise. Here , try to implement it as function:

>>> def reversed_string(main_string):
... return main_string[::-1]
...
>>> reversed_string('hello')
'olleh'

Section 41.7: Split a string based on a delimiter into a list of
strings
str.split(sep=None, maxsplit=-1)

str.split takes a string and returns a list of substrings of the original string. The behavior differs depending on
whether the sep argument is provided or omitted.

If sep isn't provided, or is None, then the splitting takes place wherever there is whitespace. However, leading and
trailing whitespace is ignored, and multiple consecutive whitespace characters are treated the same as a single
whitespace character:

>>> "This is a sentence.".split()
['This', 'is', 'a', 'sentence.']

>>> " This is a sentence. ".split()
['This', 'is', 'a', 'sentence.']

>>> " ".split()
[]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 246

The sep parameter can be used to define a delimiter string. The original string is split where the delimiter string
occurs, and the delimiter itself is discarded. Multiple consecutive delimiters are not treated the same as a single
occurrence, but rather cause empty strings to be created.

>>> "This is a sentence.".split(' ')
['This', 'is', 'a', 'sentence.']

>>> "Earth,Stars,Sun,Moon".split(',')
['Earth', 'Stars', 'Sun', 'Moon']

>>> " This is a sentence. ".split(' ')
['', 'This', 'is', '', '', '', 'a', 'sentence.', '', '']

>>> "This is a sentence.".split('e')
['This is a s', 'nt', 'nc', '.']

>>> "This is a sentence.".split('en')
['This is a s', 't', 'ce.']

The default is to split on every occurrence of the delimiter, however the maxsplit parameter limits the number of
splittings that occur. The default value of -1 means no limit:

>>> "This is a sentence.".split('e', maxsplit=0)
['This is a sentence.']

>>> "This is a sentence.".split('e', maxsplit=1)
['This is a s', 'ntence.']

>>> "This is a sentence.".split('e', maxsplit=2)
['This is a s', 'nt', 'nce.']

>>> "This is a sentence.".split('e', maxsplit=-1)
['This is a s', 'nt', 'nc', '.']

str.rsplit(sep=None, maxsplit=-1)

str.rsplit ("right split") differs from str.split ("left split") when maxsplit is specified. The splitting starts at the
end of the string rather than at the beginning:

>>> "This is a sentence.".rsplit('e', maxsplit=1)
['This is a sentenc', '.']

>>> "This is a sentence.".rsplit('e', maxsplit=2)
['This is a sent', 'nc', '.']

Note: Python specifies the maximum number of splits performed, while most other programming languages
specify the maximum number of substrings created. This may create confusion when porting or comparing code.

Section 41.8: Replace all occurrences of one substring with
another substring
Python's str type also has a method for replacing occurrences of one sub-string with another sub-string in a given
string. For more demanding cases, one can use re.sub.

str.replace(old, new[, count]):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 247

str.replace takes two arguments old and new containing the old sub-string which is to be replaced by the new sub-
string. The optional argument count specifies the number of replacements to be made:

For example, in order to replace 'foo' with 'spam' in the following string, we can call str.replace with old =
'foo' and new = 'spam':

>>> "Make sure to foo your sentence.".replace('foo', 'spam')
"Make sure to spam your sentence."

If the given string contains multiple examples that match the old argument, all occurrences are replaced with the
value supplied in new:

>>> "It can foo multiple examples of foo if you want.".replace('foo', 'spam')
"It can spam multiple examples of spam if you want."

unless, of course, we supply a value for count. In this case count occurrences are going to get replaced:

>>> """It can foo multiple examples of foo if you want, \
... or you can limit the foo with the third argument.""".replace('foo', 'spam', 1)
'It can spam multiple examples of foo if you want, or you can limit the foo with the third
argument.'

Section 41.9: Testing what a string is composed of
Python's str type also features a number of methods that can be used to evaluate the contents of a string. These
are str.isalpha, str.isdigit, str.isalnum, str.isspace. Capitalization can be tested with str.isupper,
str.islower and str.istitle.

str.isalpha

str.isalpha takes no arguments and returns True if the all characters in a given string are alphabetic, for example:

>>> "Hello World".isalpha() # contains a space
False
>>> "Hello2World".isalpha() # contains a number
False
>>> "HelloWorld!".isalpha() # contains punctuation
False
>>> "HelloWorld".isalpha()
True

As an edge case, the empty string evaluates to False when used with "".isalpha().

str.isupper, str.islower, str.istitle

These methods test the capitalization in a given string.

str.isupper is a method that returns True if all characters in a given string are uppercase and False otherwise.

>>> "HeLLO WORLD".isupper()
False
>>> "HELLO WORLD".isupper()
True
>>> "".isupper()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 248

False

Conversely, str.islower is a method that returns True if all characters in a given string are lowercase and False
otherwise.

>>> "Hello world".islower()
False
>>> "hello world".islower()
True
>>> "".islower()
False

str.istitle returns True if the given string is title cased; that is, every word begins with an uppercase character
followed by lowercase characters.

>>> "hello world".istitle()
False
>>> "Hello world".istitle()
False
>>> "Hello World".istitle()
True
>>> "".istitle()
False

str.isdecimal, str.isdigit, str.isnumeric

str.isdecimal returns whether the string is a sequence of decimal digits, suitable for representing a decimal
number.

str.isdigit includes digits not in a form suitable for representing a decimal number, such as superscript digits.

str.isnumeric includes any number values, even if not digits, such as values outside the range 0-9.

 isdecimal isdigit isnumeric

12345 True True True
?2??5 True True True
?²³????? False True True
?? False False True
Five False False False

Bytestrings (bytes in Python 3, str in Python 2), only support isdigit, which only checks for basic ASCII digits.

As with str.isalpha, the empty string evaluates to False.

str.isalnum

This is a combination of str.isalpha and str.isnumeric, specifically it evaluates to True if all characters in the
given string are alphanumeric, that is, they consist of alphabetic or numeric characters:

>>> "Hello2World".isalnum()
True
>>> "HelloWorld".isalnum()
True
>>> "2016".isalnum()
True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 249

>>> "Hello World".isalnum() # contains whitespace
False

str.isspace

Evaluates to True if the string contains only whitespace characters.

>>> "\t\r\n".isspace()
True
>>> " ".isspace()
True

Sometimes a string looks “empty” but we don't know whether it's because it contains just whitespace or no
character at all

>>> "".isspace()
False

To cover this case we need an additional test

>>> my_str = ''
>>> my_str.isspace()
False
>>> my_str.isspace() or not my_str
True

But the shortest way to test if a string is empty or just contains whitespace characters is to use strip(with no
arguments it removes all leading and trailing whitespace characters)

>>> not my_str.strip()
True

Section 41.10: String Contains
Python makes it extremely intuitive to check if a string contains a given substring. Just use the in operator:

>>> "foo" in "foo.baz.bar"
True

Note: testing an empty string will always result in True:

>>> "" in "test"
True

Section 41.11: Join a list of strings into one string
A string can be used as a separator to join a list of strings together into a single string using the join() method. For
example you can create a string where each element in a list is separated by a space.

>>> " ".join(["once","upon","a","time"])
"once upon a time"

The following example separates the string elements with three hyphens.

>>> "---".join(["once", "upon", "a", "time"])

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 250

"once---upon---a---time"

Section 41.12: Counting number of times a substring appears
in a string
One method is available for counting the number of occurrences of a sub-string in another string, str.count.

str.count(sub[, start[, end]])

str.count returns an int indicating the number of non-overlapping occurrences of the sub-string sub in another
string. The optional arguments start and end indicate the beginning and the end in which the search will take
place. By default start = 0 and end = len(str) meaning the whole string will be searched:

>>> s = "She sells seashells by the seashore."
>>> s.count("sh")
2
>>> s.count("se")
3
>>> s.count("sea")
2
>>> s.count("seashells")
1

By specifying a different value for start, end we can get a more localized search and count, for example, if start is
equal to 13 the call to:

>>> s.count("sea", start)
1

is equivalent to:

>>> t = s[start:]
>>> t.count("sea")
1

Section 41.13: Case insensitive string comparisons
Comparing string in a case insensitive way seems like something that's trivial, but it's not. This section only
considers unicode strings (the default in Python 3). Note that Python 2 may have subtle weaknesses relative to
Python 3 - the later's unicode handling is much more complete.

The first thing to note it that case-removing conversions in unicode aren't trivial. There is text for which
text.lower() != text.upper().lower(), such as "ß":

>>> "ß".lower()
'ß'

>>> "ß".upper().lower()
'ss'

But let's say you wanted to caselessly compare "BUSSE" and "Buße". You probably also want to compare "BUSSE"
and "BU�E" equal - that's the newer capital form. The recommended way is to use casefold:

Python 3.x Version ≥ 3.3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 251

>>> help(str.casefold)
"""
Help on method_descriptor:

casefold(...)
 S.casefold() -> str

 Return a version of S suitable for caseless comparisons.
"""

Do not just use lower. If casefold is not available, doing .upper().lower() helps (but only somewhat).

Then you should consider accents. If your font renderer is good, you probably think "ê" == "ê" - but it doesn't:

>>> "ê" == "ê"
False

This is because they are actually

>>> import unicodedata

>>> [unicodedata.name(char) for char in "ê"]
['LATIN SMALL LETTER E WITH CIRCUMFLEX']

>>> [unicodedata.name(char) for char in "ê"]
['LATIN SMALL LETTER E', 'COMBINING CIRCUMFLEX ACCENT']

The simplest way to deal with this is unicodedata.normalize. You probably want to use NFKD normalization, but
feel free to check the documentation. Then one does

>>> unicodedata.normalize("NFKD", "ê") == unicodedata.normalize("NFKD", "ê")
True

To finish up, here this is expressed in functions:

import unicodedata

def normalize_caseless(text):
 return unicodedata.normalize("NFKD", text.casefold())

def caseless_equal(left, right):
 return normalize_caseless(left) == normalize_caseless(right)

Section 41.14: Justify strings
Python provides functions for justifying strings, enabling text padding to make aligning various strings much easier.

Below is an example of str.ljust and str.rjust:

interstates_lengths = {
 5: (1381, 2222),
 19: (63, 102),
 40: (2555, 4112),
 93: (189,305),
}
for road, length in interstates_lengths.items():
 miles,kms = length

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 252

 print('{} -> {} mi. ({} km.)'.format(str(road).rjust(4), str(miles).ljust(4),
str(kms).ljust(4)))

 40 -> 2555 mi. (4112 km.)
 19 -> 63 mi. (102 km.)
 5 -> 1381 mi. (2222 km.)
 93 -> 189 mi. (305 km.)

ljust and rjust are very similar. Both have a width parameter and an optional fillchar parameter. Any string
created by these functions is at least as long as the width parameter that was passed into the function. If the string
is longer than width alread, it is not truncated. The fillchar argument, which defaults to the space character ' '
must be a single character, not a multicharacter string.

The ljust function pads the end of the string it is called on with the fillchar until it is width characters long. The
rjust function pads the beginning of the string in a similar fashion. Therefore, the l and r in the names of these
functions refer to the side that the original string, not the fillchar, is positioned in the output string.

Section 41.15: Test the starting and ending characters of a
string
In order to test the beginning and ending of a given string in Python, one can use the methods str.startswith()
and str.endswith().

str.startswith(prefix[, start[, end]])

As its name implies, str.startswith is used to test whether a given string starts with the given characters in
prefix.

>>> s = "This is a test string"
>>> s.startswith("T")
True
>>> s.startswith("Thi")
True
>>> s.startswith("thi")
False

The optional arguments start and end specify the start and end points from which the testing will start and finish.
In the following example, by specifying a start value of 2 our string will be searched from position 2 and afterwards:

>>> s.startswith("is", 2)
True

This yields True since s[2] == 'i' and s[3] == 's'.

You can also use a tuple to check if it starts with any of a set of strings

>>> s.startswith(('This', 'That'))
True
>>> s.startswith(('ab', 'bc'))
False

str.endswith(prefix[, start[, end]])

str.endswith is exactly similar to str.startswith with the only difference being that it searches for ending
characters and not starting characters. For example, to test if a string ends in a full stop, one could write:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 253

>>> s = "this ends in a full stop."
>>> s.endswith('.')
True
>>> s.endswith('!')
False

as with startswith more than one characters can used as the ending sequence:

>>> s.endswith('stop.')
True
>>> s.endswith('Stop.')
False

You can also use a tuple to check if it ends with any of a set of strings

>>> s.endswith(('.', 'something'))
True
>>> s.endswith(('ab', 'bc'))
False

Section 41.16: Conversion between str or bytes data and
unicode characters
The contents of files and network messages may represent encoded characters. They often need to be converted to
unicode for proper display.

In Python 2, you may need to convert str data to Unicode characters. The default ('', "", etc.) is an ASCII string, with
any values outside of ASCII range displayed as escaped values. Unicode strings are u'' (or u"", etc.).

Python 2.x Version ≥ 2.3

You get "© abc" encoded in UTF-8 from a file, network, or other data source

s = '\xc2\xa9 abc' # s is a byte array, not a string of characters
 # Doesn't know the original was UTF-8
 # Default form of string literals in Python 2
s[0] # '\xc2' - meaningless byte (without context such as an encoding)
type(s) # str - even though it's not a useful one w/o having a known encoding

u = s.decode('utf-8') # u'\xa9 abc'
 # Now we have a Unicode string, which can be read as UTF-8 and printed
properly
 # In Python 2, Unicode string literals need a leading u
 # str.decode converts a string which may contain escaped bytes to a Unicode
string
u[0] # u'\xa9' - Unicode Character 'COPYRIGHT SIGN' (U+00A9) '©'
type(u) # unicode

u.encode('utf-8') # '\xc2\xa9 abc'
 # unicode.encode produces a string with escaped bytes for non-ASCII characters

In Python 3 you may need to convert arrays of bytes (referred to as a 'byte literal') to strings of Unicode characters.
The default is now a Unicode string, and bytestring literals must now be entered as b'', b"", etc. A byte literal will
return True to isinstance(some_val, byte), assuming some_val to be a string that might be encoded as bytes.

Python 3.x Version ≥ 3.0

You get from file or network "© abc" encoded in UTF-8

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 254

s = b'\xc2\xa9 abc' # s is a byte array, not characters
 # In Python 3, the default string literal is Unicode; byte array literals need a
leading b
s[0] # b'\xc2' - meaningless byte (without context such as an encoding)
type(s) # bytes - now that byte arrays are explicit, Python can show that.

u = s.decode('utf-8') # '© abc' on a Unicode terminal
 # bytes.decode converts a byte array to a string (which will, in Python 3, be
Unicode)
u[0] # '\u00a9' - Unicode Character 'COPYRIGHT SIGN' (U+00A9) '©'
type(u) # str
 # The default string literal in Python 3 is UTF-8 Unicode

u.encode('utf-8') # b'\xc2\xa9 abc'
 # str.encode produces a byte array, showing ASCII-range bytes as unescaped
characters.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 255

Chapter 42: Using loops within functions
In Python function will be returned as soon as execution hits "return" statement.

Section 42.1: Return statement inside loop in a function
In this example, function will return as soon as value var has 1

def func(params):
 for value in params:
 print ('Got value {}'.format(value))

 if value == 1:
 # Returns from function as soon as value is 1
 print (">>>> Got 1")
 return

 print ("Still looping")

 return "Couldn't find 1"

func([5, 3, 1, 2, 8, 9])

output

Got value 5
Still looping
Got value 3
Still looping
Got value 1
>>>> Got 1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 256

Chapter 43: Importing modules
Section 43.1: Importing a module
Use the import statement:

>>> import random
>>> print(random.randint(1, 10))
4

import module will import a module and then allow you to reference its objects -- values, functions and classes, for
example -- using the module.name syntax. In the above example, the random module is imported, which contains the
randint function. So by importing random you can call randint with random.randint.

You can import a module and assign it to a different name:

>>> import random as rn
>>> print(rn.randint(1, 10))
4

If your python file main.py is in the same folder as custom.py. You can import it like this:

import custom

It is also possible to import a function from a module:

>>> from math import sin
>>> sin(1)
0.8414709848078965

To import specific functions deeper down into a module, the dot operator may be used only on the left side of the
import keyword:

from urllib.request import urlopen

In python, we have two ways to call function from top level. One is import and another is from. We should use
import when we have a possibility of name collision. Suppose we have hello.py file and world.py files having same
function named function. Then import statement will work good.

from hello import function
from world import function

function() #world's function will be invoked. Not hello's

In general import will provide you a namespace.

import hello
import world

hello.function() # exclusively hello's function will be invoked
world.function() # exclusively world's function will be invoked

But if you are sure enough, in your whole project there is no way having same function name you should use from
statement

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 257

Multiple imports can be made on the same line:

>>> # Multiple modules
>>> import time, sockets, random
>>> # Multiple functions
>>> from math import sin, cos, tan
>>> # Multiple constants
>>> from math import pi, e

>>> print(pi)
3.141592653589793
>>> print(cos(45))
0.5253219888177297
>>> print(time.time())
1482807222.7240417

The keywords and syntax shown above can also be used in combinations:

>>> from urllib.request import urlopen as geturl, pathname2url as path2url, getproxies
>>> from math import factorial as fact, gamma, atan as arctan
>>> import random.randint, time, sys

>>> print(time.time())
1482807222.7240417
>>> print(arctan(60))
1.554131203080956
>>> filepath = "/dogs/jumping poodle (december).png"
>>> print(path2url(filepath))
/dogs/jumping%20poodle%20%28december%29.png

Section 43.2: The __all__ special variable
Modules can have a special variable named __all__ to restrict what variables are imported when using from
mymodule import *.

Given the following module:

mymodule.py

__all__ = ['imported_by_star']

imported_by_star = 42
not_imported_by_star = 21

Only imported_by_star is imported when using from mymodule import *:

>>> from mymodule import *
>>> imported_by_star
42
>>> not_imported_by_star
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'not_imported_by_star' is not defined

However, not_imported_by_star can be imported explicitly:

>>> from mymodule import not_imported_by_star
>>> not_imported_by_star

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 258

21

Section 43.3: Import modules from an arbitrary filesystem
location
If you want to import a module that doesn't already exist as a built-in module in the Python Standard Library nor as
a side-package, you can do this by adding the path to the directory where your module is found to sys.path. This
may be useful where multiple python environments exist on a host.

import sys
sys.path.append("/path/to/directory/containing/your/module")
import mymodule

It is important that you append the path to the directory in which mymodule is found, not the path to the module
itself.

Section 43.4: Importing all names from a module
from module_name import *

for example:

from math import *
sqrt(2) # instead of math.sqrt(2)
ceil(2.7) # instead of math.ceil(2.7)

This will import all names defined in the math module into the global namespace, other than names that begin with
an underscore (which indicates that the writer feels that it is for internal use only).

Warning: If a function with the same name was already defined or imported, it will be overwritten. Almost always
importing only specific names from math import sqrt, ceil is the recommended way:

def sqrt(num):
 print("I don't know what's the square root of {}.".format(num))

sqrt(4)
Output: I don't know what's the square root of 4.

from math import *
sqrt(4)
Output: 2.0

Starred imports are only allowed at the module level. Attempts to perform them in class or function definitions
result in a SyntaxError.

def f():
 from math import *

and

class A:
 from math import *

both fail with:

https://docs.python.org/3/library/
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 259

SyntaxError: import * only allowed at module level

Section 43.5: Programmatic importing
Python 2.x Version ≥ 2.7

To import a module through a function call, use the importlib module (included in Python starting in version 2.7):

import importlib
random = importlib.import_module("random")

The importlib.import_module() function will also import the submodule of a package directly:

collections_abc = importlib.import_module("collections.abc")

For older versions of Python, use the imp module.

Python 2.x Version ≤ 2.7

Use the functions imp.find_module and imp.load_module to perform a programmatic import.

Taken from standard library documentation

import imp, sys
def import_module(name):
 fp, pathname, description = imp.find_module(name)
 try:
 return imp.load_module(name, fp, pathname, description)
 finally:
 if fp:
 fp.close()

Do NOT use __import__() to programmatically import modules! There are subtle details involving sys.modules,
the fromlist argument, etc. that are easy to overlook which importlib.import_module() handles for you.

Section 43.6: PEP8 rules for Imports
Some recommended PEP8 style guidelines for imports:

Imports should be on separate lines:1.

 from math import sqrt, ceil # Not recommended
 from math import sqrt # Recommended
 from math import ceil

Order imports as follows at the top of the module:2.

Standard library imports
Related third party imports
Local application/library specific imports

Wildcard imports should be avoided as it leads to confusion in names in the current namespace. If you do3.
from module import *, it can be unclear if a specific name in your code comes from module or not. This is

https://docs.python.org/2/library/imp.html#examples
https://www.python.org/dev/peps/pep-0008/#imports
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 260

doubly true if you have multiple from module import *-type statements.

Avoid using relative imports; use explicit imports instead.4.

Section 43.7: Importing specific names from a module
Instead of importing the complete module you can import only specified names:

from random import randint # Syntax "from MODULENAME import NAME1[, NAME2[, ...]]"
print(randint(1, 10)) # Out: 5

from random is needed, because the python interpreter has to know from which resource it should import a
function or class and import randint specifies the function or class itself.

Another example below (similar to the one above):

from math import pi
print(pi) # Out: 3.14159265359

The following example will raise an error, because we haven't imported a module:

random.randrange(1, 10) # works only if "import random" has been run before

Outputs:

NameError: name 'random' is not defined

The python interpreter does not understand what you mean with random. It needs to be declared by adding import
random to the example:

import random
random.randrange(1, 10)

Section 43.8: Importing submodules
from module.submodule import function

This imports function from module.submodule.

Section 43.9: Re-importing a module
When using the interactive interpreter, you might want to reload a module. This can be useful if you're editing a
module and want to import the newest version, or if you've monkey-patched an element of an existing module and
want to revert your changes.

Note that you can't just import the module again to revert:

import math
math.pi = 3
print(math.pi) # 3
import math
print(math.pi) # 3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 261

This is because the interpreter registers every module you import. And when you try to reimport a module, the
interpreter sees it in the register and does nothing. So the hard way to reimport is to use import after removing the
corresponding item from the register:

print(math.pi) # 3
import sys
if 'math' in sys.modules: # Is the ``math`` module in the register?
 del sys.modules['math'] # If so, remove it.
import math
print(math.pi) # 3.141592653589793

But there is more a straightforward and simple way.

Python 2

Use the reload function:

Python 2.x Version ≥ 2.3

import math
math.pi = 3
print(math.pi) # 3
reload(math)
print(math.pi) # 3.141592653589793

Python 3

The reload function has moved to importlib:

Python 3.x Version ≥ 3.0

import math
math.pi = 3
print(math.pi) # 3
from importlib import reload
reload(math)
print(math.pi) # 3.141592653589793

Section 43.10: __import__() function
The __import__() function can be used to import modules where the name is only known at runtime

if user_input == "os":
 os = __import__("os")

equivalent to import os

This function can also be used to specify the file path to a module

mod = __import__(r"C:/path/to/file/anywhere/on/computer/module.py")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 262

Chapter 44: Dierence between Module
and Package
Section 44.1: Modules
A module is a single Python file that can be imported. Using a module looks like this:

module.py

def hi():
 print("Hello world!")

my_script.py

import module
module.hi()

in an interpreter

>>> from module import hi
>>> hi()
Hello world!

Section 44.2: Packages
A package is made up of multiple Python files (or modules), and can even include libraries written in C or C++.
Instead of being a single file, it is an entire folder structure which might look like this:

Folder package

__init__.py

dog.py

hi.py

__init__.py

from package.dog import woof
from package.hi import hi

dog.py

def woof():
 print("WOOF!!!")

hi.py

def hi():
 print("Hello world!")

All Python packages must contain an __init__.py file. When you import a package in your script (import package),
the __init__.py script will be run, giving you access to the all of the functions in the package. In this case, it allows
you to use the package.hi and package.woof functions.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F

GoalKicker.com – Python® Notes for Professionals 264

Chapter 45: Math Module
Section 45.1: Rounding: round, floor, ceil, trunc
In addition to the built-in round function, the math module provides the floor, ceil, and trunc functions.

x = 1.55
y = -1.55

round to the nearest integer
round(x) # 2
round(y) # -2

the second argument gives how many decimal places to round to (defaults to 0)
round(x, 1) # 1.6
round(y, 1) # -1.6

math is a module so import it first, then use it.
import math

get the largest integer less than x
math.floor(x) # 1
math.floor(y) # -2

get the smallest integer greater than x
math.ceil(x) # 2
math.ceil(y) # -1

drop fractional part of x
math.trunc(x) # 1, equivalent to math.floor for positive numbers
math.trunc(y) # -1, equivalent to math.ceil for negative numbers

Python 2.x Version ≤ 2.7

floor, ceil, trunc, and round always return a float.

round(1.3) # 1.0

round always breaks ties away from zero.

round(0.5) # 1.0
round(1.5) # 2.0

Python 3.x Version ≥ 3.0

floor, ceil, and trunc always return an Integral value, while round returns an Integral value if called with one
argument.

round(1.3) # 1
round(1.33, 1) # 1.3

round breaks ties towards the nearest even number. This corrects the bias towards larger numbers when
performing a large number of calculations.

round(0.5) # 0
round(1.5) # 2

Warning!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 265

As with any floating-point representation, some fractions cannot be represented exactly. This can lead to some
unexpected rounding behavior.

round(2.675, 2) # 2.67, not 2.68!

Warning about the floor, trunc, and integer division of negative numbers

Python (and C++ and Java) round away from zero for negative numbers. Consider:

>>> math.floor(-1.7)
-2.0
>>> -5 // 2
-3

Section 45.2: Trigonometry
Calculating the length of the hypotenuse
math.hypot(2, 4) # Just a shorthand for SquareRoot(2**2 + 4**2)
Out: 4.47213595499958

Converting degrees to/from radians

All math functions expect radians so you need to convert degrees to radians:

math.radians(45) # Convert 45 degrees to radians
Out: 0.7853981633974483

All results of the inverse trigonometric functions return the result in radians, so you may need to convert it back to
degrees:

math.degrees(math.asin(1)) # Convert the result of asin to degrees
Out: 90.0

Sine, cosine, tangent and inverse functions
Sine and arc sine
math.sin(math.pi / 2)
Out: 1.0
math.sin(math.radians(90)) # Sine of 90 degrees
Out: 1.0

math.asin(1)
Out: 1.5707963267948966 # "= pi / 2"
math.asin(1) / math.pi
Out: 0.5

Cosine and arc cosine:
math.cos(math.pi / 2)
Out: 6.123233995736766e-17
Almost zero but not exactly because "pi" is a float with limited precision!

math.acos(1)
Out: 0.0

Tangent and arc tangent:
math.tan(math.pi/2)
Out: 1.633123935319537e+16
Very large but not exactly "Inf" because "pi" is a float with limited precision

Python 3.x Version ≥ 3.5

math.atan(math.inf)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 266

Out: 1.5707963267948966 # This is just "pi / 2"

math.atan(float('inf'))
Out: 1.5707963267948966 # This is just "pi / 2"

Apart from the math.atan there is also a two-argument math.atan2 function, which computes the correct quadrant
and avoids pitfalls of division by zero:

math.atan2(1, 2) # Equivalent to "math.atan(1/2)"
Out: 0.4636476090008061 # ≈ 26.57 degrees, 1st quadrant

math.atan2(-1, -2) # Not equal to "math.atan(-1/-2)" == "math.atan(1/2)"
Out: -2.677945044588987 # ≈ -153.43 degrees (or 206.57 degrees), 3rd quadrant

math.atan2(1, 0) # math.atan(1/0) would raise ZeroDivisionError
Out: 1.5707963267948966 # This is just "pi / 2"

Hyperbolic sine, cosine and tangent
Hyperbolic sine function
math.sinh(math.pi) # = 11.548739357257746
math.asinh(1) # = 0.8813735870195429

Hyperbolic cosine function
math.cosh(math.pi) # = 11.591953275521519
math.acosh(1) # = 0.0

Hyperbolic tangent function
math.tanh(math.pi) # = 0.99627207622075
math.atanh(0.5) # = 0.5493061443340549

Section 45.3: Pow for faster exponentiation
Using the timeit module from the command line:

> python -m timeit 'for x in xrange(50000): b = x**3'
10 loops, best of 3: 51.2 msec per loop
> python -m timeit 'from math import pow' 'for x in xrange(50000): b = pow(x,3)'
100 loops, best of 3: 9.15 msec per loop

The built-in ** operator often comes in handy, but if performance is of the essence, use math.pow. Be sure to note,
however, that pow returns floats, even if the arguments are integers:

> from math import pow
> pow(5,5)
3125.0

Section 45.4: Infinity and NaN ("not a number")
In all versions of Python, we can represent infinity and NaN ("not a number") as follows:

pos_inf = float('inf') # positive infinity
neg_inf = float('-inf') # negative infinity
not_a_num = float('nan') # NaN ("not a number")

In Python 3.5 and higher, we can also use the defined constants math.inf and math.nan:

Python 3.x Version ≥ 3.5

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 267

pos_inf = math.inf
neg_inf = -math.inf
not_a_num = math.nan

The string representations display as inf and -inf and nan:

pos_inf, neg_inf, not_a_num
Out: (inf, -inf, nan)

We can test for either positive or negative infinity with the isinf method:

math.isinf(pos_inf)
Out: True

math.isinf(neg_inf)
Out: True

We can test specifically for positive infinity or for negative infinity by direct comparison:

pos_inf == float('inf') # or == math.inf in Python 3.5+
Out: True

neg_inf == float('-inf') # or == -math.inf in Python 3.5+
Out: True

neg_inf == pos_inf
Out: False

Python 3.2 and higher also allows checking for finiteness:

Python 3.x Version ≥ 3.2

math.isfinite(pos_inf)
Out: False

math.isfinite(0.0)
Out: True

Comparison operators work as expected for positive and negative infinity:

import sys

sys.float_info.max
Out: 1.7976931348623157e+308 (this is system-dependent)

pos_inf > sys.float_info.max
Out: True

neg_inf < -sys.float_info.max
Out: True

But if an arithmetic expression produces a value larger than the maximum that can be represented as a float, it
will become infinity:

pos_inf == sys.float_info.max * 1.0000001
Out: True

neg_inf == -sys.float_info.max * 1.0000001

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 268

Out: True

However division by zero does not give a result of infinity (or negative infinity where appropriate), rather it raises a
ZeroDivisionError exception.

try:
 x = 1.0 / 0.0
 print(x)
except ZeroDivisionError:
 print("Division by zero")

Out: Division by zero

Arithmetic operations on infinity just give infinite results, or sometimes NaN:

-5.0 * pos_inf == neg_inf
Out: True

-5.0 * neg_inf == pos_inf
Out: True

pos_inf * neg_inf == neg_inf
Out: True

0.0 * pos_inf
Out: nan

0.0 * neg_inf
Out: nan

pos_inf / pos_inf
Out: nan

NaN is never equal to anything, not even itself. We can test for it is with the isnan method:

not_a_num == not_a_num
Out: False

math.isnan(not_a_num)
Out: True

NaN always compares as "not equal", but never less than or greater than:

not_a_num != 5.0 # or any random value
Out: True

not_a_num > 5.0 or not_a_num < 5.0 or not_a_num == 5.0
Out: False

Arithmetic operations on NaN always give NaN. This includes multiplication by -1: there is no "negative NaN".

5.0 * not_a_num
Out: nan

float('-nan')
Out: nan

Python 3.x Version ≥ 3.5

-math.nan

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 269

Out: nan

There is one subtle difference between the old float versions of NaN and infinity and the Python 3.5+ math library
constants:

Python 3.x Version ≥ 3.5

math.inf is math.inf, math.nan is math.nan
Out: (True, True)

float('inf') is float('inf'), float('nan') is float('nan')
Out: (False, False)

Section 45.5: Logarithms
math.log(x) gives the natural (base e) logarithm of x.

math.log(math.e) # 1.0
math.log(1) # 0.0
math.log(100) # 4.605170185988092

math.log can lose precision with numbers close to 1, due to the limitations of floating-point numbers. In order to
accurately calculate logs close to 1, use math.log1p, which evaluates the natural logarithm of 1 plus the argument:

math.log(1 + 1e-20) # 0.0
math.log1p(1e-20) # 1e-20

math.log10 can be used for logs base 10:

math.log10(10) # 1.0

Python 2.x Version ≥ 2.3.0

When used with two arguments, math.log(x, base) gives the logarithm of x in the given base (i.e. log(x) /
log(base).

math.log(100, 10) # 2.0
math.log(27, 3) # 3.0
math.log(1, 10) # 0.0

Section 45.6: Constants
math modules includes two commonly used mathematical constants.

math.pi - The mathematical constant pi
math.e - The mathematical constant e (base of natural logarithm)

>>> from math import pi, e
>>> pi
3.141592653589793
>>> e
2.718281828459045
>>>

Python 3.5 and higher have constants for infinity and NaN ("not a number"). The older syntax of passing a string to
float() still works.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 270

Python 3.x Version ≥ 3.5

math.inf == float('inf')
Out: True

-math.inf == float('-inf')
Out: True

NaN never compares equal to anything, even itself
math.nan == float('nan')
Out: False

Section 45.7: Imaginary Numbers
Imaginary numbers in Python are represented by a "j" or "J" trailing the target number.

1j # Equivalent to the square root of -1.
1j * 1j # = (-1+0j)

Section 45.8: Copying signs
In Python 2.6 and higher, math.copysign(x, y) returns x with the sign of y. The returned value is always a float.

Python 2.x Version ≥ 2.6

math.copysign(-2, 3) # 2.0
math.copysign(3, -3) # -3.0
math.copysign(4, 14.2) # 4.0
math.copysign(1, -0.0) # -1.0, on a platform which supports signed zero

Section 45.9: Complex numbers and the cmath module
The cmath module is similar to the math module, but defines functions appropriately for the complex plane.

First of all, complex numbers are a numeric type that is part of the Python language itself rather than being
provided by a library class. Thus we don't need to import cmath for ordinary arithmetic expressions.

Note that we use j (or J) and not i.

z = 1 + 3j

We must use 1j since j would be the name of a variable rather than a numeric literal.

1j * 1j
Out: (-1+0j)

1j ** 1j
Out: (0.20787957635076193+0j) # "i to the i" == math.e ** -(math.pi/2)

We have the real part and the imag (imaginary) part, as well as the complex conjugate:

real part and imaginary part are both float type
z.real, z.imag
Out: (1.0, 3.0)

z.conjugate()
Out: (1-3j) # z.conjugate() == z.real - z.imag * 1j

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 271

The built-in functions abs and complex are also part of the language itself and don't require any import:

abs(1 + 1j)
Out: 1.4142135623730951 # square root of 2

complex(1)
Out: (1+0j)

complex(imag=1)
Out: (1j)

complex(1, 1)
Out: (1+1j)

The complex function can take a string, but it can't have spaces:

complex('1+1j')
Out: (1+1j)

complex('1 + 1j')
Exception: ValueError: complex() arg is a malformed string

But for most functions we do need the module, for instance sqrt:

import cmath

cmath.sqrt(-1)
Out: 1j

Naturally the behavior of sqrt is different for complex numbers and real numbers. In non-complex math the square
root of a negative number raises an exception:

import math

math.sqrt(-1)
Exception: ValueError: math domain error

Functions are provided to convert to and from polar coordinates:

cmath.polar(1 + 1j)
Out: (1.4142135623730951, 0.7853981633974483) # == (sqrt(1 + 1), atan2(1, 1))

abs(1 + 1j), cmath.phase(1 + 1j)
Out: (1.4142135623730951, 0.7853981633974483) # same as previous calculation

cmath.rect(math.sqrt(2), math.atan(1))
Out: (1.0000000000000002+1.0000000000000002j)

The mathematical field of complex analysis is beyond the scope of this example, but many functions in the complex
plane have a "branch cut", usually along the real axis or the imaginary axis. Most modern platforms support "signed
zero" as specified in IEEE 754, which provides continuity of those functions on both sides of the branch cut. The
following example is from the Python documentation:

cmath.phase(complex(-1.0, 0.0))
Out: 3.141592653589793

cmath.phase(complex(-1.0, -0.0))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 272

Out: -3.141592653589793

The cmath module also provides many functions with direct counterparts from the math module.

In addition to sqrt, there are complex versions of exp, log, log10, the trigonometric functions and their inverses
(sin, cos, tan, asin, acos, atan), and the hyperbolic functions and their inverses (sinh, cosh, tanh, asinh, acosh,
atanh). Note however there is no complex counterpart of math.atan2, the two-argument form of arctangent.

cmath.log(1+1j)
Out: (0.34657359027997264+0.7853981633974483j)

cmath.exp(1j * cmath.pi)
Out: (-1+1.2246467991473532e-16j) # e to the i pi == -1, within rounding error

The constants pi and e are provided. Note these are float and not complex.

type(cmath.pi)
Out: <class 'float'>

The cmath module also provides complex versions of isinf, and (for Python 3.2+) isfinite. See "Infinity and NaN".
A complex number is considered infinite if either its real part or its imaginary part is infinite.

cmath.isinf(complex(float('inf'), 0.0))
Out: True

Likewise, the cmath module provides a complex version of isnan. See "Infinity and NaN". A complex number is
considered "not a number" if either its real part or its imaginary part is "not a number".

cmath.isnan(0.0, float('nan'))
Out: True

Note there is no cmath counterpart of the math.inf and math.nan constants (from Python 3.5 and higher)

Python 3.x Version ≥ 3.5

cmath.isinf(complex(0.0, math.inf))
Out: True

cmath.isnan(complex(math.nan, 0.0))
Out: True

cmath.inf
Exception: AttributeError: module 'cmath' has no attribute 'inf'

In Python 3.5 and higher, there is an isclose method in both cmath and math modules.

Python 3.x Version ≥ 3.5

z = cmath.rect(*cmath.polar(1+1j))

z
Out: (1.0000000000000002+1.0000000000000002j)

cmath.isclose(z, 1+1j)
True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 273

Chapter 46: Complex math
Section 46.1: Advanced complex arithmetic
The module cmath includes additional functions to use complex numbers.

import cmath

This module can calculate the phase of a complex number, in radians:

z = 2+3j # A complex number
cmath.phase(z) # 0.982793723247329

It allows the conversion between the cartesian (rectangular) and polar representations of complex numbers:

cmath.polar(z) # (3.605551275463989, 0.982793723247329)
cmath.rect(2, cmath.pi/2) # (0+2j)

The module contains the complex version of

Exponential and logarithmic functions (as usual, log is the natural logarithm and log10 the decimal
logarithm):

 cmath.exp(z) # (-7.315110094901103+1.0427436562359045j)
 cmath.log(z) # (1.2824746787307684+0.982793723247329j)
 cmath.log10(-100) # (2+1.3643763538418412j)

Square roots:

 cmath.sqrt(z) # (1.6741492280355401+0.8959774761298381j)

Trigonometric functions and their inverses:

 cmath.sin(z) # (9.15449914691143-4.168906959966565j)
 cmath.cos(z) # (-4.189625690968807-9.109227893755337j)
 cmath.tan(z) # (-0.003764025641504249+1.00323862735361j)
 cmath.asin(z) # (0.5706527843210994+1.9833870299165355j)
 cmath.acos(z) # (1.0001435424737972-1.9833870299165355j)
 cmath.atan(z) # (1.4099210495965755+0.22907268296853878j)
 cmath.sin(z)**2 + cmath.cos(z)**2 # (1+0j)

Hyperbolic functions and their inverses:

 cmath.sinh(z) # (-3.59056458998578+0.5309210862485197j)
 cmath.cosh(z) # (-3.7245455049153224+0.5118225699873846j)
 cmath.tanh(z) # (0.965385879022133-0.009884375038322495j)
 cmath.asinh(z) # (0.5706527843210994+1.9833870299165355j)
 cmath.acosh(z) # (1.9833870299165355+1.0001435424737972j)
 cmath.atanh(z) # (0.14694666622552977+1.3389725222944935j)
 cmath.cosh(z)**2 - cmath.sin(z)**2 # (1+0j)
 cmath.cosh((0+1j)*z) - cmath.cos(z) # 0j

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 274

Section 46.2: Basic complex arithmetic
Python has built-in support for complex arithmetic. The imaginary unit is denoted by j:

z = 2+3j # A complex number
w = 1-7j # Another complex number

Complex numbers can be summed, subtracted, multiplied, divided and exponentiated:

z + w # (3-4j)
z - w # (1+10j)
z * w # (23-11j)
z / w # (-0.38+0.34j)
z**3 # (-46+9j)

Python can also extract the real and imaginary parts of complex numbers, and calculate their absolute value and
conjugate:

z.real # 2.0
z.imag # 3.0
abs(z) # 3.605551275463989
z.conjugate() # (2-3j)

http://stackoverflow.com/questions/24812444/why-are-complex-numbers-in-python-denoted-with-j-instead-of-i#24812657
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 275

Chapter 47: Collections module
The built-in collections package provides several specialized, flexible collection types that are both high-
performance and provide alternatives to the general collection types of dict, list, tuple and set. The module also
defines abstract base classes describing different types of collection functionality (such as MutableSet and
ItemsView).

Section 47.1: collections.Counter
Counter is a dict sub class that allows you to easily count objects. It has utility methods for working with the
frequencies of the objects that you are counting.

import collections
counts = collections.Counter([1,2,3])

the above code creates an object, counts, which has the frequencies of all the elements passed to the constructor.
This example has the value Counter({1: 1, 2: 1, 3: 1})

Constructor examples

Letter Counter

>>> collections.Counter('Happy Birthday')
Counter({'a': 2, 'p': 2, 'y': 2, 'i': 1, 'r': 1, 'B': 1, ' ': 1, 'H': 1, 'd': 1, 'h': 1, 't': 1})

Word Counter

>>> collections.Counter('I am Sam Sam I am That Sam-I-am That Sam-I-am! I do not like that Sam-I-
am'.split())
Counter({'I': 3, 'Sam': 2, 'Sam-I-am': 2, 'That': 2, 'am': 2, 'do': 1, 'Sam-I-am!': 1, 'that': 1,
'not': 1, 'like': 1})

Recipes

>>> c = collections.Counter({'a': 4, 'b': 2, 'c': -2, 'd': 0})

Get count of individual element

>>> c['a']
4

Set count of individual element

>>> c['c'] = -3
>>> c
Counter({'a': 4, 'b': 2, 'd': 0, 'c': -3})

Get total number of elements in counter (4 + 2 + 0 - 3)

>>> sum(c.itervalues()) # negative numbers are counted!
3

Get elements (only those with positive counter are kept)

https://docs.python.org/2/library/collections.html#collections.Counter
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Python® Notes for Professionals 276

>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

Remove keys with 0 or negative value

>>> c - collections.Counter()
Counter({'a': 4, 'b': 2})

Remove everything

>>> c.clear()
>>> c
Counter()

Add remove individual elements

>>> c.update({'a': 3, 'b':3})
>>> c.update({'a': 2, 'c':2}) # adds to existing, sets if they don't exist
>>> c
Counter({'a': 5, 'b': 3, 'c': 2})
>>> c.subtract({'a': 3, 'b': 3, 'c': 3}) # subtracts (negative values are allowed)
>>> c
Counter({'a': 2, 'b': 0, 'c': -1})

Section 47.2: collections.OrderedDict
The order of keys in Python dictionaries is arbitrary: they are not governed by the order in which you add them.

For example:

>>> d = {'foo': 5, 'bar': 6}
>>> print(d)
{'foo': 5, 'bar': 6}
>>> d['baz'] = 7
>>> print(a)
{'baz': 7, 'foo': 5, 'bar': 6}
>>> d['foobar'] = 8
>>> print(a)
{'baz': 7, 'foo': 5, 'bar': 6, 'foobar': 8}
```

(The arbitrary ordering implied above means that you may get different results with the above code to that shown
here.)

The order in which the keys appear is the order which they would be iterated over, e.g. using a for loop.

The collections.OrderedDict class provides dictionary objects that retain the order of keys. OrderedDicts can be
created as shown below with a series of ordered items (here, a list of tuple key-value pairs):

>>> from collections import OrderedDict
>>> d = OrderedDict([('foo', 5), ('bar', 6)])
>>> print(d)
OrderedDict([('foo', 5), ('bar', 6)])
>>> d['baz'] = 7
>>> print(d)
OrderedDict([('foo', 5), ('bar', 6), ('baz', 7)])
>>> d['foobar'] = 8

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 277

>>> print(d)
OrderedDict([('foo', 5), ('bar', 6), ('baz', 7), ('foobar', 8)])

Or we can create an empty OrderedDict and then add items:

>>> o = OrderedDict()
>>> o['key1'] = "value1"
>>> o['key2'] = "value2"
>>> print(o)
OrderedDict([('key1', 'value1'), ('key2', 'value2')])

Iterating through an OrderedDict allows key access in the order they were added.

What happens if we assign a new value to an existing key?

>>> d['foo'] = 4
>>> print(d)
OrderedDict([('foo', 4), ('bar', 6), ('baz', 7), ('foobar', 8)])

The key retains its original place in the OrderedDict.

Section 47.3: collections.defaultdict
collections.defaultdict(default_factory) returns a subclass of dict that has a default value for missing keys. The
argument should be a function that returns the default value when called with no arguments. If there is nothing
passed, it defaults to None.

>>> state_capitals = collections.defaultdict(str)
>>> state_capitals
defaultdict(<class 'str'>, {})

returns a reference to a defaultdict that will create a string object with its default_factory method.

A typical usage of defaultdict is to use one of the builtin types such as str, int, list or dict as the
default_factory, since these return empty types when called with no arguments:

>>> str()
''
>>> int()
0
>>> list
[]

Calling the defaultdict with a key that does not exist does not produce an error as it would in a normal dictionary.

>>> state_capitals['Alaska']
''
>>> state_capitals
defaultdict(<class 'str'>, {'Alaska': ''})

Another example with int:

>>> fruit_counts = defaultdict(int)
>>> fruit_counts['apple'] += 2  # No errors should occur
>>> fruit_counts
default_dict(int, {'apple': 2})
>>> fruit_counts['banana']  # No errors should occur

https://docs.python.org/2/library/collections.html#collections.defaultdict
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 278

0
>>> fruit_counts  # A new key is created
default_dict(int, {'apple': 2, 'banana': 0})

Normal dictionary methods work with the default dictionary

>>> state_capitals['Alabama'] = 'Montgomery'
>>> state_capitals
defaultdict(<class 'str'>, {'Alabama': 'Montgomery', 'Alaska': ''})

Using list as the default_factory will create a list for each new key.

>>> s = [('NC', 'Raleigh'), ('VA', 'Richmond'), ('WA', 'Seattle'), ('NC', 'Asheville')]
>>> dd = collections.defaultdict(list)
>>> for k, v in s:
...     dd[k].append(v)
>>> dd
defaultdict(<class 'list'>,
    {'VA': ['Richmond'],
     'NC': ['Raleigh', 'Asheville'],
     'WA': ['Seattle']})

Section 47.4: collections.namedtuple
Define a new type Person using namedtuple like this:

Person = namedtuple('Person', ['age', 'height', 'name'])

The second argument is the list of attributes that the tuple will have. You can list these attributes also as either
space or comma separated string:

Person = namedtuple('Person', 'age, height, name')

or

Person = namedtuple('Person', 'age height name')

Once defined, a named tuple can be instantiated by calling the object with the necessary parameters, e.g.:

dave = Person(30, 178, 'Dave')

Named arguments can also be used:

jack = Person(age=30, height=178, name='Jack S.')

Now you can access the attributes of the namedtuple:

print(jack.age)  # 30
print(jack.name)  # 'Jack S.'

The first argument to the namedtuple constructor (in our example 'Person') is the typename. It is typical to use the
same word for the constructor and the typename, but they can be different:

Human = namedtuple('Person',  'age, height, name')
dave = Human(30, 178, 'Dave')

https://docs.python.org/2/library/collections.html#collections.namedtuple
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 279

print(dave)  # yields: Person(age=30, height=178, name='Dave')

Section 47.5: collections.deque
Returns a new deque object initialized left-to-right (using append()) with data from iterable. If iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-ended
queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque with
approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and incur O(n)
memory movement costs for pop(0) and insert(0, v) operations which change both the size and position of the
underlying data representation.

New in version 2.4.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded to the
specified maximum length. Once a bounded length deque is full, when new items are added, a corresponding
number of items are discarded from the opposite end. Bounded length deques provide functionality similar to the
tail filter in Unix. They are also useful for tracking transactions and other pools of data where only the most recent
activity is of interest.

Changed in version 2.6: Added maxlen parameter.

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print elem.upper()
G
H
I

>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])

>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'

>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 280

deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])

>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):
  File "<pyshell#6>", line 1, in -toplevel-
    d.pop()
IndexError: pop from an empty deque

>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

Source: https://docs.python.org/2/library/collections.html

Section 47.6: collections.ChainMap
ChainMap is new in version 3.3

Returns a new ChainMap object given a number of maps. This object groups multiple dicts or other mappings
together to create a single, updateable view.

ChainMaps are useful managing nested contexts and overlays. An example in the python world is found in the
implementation of the Context class in Django's template engine. It is useful for quickly linking a number of
mappings so that the result can be treated as a single unit. It is often much faster than creating a new dictionary
and running multiple update() calls.

Anytime one has a chain of lookup values there can be a case for ChainMap. An example includes having both user
specified values and a dictionary of default values. Another example is the POST and GET parameter maps found in
web use, e.g. Django or Flask. Through the use of ChainMap one returns a combined view of two distinct
dictionaries.

The maps parameter list is ordered from first-searched to last-searched. Lookups search the underlying mappings
successively until a key is found. In contrast, writes, updates, and deletions only operate on the first mapping.

import collections

# define two dictionaries with at least some keys overlapping.
dict1 = {'apple': 1, 'banana': 2}
dict2 = {'coconut': 1, 'date': 1, 'apple': 3}

# create two ChainMaps with different ordering of those dicts.
combined_dict = collections.ChainMap(dict1, dict2)
reverse_ordered_dict = collections.ChainMap(dict2, dict1)

Note the impact of order on which value is found first in the subsequent lookup

for k, v in combined_dict.items():
    print(k, v)
   
date 1
apple 1
banana 2

https://docs.python.org/2/library/collections.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 281

coconut 1

for k, v in reverse_ordered_dict.items():
    print(k, v)

date 1
apple 3
banana 2
coconut 1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 282

Chapter 48: Operator module
Section 48.1: Itemgetter
Grouping the key-value pairs of a dictionary by the value with itemgetter:

from itertools import groupby
from operator import itemgetter
adict = {'a': 1, 'b': 5, 'c': 1}

dict((i, dict(v)) for i, v in groupby(adict.items(), itemgetter(1)))
# Output: {1: {'a': 1, 'c': 1}, 5: {'b': 5}}

which is equivalent (but faster) to a lambda function like this:

dict((i, dict(v)) for i, v in groupby(adict.items(), lambda x: x[1]))

Or sorting a list of tuples by the second element first the first element as secondary:

alist_of_tuples = [(5,2), (1,3), (2,2)]
sorted(alist_of_tuples, key=itemgetter(1,0))
# Output: [(2, 2), (5, 2), (1, 3)]

Section 48.2: Operators as alternative to an infix operator
For every infix operator, e.g. + there is an operator-function (operator.add for +):

1 + 1
# Output: 2
from operator import add
add(1, 1)
# Output: 2

even though the main documentation states that for the arithmetic operators only numerical input is allowed it is
possible:

from operator import mul
mul('a', 10)
# Output: 'aaaaaaaaaa'
mul([3], 3)
# Output: [3, 3, 3]

See also: mapping from operation to operator function in the official Python documentation.

Section 48.3: Methodcaller
Instead of this lambda-function that calls the method explicitly:

alist = ['wolf', 'sheep', 'duck']
list(filter(lambda x: x.startswith('d'), alist))     # Keep only elements that start with 'd'
# Output: ['duck']

one could use a operator-function that does the same:

from operator import methodcaller

https://docs.python.org/3/library/operator.html#mapping-operators-to-functions
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 283

list(filter(methodcaller('startswith', 'd'), alist)) # Does the same but is faster.
# Output: ['duck']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 284

Chapter 49: JSON Module
Section 49.1: Storing data in a file
The following snippet encodes the data stored in d into JSON and stores it in a file (replace filename with the actual
name of the file).

import json

d = {
    'foo': 'bar',
    'alice': 1,
    'wonderland': [1, 2, 3]
}

with open(filename, 'w') as f:
    json.dump(d, f)

Section 49.2: Retrieving data from a file
The following snippet opens a JSON encoded file (replace filename with the actual name of the file) and returns the
object that is stored in the file.

import json

with open(filename, 'r') as f:
    d = json.load(f)

Section 49.3: Formatting JSON output
Let's say we have the following data:

>>> data = {"cats": [{"name": "Tubbs", "color": "white"}, {"name": "Pepper", "color": "black"}]}

Just dumping this as JSON does not do anything special here:

>>> print(json.dumps(data))
{"cats": [{"name": "Tubbs", "color": "white"}, {"name": "Pepper", "color": "black"}]}

Setting indentation to get prettier output

If we want pretty printing, we can set an indent size:

>>> print(json.dumps(data, indent=2))
{
  "cats": [
    {
      "name": "Tubbs",
      "color": "white"
    },
    {
      "name": "Pepper",
      "color": "black"
    }
  ]
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 285

Sorting keys alphabetically to get consistent output

By default the order of keys in the output is undefined. We can get them in alphabetical order to make sure we
always get the same output:

>>> print(json.dumps(data, sort_keys=True))
{"cats": [{"color": "white", "name": "Tubbs"}, {"color": "black", "name": "Pepper"}]}

Getting rid of whitespace to get compact output

We might want to get rid of the unnecessary spaces, which is done by setting separator strings different from the
default ', ' and ': ':

>>>print(json.dumps(data, separators=(',', ':')))
{"cats":[{"name":"Tubbs","color":"white"},{"name":"Pepper","color":"black"}]}

Section 49.4: `load` vs `loads`, `dump` vs `dumps`
The json module contains functions for both reading and writing to and from unicode strings, and reading and
writing to and from files. These are differentiated by a trailing s in the function name. In these examples we use a
StringIO object, but the same functions would apply for any file-like object.

Here we use the string-based functions:

import json

data = {u"foo": u"bar", u"baz": []}
json_string = json.dumps(data)
# u'{"foo": "bar", "baz": []}'
json.loads(json_string)
# {u"foo": u"bar", u"baz": []}

And here we use the file-based functions:

import json

from io import StringIO

json_file = StringIO()
data = {u"foo": u"bar", u"baz": []}
json.dump(data, json_file)
json_file.seek(0)  # Seek back to the start of the file before reading
json_file_content = json_file.read()
# u'{"foo": "bar", "baz": []}'
json_file.seek(0)  # Seek back to the start of the file before reading
json.load(json_file)
# {u"foo": u"bar", u"baz": []}

As you can see the main difference is that when dumping json data you must pass the file handle to the function, as
opposed to capturing the return value. Also worth noting is that you must seek to the start of the file before reading
or writing, in order to avoid data corruption. When opening a file the cursor is placed at position 0, so the below
would also work:

import json

json_file_path = './data.json'
data = {u"foo": u"bar", u"baz": []}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 286

with open(json_file_path, 'w') as json_file:
    json.dump(data, json_file)

with open(json_file_path) as json_file:
    json_file_content = json_file.read()
    # u'{"foo": "bar", "baz": []}'

with open(json_file_path) as json_file:
    json.load(json_file)
    # {u"foo": u"bar", u"baz": []}

Having both ways of dealing with json data allows you to idiomatically and efficiently work with formats which build
upon json, such as pyspark's json-per-line:

# loading from a file
data = [json.loads(line) for line in open(file_path).splitlines()]

# dumping to a file
with open(file_path, 'w') as json_file:
    for item in data:
        json.dump(item, json_file)
        json_file.write('\n')

Section 49.5: Calling `json.tool` from the command line to
pretty-print JSON output
Given some JSON file "foo.json" like:

{"foo": {"bar": {"baz": 1}}}

we can call the module directly from the command line (passing the filename as an argument) to pretty-print it:

$ python -m json.tool foo.json
{
    "foo": {
        "bar": {
            "baz": 1
        }
    }
}

The module will also take input from STDOUT, so (in Bash) we equally could do:

$ cat foo.json | python -m json.tool

Section 49.6: JSON encoding custom objects
If we just try the following:

import json
from datetime import datetime
data = {'datetime': datetime(2016, 9, 26, 4, 44, 0)}
print(json.dumps(data))

we get an error saying TypeError: datetime.datetime(2016, 9, 26, 4, 44) is not JSON serializable.

To be able to serialize the datetime object properly, we need to write custom code for how to convert it:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 287

class DatetimeJSONEncoder(json.JSONEncoder):
    def default(self, obj):
        try:
            return obj.isoformat()
        except AttributeError:
            # obj has no isoformat method; let the builtin JSON encoder handle it
            return super(DatetimeJSONEncoder, self).default(obj)

and then use this encoder class instead of json.dumps:

encoder = DatetimeJSONEncoder()
print(encoder.encode(data))
# prints {"datetime": "2016-09-26T04:44:00"}

Section 49.7: Creating JSON from Python dict
import json
d = {
    'foo': 'bar',
    'alice': 1,
    'wonderland': [1, 2, 3]
}
json.dumps(d)

The above snippet will return the following:

'{"wonderland": [1, 2, 3], "foo": "bar", "alice": 1}'

Section 49.8: Creating Python dict from JSON
import json
s = '{"wonderland": [1, 2, 3], "foo": "bar", "alice": 1}'
json.loads(s)

The above snippet will return the following:

{u'alice': 1, u'foo': u'bar', u'wonderland': [1, 2, 3]}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 289

Chapter 50: Sqlite3 Module
Section 50.1: Sqlite3 - Not require separate server process
The sqlite3 module was written by Gerhard Häring. To use the module, you must first create a Connection object
that represents the database. Here the data will be stored in the example.db file:

import sqlite3
conn = sqlite3.connect('example.db')

You can also supply the special name :memory: to create a database in RAM. Once you have a Connection, you can
create a Cursor object and call its execute() method to perform SQL commands:

c = conn.cursor()

# Create table
c.execute('''CREATE TABLE stocks
         (date text, trans text, symbol text, qty real, price real)''')

# Insert a row of data
c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)")

# Save (commit) the changes
conn.commit()

# We can also close the connection if we are done with it.
# Just be sure any changes have been committed or they will be lost.
conn.close()

Section 50.2: Getting the values from the database and Error
handling
Fetching the values from the SQLite3 database.

Print row values returned by select query

import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()
c.execute("SELECT * from table_name where id=cust_id")
for row in c:
    print row # will be a list

To fetch single matching fetchone() method

print c.fetchone()

For multiple rows use fetchall() method

a=c.fetchall() #which is similar to list(cursor) method used previously
for row in a:
    print row

Error handling can be done using sqlite3.Error built in function

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 290

try:
    #SQL Code
except sqlite3.Error as e:
    print "An error occurred:", e.args[0]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 291

Chapter 51: The os Module
Parameter Details
Path A path to a file. The path separator may be determined by os.path.sep.

Mode The desired permission, in octal (e.g. 0700)

This module provides a portable way of using operating system dependent functionality.

Section 51.1: makedirs - recursive directory creation
Given a local directory with the following contents:

 └── dir1
     ├── subdir1
     └── subdir2

We want to create the same subdir1, subdir2 under a new directory dir2, which does not exist yet.

import os

os.makedirs("./dir2/subdir1")
os.makedirs("./dir2/subdir2")

Running this results in

├── dir1
│   ├── subdir1
│   └── subdir2
└── dir2
    ├── subdir1
    └── subdir2

dir2 is only created the first time it is needed, for subdir1's creation.

If we had used os.mkdir instead, we would have had an exception because dir2 would not have existed yet.

    os.mkdir("./dir2/subdir1")
OSError: [Errno 2] No such file or directory: './dir2/subdir1'

os.makedirs won't like it if the target directory exists already. If we re-run it again:

OSError: [Errno 17] File exists: './dir2/subdir1'

However, this could easily be fixed by catching the exception and checking that the directory has been created.

try:
    os.makedirs("./dir2/subdir1")
except OSError:
    if not os.path.isdir("./dir2/subdir1"):
        raise

try:
    os.makedirs("./dir2/subdir2")
except OSError:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 292

    if not os.path.isdir("./dir2/subdir2"):
        raise

Section 51.2: Create a directory
os.mkdir('newdir')

If you need to specify permissions, you can use the optional mode argument:

os.mkdir('newdir', mode=0700)

Section 51.3: Get current directory
Use the os.getcwd() function:

print(os.getcwd())

Section 51.4: Determine the name of the operating system
The os module provides an interface to determine what type of operating system the code is currently running on.

os.name

This can return one of the following in Python 3:

posix

nt

ce

java

More detailed information can be retrieved from sys.platform

Section 51.5: Remove a directory
Remove the directory at path:

os.rmdir(path)

You should not use os.remove() to remove a directory. That function is for files and using it on directories will
result in an OSError

Section 51.6: Follow a symlink (POSIX)
Sometimes you need to determine the target of a symlink. os.readlink will do this:

print(os.readlink(path_to_symlink))

Section 51.7: Change permissions on a file
os.chmod(path, mode)

where mode is the desired permission, in octal.

https://docs.python.org/3/library/sys.html#sys.platform
https://docs.python.org/3/library/sys.html#sys.platform
https://docs.python.org/3/library/sys.html#sys.platform
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 293

Chapter 52: The locale Module
Section 52.1: Currency Formatting US Dollars Using the locale
Module
import locale

locale.setlocale(locale.LC_ALL, '')
Out[2]: 'English_United States.1252'

locale.currency(762559748.49)
Out[3]: '$762559748.49'

locale.currency(762559748.49, grouping=True)
Out[4]: '$762,559,748.49'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 294

Chapter 53: Itertools Module
Section 53.1: Combinations method in Itertools Module
itertools.combinations will return a generator of the k-combination sequence of a list.

In other words: It will return a generator of tuples of all the possible k-wise combinations of the input list.

For Example:

If you have a list:

a = [1,2,3,4,5]
b = list(itertools.combinations(a, 2))
print b

Output:

[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]

The above output is a generator converted to a list of tuples of all the possible pair-wise combinations of the input
list a

You can also find all the 3-combinations:

a = [1,2,3,4,5]
b = list(itertools.combinations(a, 3))
print b

Output:

[(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4),
 (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5),
 (2, 4, 5), (3, 4, 5)]

Section 53.2: itertools.dropwhile
itertools.dropwhile enables you to take items from a sequence after a condition first becomes False.

def is_even(x):
    return x % 2 == 0

lst = [0, 2, 4, 12, 18, 13, 14, 22, 23, 44]
result = list(itertools.dropwhile(is_even, lst))

print(result)
 

This outputs [13, 14, 22, 23, 44].

(This example is same as the example for takewhile but using dropwhile.)

Note that, the first number that violates the predicate (i.e.: the function returning a Boolean value) is_even is, 13.
All the elements before that, are discarded.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 295

The output produced by dropwhile is similar to the output generated from the code below.

def dropwhile(predicate, iterable):
    iterable = iter(iterable)
    for x in iterable:
        if not predicate(x):
            yield x
            break
    for x in iterable:
        yield x

The concatenation of results produced by takewhile and dropwhile produces the original iterable.

result = list(itertools.takewhile(is_even, lst)) + list(itertools.dropwhile(is_even, lst))

Section 53.3: Zipping two iterators until they are both
exhausted
Similar to the built-in function zip(), itertools.zip_longest will continue iterating beyond the end of the shorter
of two iterables.

from itertools import zip_longest
a = [i for i in range(5)] # Length is 5
b = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] # Length is 7
for i in zip_longest(a, b):
    x, y = i  # Note that zip longest returns the values as a tuple
    print(x, y)

An optional fillvalue argument can be passed (defaults to '') like so:

for i in zip_longest(a, b, fillvalue='Hogwash!'):
    x, y = i  # Note that zip longest returns the values as a tuple
    print(x, y)

In Python 2.6 and 2.7, this function is called itertools.izip_longest.

Section 53.4: Take a slice of a generator
Itertools "islice" allows you to slice a generator:

results = fetch_paged_results()  # returns a generator
limit = 20  # Only want the first 20 results
for data in itertools.islice(results, limit):
    print(data)

Normally you cannot slice a generator:

def gen():
    n = 0
    while n < 20:
        n += 1
        yield n

for part in gen()[:3]:
    print(part)

Will give

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 296

Traceback (most recent call last):
  File "gen.py", line 6, in <module>
    for part in gen()[:3]:
TypeError: 'generator' object is not subscriptable

However, this works:

import itertools

def gen():
    n = 0
    while n < 20:
        n += 1
        yield n

for part in itertools.islice(gen(), 3):
    print(part)

Note that like a regular slice, you can also use start, stop and step arguments:

itertools.islice(iterable, 1, 30, 3)

Section 53.5: Grouping items from an iterable object using a
function
Start with an iterable which needs to be grouped

lst = [("a", 5, 6), ("b", 2, 4), ("a", 2, 5), ("c", 2, 6)]

Generate the grouped generator, grouping by the second element in each tuple:

def testGroupBy(lst):
    groups = itertools.groupby(lst, key=lambda x: x[1])
    for key, group in groups:
        print(key, list(group))

testGroupBy(lst)

# 5 [('a', 5, 6)]
# 2 [('b', 2, 4), ('a', 2, 5), ('c', 2, 6)]

Only groups of consecutive elements are grouped. You may need to sort by the same key before calling groupby
For E.g, (Last element is changed)

lst = [("a", 5, 6), ("b", 2, 4), ("a", 2, 5), ("c", 5, 6)]
testGroupBy(lst)

# 5 [('a', 5, 6)]
# 2 [('b', 2, 4), ('a', 2, 5)]
# 5 [('c', 5, 6)]

The group returned by groupby is an iterator that will be invalid before next iteration. E.g the following will not work
if you want the groups to be sorted by key. Group 5 is empty below because when group 2 is fetched it invalidates 5

lst = [("a", 5, 6), ("b", 2, 4), ("a", 2, 5), ("c", 2, 6)]
groups = itertools.groupby(lst, key=lambda x: x[1])
for key, group in sorted(groups):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 297

    print(key, list(group))

# 2 [('c', 2, 6)]
# 5 []

To correctly do sorting, create a list from the iterator before sorting

groups = itertools.groupby(lst, key=lambda x: x[1])
for key, group in sorted((key, list(group)) for key, group in groups):
    print(key, list(group))
     
# 2 [('b', 2, 4), ('a', 2, 5), ('c', 2, 6)]
# 5 [('a', 5, 6)]

Section 53.6: itertools.takewhile
itertools.takewhile enables you to take items from a sequence until a condition first becomes False.

def is_even(x):
    return x % 2 == 0

lst = [0, 2, 4, 12, 18, 13, 14, 22, 23, 44]
result = list(itertools.takewhile(is_even, lst))

print(result)
 

This outputs [0, 2, 4, 12, 18].

Note that, the first number that violates the predicate (i.e.: the function returning a Boolean value) is_even is, 13.
Once takewhile encounters a value that produces False for the given predicate, it breaks out.

The output produced by takewhile is similar to the output generated from the code below.

def takewhile(predicate, iterable):
    for x in iterable:
        if predicate(x):
            yield x
        else:
            break

Note: The concatenation of results produced by takewhile and dropwhile produces the original iterable.

result = list(itertools.takewhile(is_even, lst)) + list(itertools.dropwhile(is_even, lst))

Section 53.7: itertools.permutations
itertools.permutations returns a generator with successive r-length permutations of elements in the iterable.

a = [1,2,3]
list(itertools.permutations(a))
# [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

list(itertools.permutations(a, 2))
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 298

if the list a has duplicate elements, the resulting permutations will have duplicate elements, you can use set to get
unique permutations:

a = [1,2,1]
list(itertools.permutations(a))
# [(1, 2, 1), (1, 1, 2), (2, 1, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1)]

set(itertools.permutations(a))
# {(1, 1, 2), (1, 2, 1), (2, 1, 1)}

Section 53.8: itertools.repeat
Repeat something n times:

>>> import itertools
>>> for i in itertools.repeat('over-and-over', 3):
...    print(i)
over-and-over
over-and-over
over-and-over

Section 53.9: Get an accumulated sum of numbers in an
iterable
Python 3.x Version ≥ 3.2

accumulate yields a cumulative sum (or product) of numbers.

>>> import itertools as it
>>> import operator

>>> list(it.accumulate([1,2,3,4,5]))
[1, 3, 6, 10, 15]

>>> list(it.accumulate([1,2,3,4,5], func=operator.mul))
[1, 2, 6, 24, 120]

Section 53.10: Cycle through elements in an iterator
cycle is an infinite iterator.

>>> import itertools as it
>>> it.cycle('ABCD')
A B C D A B C D A B C D ...

Therefore, take care to give boundaries when using this to avoid an infinite loop. Example:

>>> # Iterate over each element in cycle for a fixed range
>>> cycle_iterator = it.cycle('abc123')
>>> [next(cycle_iterator) for i in range(0, 10)]
['a', 'b', 'c', '1', '2', '3', 'a', 'b', 'c', '1']

Section 53.11: itertools.product
This function lets you iterate over the Cartesian product of a list of iterables.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 299

For example,

for x, y in itertools.product(xrange(10), xrange(10)):
    print x, y

is equivalent to

for x in xrange(10):
    for y in xrange(10):
        print x, y

Like all python functions that accept a variable number of arguments, we can pass a list to itertools.product for
unpacking, with the * operator.

Thus,

its = [xrange(10)] * 2
for x,y in itertools.product(*its):
    print x, y

produces the same results as both of the previous examples.

>>> from itertools import product
>>> a=[1,2,3,4]
>>> b=['a','b','c']
>>> product(a,b)
<itertools.product object at 0x0000000002712F78>
>>> for i in product(a,b):
...     print i
...
(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')
(4, 'a')
(4, 'b')
(4, 'c')

Section 53.12: itertools.count
Introduction:

This simple function generates infinite series of numbers. For example...

for number in itertools.count():
    if number > 20:
        break
    print(number)

Note that we must break or it prints forever!

Output:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 300

0
1
2
3
4
5
6
7
8
9
10

Arguments:

count() takes two arguments, start and step:

for number in itertools.count(start=10, step=4):
    print(number)
    if number > 20:
        break

Output:

10
14
18
22

Section 53.13: Chaining multiple iterators together
Use itertools.chain to create a single generator which will yield the values from several generators in sequence.

from itertools import chain
a = (x for x in ['1', '2', '3', '4'])
b = (x for x in ['x', 'y', 'z'])
' '.join(chain(a, b))

Results in:

'1 2 3 4 x y z'

As an alternate constructor, you can use the classmethod chain.from_iterable which takes as its single parameter
an iterable of iterables. To get the same result as above:

' '.join(chain.from_iterable([a,b])

While chain can take an arbitrary number of arguments, chain.from_iterable is the only way to chain an infinite
number of iterables.

https://docs.python.org/3.4/library/itertools.html#itertools.chain
https://docs.python.org/3.4/library/itertools.html#itertools.chain
https://docs.python.org/3.4/library/itertools.html#itertools.chain
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 301

Chapter 54: Asyncio Module
Section 54.1: Coroutine and Delegation Syntax
Before Python 3.5+ was released, the asyncio module used generators to mimic asynchronous calls and thus had a
different syntax than the current Python 3.5 release.

Python 3.x Version ≥ 3.5

Python 3.5 introduced the async and await keywords. Note the lack of parentheses around the await func() call.

import asyncio

async def main():
    print(await func())

async def func():
    # Do time intensive stuff...
    return "Hello, world!"

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

Python 3.x Version ≥ 3.3 Version < 3.5

Before Python 3.5, the @asyncio.coroutine decorator was used to define a coroutine. The yield from expression
was used for generator delegation. Note the parentheses around the yield from func().

import asyncio

@asyncio.coroutine
def main():
    print((yield from func()))

@asyncio.coroutine
def func():
    # Do time intensive stuff..
    return "Hello, world!"

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

Python 3.x Version ≥ 3.5

Here is an example that shows how two functions can be run asynchronously:

import asyncio

async def cor1():
    print("cor1 start")
    for i in range(10):
        await asyncio.sleep(1.5)
        print("cor1", i)

async def cor2():
    print("cor2 start")
    for i in range(15):
        await asyncio.sleep(1)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 302

        print("cor2", i)

loop = asyncio.get_event_loop()
cors = asyncio.wait([cor1(), cor2()])
loop.run_until_complete(cors)

Section 54.2: Asynchronous Executors
Note: Uses the Python 3.5+ async/await syntax

asyncio supports the use of Executor objects found in concurrent.futures for scheduling tasks asynchronously.
Event loops have the function run_in_executor() which takes an Executor object, a Callable, and the Callable's
parameters.

Scheduling a task for an Executor

import asyncio
from concurrent.futures import ThreadPoolExecutor

def func(a, b):
    # Do time intensive stuff...
    return a + b

async def main(loop):
    executor = ThreadPoolExecutor()
    result = await loop.run_in_executor(executor, func, "Hello,", " world!")
    print(result)

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main(loop))

Each event loop also has a "default" Executor slot that can be assigned to an Executor. To assign an Executor and
schedule tasks from the loop you use the set_default_executor() method.

import asyncio
from concurrent.futures import ThreadPoolExecutor

def func(a, b):
    # Do time intensive stuff...
    return a + b

async def main(loop):
    # NOTE: Using `None` as the first parameter designates the `default` Executor.
    result = await loop.run_in_executor(None, func, "Hello,", " world!")
    print(result)

if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.set_default_executor(ThreadPoolExecutor())
    loop.run_until_complete(main(loop))

There are two main types of Executor in concurrent.futures, the ThreadPoolExecutor and the
ProcessPoolExecutor. The ThreadPoolExecutor contains a pool of threads which can either be manually set to a
specific number of threads through the constructor or defaults to the number of cores on the machine times 5. The
ThreadPoolExecutor uses the pool of threads to execute tasks assigned to it and is generally better at CPU-bound
operations rather than I/O bound operations. Contrast that to the ProcessPoolExecutor which spawns a new
process for each task assigned to it. The ProcessPoolExecutor can only take tasks and parameters that are

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 303

picklable. The most common non-picklable tasks are the methods of objects. If you must schedule an object's
method as a task in an Executor you must use a ThreadPoolExecutor.

Section 54.3: Using UVLoop
uvloop is an implementation for the asyncio.AbstractEventLoop based on libuv (Used by nodejs). It is compliant
with 99% of asyncio features and is much faster than the traditional asyncio.EventLoop. uvloop is currently not
available on Windows, install it with pip install uvloop.

import asyncio
import uvloop

if __name__ == "__main__":
    asyncio.set_event_loop(uvloop.new_event_loop())
    # Do your stuff here ...

One can also change the event loop factory by setting the EventLoopPolicy to the one in uvloop.

import asyncio
import uvloop

if __name__ == "__main__":
    asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
    loop = asyncio.new_event_loop()

Section 54.4: Synchronization Primitive: Event
Concept

Use an Event to synchronize the scheduling of multiple coroutines.

Put simply, an event is like the gun shot at a running race: it lets the runners off the starting blocks.

Example
import asyncio

# event trigger function
def trigger(event):
    print('EVENT SET')
    event.set()  # wake up coroutines waiting

# event consumers
async def consumer_a(event):
    consumer_name = 'Consumer A'
    print('{} waiting'.format(consumer_name))
    await event.wait()
    print('{} triggered'.format(consumer_name))

async def consumer_b(event):
    consumer_name = 'Consumer B'
    print('{} waiting'.format(consumer_name))
    await event.wait()
    print('{} triggered'.format(consumer_name))

# event
event = asyncio.Event()

# wrap coroutines in one future

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 304

main_future = asyncio.wait([consumer_a(event),
                            consumer_b(event)])

# event loop
event_loop = asyncio.get_event_loop()
event_loop.call_later(0.1, functools.partial(trigger, event))  # trigger event in 0.1 sec

# complete main_future
done, pending = event_loop.run_until_complete(main_future)

Output:

Consumer B waiting
Consumer A waiting
EVENT SET
Consumer B triggered
Consumer A triggered

Section 54.5: A Simple Websocket
Here we make a simple echo websocket using asyncio. We define coroutines for connecting to a server and
sending/receiving messages. The communications of the websocket are run in a main coroutine, which is run by an
event loop. This example is modified from a prior post.

import asyncio
import aiohttp

session = aiohttp.ClientSession()                          # handles the context manager
class EchoWebsocket:
   
    async def connect(self):
        self.websocket = await session.ws_connect("wss://echo.websocket.org")
       
    async def send(self, message):
        self.websocket.send_str(message)

    async def receive(self):
        result = (await self.websocket.receive())
        return result.data

async def main():
    echo = EchoWebsocket()
    await echo.connect()
    await echo.send("Hello World!")
    print(await echo.receive())                            # "Hello World!"

if __name__ == '__main__':
    # The main loop
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

Section 54.6: Common Misconception about asyncio
probably the most common misconception about asnycio is that it lets you run any task in parallel - sidestepping
the GIL (global interpreter lock) and therefore execute blocking jobs in parallel (on separate threads). it does not!

https://stackoverflow.com/questions/37369849/how-can-i-implement-asyncio-websockets-in-a-class
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 305

asyncio (and libraries that are built to collaborate with asyncio) build on coroutines: functions that (collaboratively)
yield the control flow back to the calling function. note asyncio.sleep in the examples above. this is an example of
a non-blocking coroutine that waits 'in the background' and gives the control flow back to the calling function (when
called with await). time.sleep is an example of a blocking function. the execution flow of the program will just stop
there and only return after time.sleep has finished.

a real-live example is the requests library which consists (for the time being) on blocking functions only. there is no
concurrency if you call any of its functions within asyncio. aiohttp on the other hand was built with asyncio in
mind. its coroutines will run concurrently.

if you have long-running CPU-bound tasks you would like to run in parallel asyncio is not for you. for that
you need threads or multiprocessing.

if you have IO-bound jobs running, you may run them concurrently using asyncio.

http://docs.python-requests.org/en/master/
https://aiohttp.readthedocs.io/en/stable/
https://docs.python.org/3/library/threading.html?highlight=threading#module-threading
https://docs.python.org/3/library/multiprocessing.html?#module-multiprocessing
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 307

Chapter 55: Random module
Section 55.1: Creating a random user password
In order to create a random user password we can use the symbols provided in the string module. Specifically
punctuation for punctuation symbols, ascii_letters for letters and digits for digits:

from string import punctuation, ascii_letters, digits

We can then combine all these symbols in a name named symbols:

symbols = ascii_letters + digits + punctuation

Remove either of these to create a pool of symbols with fewer elements.

After this, we can use random.SystemRandom to generate a password. For a 10 length password:

secure_random = random.SystemRandom()
password = "".join(secure_random.choice(symbols) for i in range(10))
print(password)  # '^@g;J?]M6e'

Note that other routines made immediately available by the random module — such as random.choice,
random.randint, etc. — are unsuitable for cryptographic purposes.

Behind the curtains, these routines use the Mersenne Twister PRNG, which does not satisfy the requirements of a
CSPRNG. Thus, in particular, you should not use any of them to generate passwords you plan to use. Always use an
instance of SystemRandom as shown above.

Python 3.x Version ≥ 3.6

Starting from Python 3.6, the secrets module is available, which exposes cryptographically safe functionality.

Quoting the official documentation, to generate "a ten-character alphanumeric password with at least one lowercase
character, at least one uppercase character, and at least three digits," you could:

import string
alphabet = string.ascii_letters + string.digits
while True:
    password = ''.join(choice(alphabet) for i in range(10))
    if (any(c.islower() for c in password)
            and any(c.isupper() for c in password)
            and sum(c.isdigit() for c in password) >= 3):
        break

Section 55.2: Create cryptographically secure random
numbers
By default the Python random module use the Mersenne Twister PRNG to generate random numbers, which,
although suitable in domains like simulations, fails to meet security requirements in more demanding
environments.

In order to create a cryptographically secure pseudorandom number, one can use SystemRandom which, by using
os.urandom, is able to act as a Cryptographically secure pseudorandom number generator, CPRNG.

https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://docs.python.org/3.6/library/secrets.html
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://docs.python.org/3/library/random.html#random.SystemRandom
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 308

The easiest way to use it simply involves initializing the SystemRandom class. The methods provided are similar to
the ones exported by the random module.

from random import SystemRandom
secure_rand_gen = SystemRandom()

In order to create a random sequence of 10 ints in range [0, 20], one can simply call randrange():

print([secure_rand_gen.randrange(10) for i in range(10)])
# [9, 6, 9, 2, 2, 3, 8, 0, 9, 9]

To create a random integer in a given range, one can use randint:

print(secure_rand_gen.randint(0, 20))
# 5

and, accordingly for all other methods. The interface is exactly the same, the only change is the underlying number
generator.

You can also use os.urandom directly to obtain cryptographically secure random bytes.

Section 55.3: Random and sequences: shue, choice and
sample
import random

shuffle()

You can use random.shuffle() to mix up/randomize the items in a mutable and indexable sequence. For
example a list:

laughs = ["Hi", "Ho", "He"]

random.shuffle(laughs)     # Shuffles in-place! Don't do: laughs = random.shuffle(laughs)

print(laughs)
# Out: ["He", "Hi", "Ho"]  # Output may vary!

choice()

Takes a random element from an arbitrary sequence:

print(random.choice(laughs))
# Out: He                  # Output may vary!

sample()

Like choice it takes random elements from an arbitrary sequence but you can specify how many:

#                   |--sequence--|--number--|
print(random.sample(    laughs   ,     1    ))  # Take one element
# Out: ['Ho']                    # Output may vary!

it will not take the same element twice:

print(random.sample(laughs, 3))  # Take 3 random element from the sequence.
# Out: ['Ho', 'He', 'Hi']        # Output may vary!

https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/os.html#os.urandom
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 309

print(random.sample(laughs, 4))  # Take 4 random element from the 3-item sequence.

ValueError: Sample larger than population

Section 55.4: Creating random integers and floats: randint,
randrange, random, and uniform
import random

randint()

Returns a random integer between x and y (inclusive):

random.randint(x, y)

For example getting a random number between 1 and 8:

random.randint(1, 8) # Out: 8

randrange()

random.randrange has the same syntax as range and unlike random.randint, the last value is not inclusive:

random.randrange(100)       # Random integer between 0 and 99
random.randrange(20, 50)    # Random integer between 20 and 49
random.rangrange(10, 20, 3) # Random integer between 10 and 19 with step 3 (10, 13, 16 and 19)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 310

random

Returns a random floating point number between 0 and 1:

random.random() # Out: 0.66486093215306317

uniform

Returns a random floating point number between x and y (inclusive):

random.uniform(1, 8) # Out: 3.726062641730108

Section 55.5: Reproducible random numbers: Seed and State
Setting a specific Seed will create a fixed random-number series:

random.seed(5)                 # Create a fixed state        
print(random.randrange(0, 10))  # Get a random integer between 0 and 9
# Out: 9
print(random.randrange(0, 10))
# Out: 4

Resetting the seed will create the same "random" sequence again:

random.seed(5)                 # Reset the random module to the same fixed state.
print(random.randrange(0, 10))

http://i.stack.imgur.com/DqZkG.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 311

# Out: 9
print(random.randrange(0, 10))
# Out: 4

Since the seed is fixed these results are always 9 and 4. If having specific numbers is not required only that the
values will be the same one can also just use getstate and setstate to recover to a previous state:

save_state = random.getstate()  # Get the current state
print(random.randrange(0, 10))
# Out: 5
print(random.randrange(0, 10))
# Out: 8

random.setstate(save_state)     # Reset to saved state
print(random.randrange(0, 10))
# Out: 5
print(random.randrange(0, 10))
# Out: 8

To pseudo-randomize the sequence again you seed with None:

random.seed(None)

Or call the seed method with no arguments:

random.seed()

Section 55.6: Random Binary Decision
import random

probability = 0.3

if random.random() < probability:
    print("Decision with probability 0.3")
else:
    print("Decision with probability 0.7")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 312

Chapter 56: Functools Module
Section 56.1: partial
The partial function creates partial function application from another function. It is used to bind values to some of
the function's arguments (or keyword arguments) and produce a callable without the already defined arguments.

>>> from functools import partial
>>> unhex = partial(int, base=16)
>>> unhex.__doc__ = 'Convert base16 string to int'
>>> unhex('ca11ab1e')
3390155550

partial(), as the name suggests, allows a partial evaluation of a function. Let's look at following example:

In [2]: from functools import partial

In [3]: def f(a, b, c, x):
   ...:     return 1000*a + 100*b + 10*c + x
   ...:

In [4]: g = partial(f, 1, 1, 1)

In [5]: print g(2)
1112

When g is created, f, which takes four arguments(a, b, c, x), is also partially evaluated for the first three
arguments, a, b, c,. Evaluation of f is completed when g is called, g(2), which passes the fourth argument to f.

One way to think of partial is a shift register; pushing in one argument at the time into some function. partial
comes handy for cases where data is coming in as stream and we cannot pass more than one argument.

Section 56.2: cmp_to_key
Python changed its sorting methods to accept a key function. Those functions take a value and return a key which is
used to sort the arrays.

Old comparison functions used to take two values and return -1, 0 or +1 if the first argument is small, equal or
greater than the second argument respectively. This is incompatible to the new key-function.

That's where functools.cmp_to_key comes in:

>>> import functools
>>> import locale
>>> sorted(["A", "S", "F", "D"], key=functools.cmp_to_key(locale.strcoll))
['A', 'D', 'F', 'S']

Example taken and adapted from the Python Standard Library Documentation.

Section 56.3: lru_cache
The @lru_cache decorator can be used wrap an expensive, computationally-intensive function with a Least Recently
Used cache. This allows function calls to be memoized, so that future calls with the same parameters can return
instantly instead of having to be recomputed.

https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://en.wikipedia.org/wiki/Cache_algorithms#Examples
https://en.wikipedia.org/wiki/Cache_algorithms#Examples
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 313

@lru_cache(maxsize=None)  # Boundless cache
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n-1) + fibonacci(n-2)

>>> fibonacci(15)

In the example above, the value of fibonacci(3) is only calculated once, whereas if fibonacci didn't have an LRU
cache, fibonacci(3) would have been computed upwards of 230 times. Hence, @lru_cache is especially great for
recursive functions or dynamic programming, where an expensive function could be called multiple times with the
same exact parameters.

@lru_cache has two arguments

maxsize: Number of calls to save. When the number of unique calls exceeds maxsize, the LRU cache will
remove the least recently used calls.
typed (added in 3.3): Flag for determining if equivalent arguments of different types belong to different cache
records (i.e. if 3.0 and 3 count as different arguments)

We can see cache stats too:

>>> fib.cache_info()
CacheInfo(hits=13, misses=16, maxsize=None, currsize=16)

NOTE: Since @lru_cache uses dictionaries to cache results, all parameters for the function must be hashable for the
cache to work.

Official Python docs for @lru_cache. @lru_cache was added in 3.2.

Section 56.4: total_ordering
When we want to create an orderable class, normally we need to define the methods __eq()__, __lt__(),
__le__(), __gt__() and __ge__().

The total_ordering decorator, applied to a class, permits the definition of __eq__() and only one between
__lt__(), __le__(), __gt__() and __ge__(), and still allow all the ordering operations on the class.

@total_ordering
class Employee:

    ...

    def __eq__(self, other):
        return ((self.surname, self.name) == (other.surname, other.name))

    def __lt__(self, other):
        return ((self.surname, self.name) < (other.surname, other.name))

The decorator uses a composition of the provided methods and algebraic operations to derive the other
comparison methods. For example if we defined __lt__() and __eq()__ and we want to derive __gt__(), we can
simply check not __lt__() and not __eq()__.

Note: The total_ordering function is only available since Python 2.7.

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 314

Section 56.5: reduce
In Python 3.x, the reduce function already explained here has been removed from the built-ins and must now be
imported from functools.

from functools import reduce
def factorial(n):
    return reduce(lambda a, b: (a*b), range(1, n+1))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 315

Chapter 57: The dis module
Section 57.1: What is Python bytecode?
Python is a hybrid interpreter. When running a program, it first assembles it into bytecode which can then be run in
the Python interpreter (also called a Python virtual machine). The dis module in the standard library can be used to
make the Python bytecode human-readable by disassembling classes, methods, functions, and code objects.

>>> def hello():
...     print "Hello, World"
...
>>> dis.dis(hello)
  2           0 LOAD_CONST               1 ('Hello, World')
              3 PRINT_ITEM
              4 PRINT_NEWLINE
              5 LOAD_CONST               0 (None)
              8 RETURN_VALUE

The Python interpreter is stack-based and uses a first-in last-out system.

Each operation code (opcode) in the Python assembly language (the bytecode) takes a fixed number of items from
the stack and returns a fixed number of items to the stack. If there aren't enough items on the stack for an opcode,
the Python interpreter will crash, possibly without an error message.

Section 57.2: Constants in the dis module
EXTENDED_ARG = 145 # All opcodes greater than this have 2 operands
HAVE_ARGUMENT = 90 # All opcodes greater than this have at least 1 operands

cmp_op = ('<', '<=', '==', '!=', '>', '>=', 'in', 'not in', 'is', 'is ...
       # A list of comparator id's. The indices are used as operands in some opcodes

# All opcodes in these lists have the respective types as there operands
hascompare = [107]
hasconst = [100]
hasfree = [135, 136, 137]
hasjabs = [111, 112, 113, 114, 115, 119]
hasjrel = [93, 110, 120, 121, 122, 143]
haslocal = [124, 125, 126]
hasname = [90, 91, 95, 96, 97, 98, 101, 106, 108, 109, 116]

# A map of opcodes to ids
opmap = {'BINARY_ADD': 23, 'BINARY_AND': 64, 'BINARY_DIVIDE': 21, 'BIN...
# A map of ids to opcodes
opname = ['STOP_CODE', 'POP_TOP', 'ROT_TWO', 'ROT_THREE', 'DUP_TOP', '...

Section 57.3: Disassembling modules
To disassemble a Python module, first this has to be turned into a .pyc file (Python compiled). To do this, run

python -m compileall <file>.py

Then in an interpreter, run

import dis
import marshal

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 316

with open("<file>.pyc", "rb") as code_f:
    code_f.read(8) # Magic number and modification time
    code = marshal.load(code_f) # Returns a code object which can be disassembled
    dis.dis(code) # Output the disassembly

This will compile a Python module and output the bytecode instructions with dis. The module is never imported so
it is safe to use with untrusted code.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 317

Chapter 58: The base64 Module
Parameter Description

base64.b64encode(s, altchars=None)  
s A bytes-like object

altchars
A bytes-like object of length 2+ of characters to replace the
'+' and '=' characters when creating the Base64 alphabet.
Extra characters are ignored.

base64.b64decode(s, altchars=None,
validate=False)  

s A bytes-like object

altchars
A bytes-like object of length 2+ of characters to replace the
'+' and '=' characters when creating the Base64 alphabet.
Extra characters are ignored.

validate
If validate is True, the characters not in the normal Base64
alphabet or the alternative alphabet are not discarded
before the padding check

base64.standard_b64encode(s)  
s A bytes-like object
base64.standard_b64decode(s)  
s A bytes-like object
base64.urlsafe_b64encode(s)  
s A bytes-like object
base64.urlsafe_b64decode(s)  
s A bytes-like object
b32encode(s)  
s A bytes-like object
b32decode(s)  
s A bytes-like object
base64.b16encode(s)  
s A bytes-like object
base64.b16decode(s)  
s A bytes-like object
base64.a85encode(b, foldspaces=False,
wrapcol=0, pad=False, adobe=False)  

b A bytes-like object

foldspaces If foldspaces is True, the character 'y' will be used instead
of 4 consecutive spaces.

wrapcol The number characters before a newline (0 implies no
newlines)

pad If pad is True, the bytes are padded to a multiple of 4
before encoding

adobe If adobe is True, the encoded sequenced with be framed
with '<~' and ''~>' as used with Adobe products

base64.a85decode(b, foldspaces=False,
adobe=False, ignorechars=b'\t\n\r\v')  

b A bytes-like object

foldspaces If foldspaces is True, the character 'y' will be used instead
of 4 consecutive spaces.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 318

adobe If adobe is True, the encoded sequenced with be framed
with '<~' and ''~>' as used with Adobe products

ignorechars A bytes-like object of characters to ignore in the encoding
process

base64.b85encode(b, pad=False)  
b A bytes-like object

pad If pad is True, the bytes are padded to a multiple of 4
before encoding

base64.b85decode(b)  
b A bytes-like object

Base 64 encoding represents a common scheme for encoding binary into ASCII string format using radix 64. The
base64 module is part of the standard library, which means it installs along with Python. Understanding of bytes
and strings is critical to this topic and can be reviewed here. This topic explains how to use the various features and
number bases of the base64 module.

Section 58.1: Encoding and Decoding Base64
To include the base64 module in your script, you must import it first:

import base64

The base64 encode and decode functions both require a bytes-like object. To get our string into bytes, we must
encode it using Python's built in encode function. Most commonly, the UTF-8 encoding is used, however a full list of
these standard encodings (including languages with different characters) can be found here in the official Python
Documentation. Below is an example of encoding a string into bytes:

s = "Hello World!"
b = s.encode("UTF-8")

The output of the last line would be:

b'Hello World!'

The b prefix is used to denote the value is a bytes object.

To Base64 encode these bytes, we use the base64.b64encode() function:

import base64
s = "Hello World!"
b = s.encode("UTF-8")
e = base64.b64encode(b)
print(e)

That code would output the following:

b'SGVsbG8gV29ybGQh'

which is still in the bytes object. To get a string out of these bytes, we can use Python's decode() method with the
UTF-8 encoding:

import base64
s = "Hello World!"
b = s.encode("UTF-8")
e = base64.b64encode(b)

https://goo.gl/N4qIYd
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/codecs.html#standard-encodings
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 319

s1 = e.decode("UTF-8")
print(s1)

The output would then be:

SGVsbG8gV29ybGQh

If we wanted to encode the string and then decode we could use the base64.b64decode() method:

import base64
# Creating a string
s = "Hello World!"
# Encoding the string into bytes
b = s.encode("UTF-8")
# Base64 Encode the bytes
e = base64.b64encode(b)
# Decoding the Base64 bytes to string
s1 = e.decode("UTF-8")
# Printing Base64 encoded string
print("Base64 Encoded:", s1)
# Encoding the Base64 encoded string into bytes
b1 = s1.encode("UTF-8")
# Decoding the Base64 bytes
d = base64.b64decode(b1)
# Decoding the bytes to string
s2 = d.decode("UTF-8")
print(s2)

As you may have expected, the output would be the original string:

Base64 Encoded: SGVsbG8gV29ybGQh
Hello World!

Section 58.2: Encoding and Decoding Base32
The base64 module also includes encoding and decoding functions for Base32. These functions are very similar to
the Base64 functions:

import base64
# Creating a string
s = "Hello World!"
# Encoding the string into bytes
b = s.encode("UTF-8")
# Base32 Encode the bytes
e = base64.b32encode(b)
# Decoding the Base32 bytes to string
s1 = e.decode("UTF-8")
# Printing Base32 encoded string
print("Base32 Encoded:", s1)
# Encoding the Base32 encoded string into bytes
b1 = s1.encode("UTF-8")
# Decoding the Base32 bytes
d = base64.b32decode(b1)
# Decoding the bytes to string
s2 = d.decode("UTF-8")
print(s2)

This would produce the following output:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 320

Base32 Encoded: JBSWY3DPEBLW64TMMQQQ====
Hello World!

Section 58.3: Encoding and Decoding Base16
The base64 module also includes encoding and decoding functions for Base16. Base 16 is most commonly referred
to as hexadecimal. These functions are very similar to the both the Base64 and Base32 functions:

import base64
# Creating a string
s = "Hello World!"
# Encoding the string into bytes
b = s.encode("UTF-8")
# Base16 Encode the bytes
e = base64.b16encode(b)
# Decoding the Base16 bytes to string
s1 = e.decode("UTF-8")
# Printing Base16 encoded string
print("Base16 Encoded:", s1)
# Encoding the Base16 encoded string into bytes
b1 = s1.encode("UTF-8")
# Decoding the Base16 bytes
d = base64.b16decode(b1)
# Decoding the bytes to string
s2 = d.decode("UTF-8")
print(s2)

This would produce the following output:

Base16 Encoded: 48656C6C6F20576F726C6421
Hello World!

Section 58.4: Encoding and Decoding ASCII85
Adobe created its own encoding called ASCII85 which is similar to Base85, but has its differences. This encoding is
used frequently in Adobe PDF files. These functions were released in Python version 3.4. Otherwise, the functions
base64.a85encode() and base64.a85encode() are similar to the previous:

import base64
# Creating a string
s = "Hello World!"
# Encoding the string into bytes
b = s.encode("UTF-8")
# ASCII85 Encode the bytes
e = base64.a85encode(b)
# Decoding the ASCII85 bytes to string
s1 = e.decode("UTF-8")
# Printing ASCII85 encoded string
print("ASCII85 Encoded:", s1)
# Encoding the ASCII85 encoded string into bytes
b1 = s1.encode("UTF-8")
# Decoding the ASCII85 bytes
d = base64.a85decode(b1)
# Decoding the bytes to string
s2 = d.decode("UTF-8")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 321

print(s2)

This outputs the following:

ASCII85 Encoded: 87cURD]i,"Ebo80
Hello World!

Section 58.5: Encoding and Decoding Base85
Just like the Base64, Base32, and Base16 functions, the Base85 encoding and decoding functions are
base64.b85encode() and base64.b85decode():

import base64
# Creating a string
s = "Hello World!"
# Encoding the string into bytes
b = s.encode("UTF-8")
# Base85 Encode the bytes
e = base64.b85encode(b)
# Decoding the Base85 bytes to string
s1 = e.decode("UTF-8")
# Printing Base85 encoded string
print("Base85 Encoded:", s1)
# Encoding the Base85 encoded string into bytes
b1 = s1.encode("UTF-8")
# Decoding the Base85 bytes
d = base64.b85decode(b1)
# Decoding the bytes to string
s2 = d.decode("UTF-8")
print(s2)

which outputs the following:

Base85 Encoded: NM&qnZy;B1a%^NF
Hello World!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 322

Chapter 59: Queue Module
The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded
programming when information must be exchanged safely between multiple threads. There are three types of
queues provides by queue module,Which are as following : 1. Queue 2. LifoQueue 3. PriorityQueue Exception which
could be come: 1. Full (queue overflow) 2. Empty (queue underflow)

Section 59.1: Simple example
from Queue import Queue
 
question_queue = Queue()

for x in range(1,10):
    temp_dict = ('key', x)
    question_queue.put(temp_dict)

while(not question_queue.empty()):
    item = question_queue.get()
    print(str(item))

Output:

('key', 1)
('key', 2)
('key', 3)
('key', 4)
('key', 5)
('key', 6)
('key', 7)
('key', 8)
('key', 9)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 324

Chapter 60: Deque Module
Parameter Details
iterable Creates the deque with initial elements copied from another iterable.
maxlen Limits how large the deque can be, pushing out old elements as new are added.

Section 60.1: Basic deque using
The main methods that are useful with this class are popleft and appendleft

from collections import deque

d = deque([1, 2, 3])
p = d.popleft()        # p = 1, d = deque([2, 3])
d.appendleft(5)        # d = deque([5, 2, 3])

Section 60.2: Available methods in deque
Creating empty deque:

dl = deque()  # deque([]) creating empty deque

Creating deque with some elements:

dl = deque([1, 2, 3, 4])  # deque([1, 2, 3, 4])

Adding element to deque:

dl.append(5)  # deque([1, 2, 3, 4, 5])

Adding element left side of deque:

dl.appendleft(0)  # deque([0, 1, 2, 3, 4, 5])

Adding list of elements to deque:

dl.extend([6, 7])  # deque([0, 1, 2, 3, 4, 5, 6, 7])

Adding list of elements to from the left side:

dl.extendleft([-2, -1])  # deque([-1, -2, 0, 1, 2, 3, 4, 5, 6, 7])

Using .pop() element will naturally remove an item from the right side:

dl.pop()  # 7 => deque([-1, -2, 0, 1, 2, 3, 4, 5, 6])

Using .popleft() element to remove an item from the left side:

dl.popleft()  # -1 deque([-2, 0, 1, 2, 3, 4, 5, 6])

Remove element by its value:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 325

dl.remove(1)  # deque([-2, 0, 2, 3, 4, 5, 6])

Reverse the order of the elements in deque:

dl.reverse()  # deque([6, 5, 4, 3, 2, 0, -2])

Section 60.3: limit deque size
Use the maxlen parameter while creating a deque to limit the size of the deque:

from collections import deque
d = deque(maxlen=3)  # only holds 3 items
d.append(1)  # deque([1])
d.append(2)  # deque([1, 2])
d.append(3)  # deque([1, 2, 3])
d.append(4)  # deque([2, 3, 4]) (1 is removed because its maxlen is 3)

Section 60.4: Breadth First Search
The Deque is the only Python data structure with fast Queue operations. (Note queue.Queue isn't normally suitable,
since it's meant for communication between threads.) A basic use case of a Queue is the breadth first search.

from collections import deque

def bfs(graph, root):
    distances = {}
    distances[root] = 0
    q = deque([root])
    while q:
        # The oldest seen (but not yet visited) node will be the left most one.
        current = q.popleft()
        for neighbor in graph[current]:
            if neighbor not in distances:
                distances[neighbor] = distances[current] + 1
                # When we see a new node, we add it to the right side of the queue.
                q.append(neighbor)
    return distances

Say we have a simple directed graph:

graph = {1:[2,3], 2:[4], 3:[4,5], 4:[3,5], 5:[]}

We can now find the distances from some starting position:

>>> bfs(graph, 1)
{1: 0, 2: 1, 3: 1, 4: 2, 5: 2}

>>> bfs(graph, 3)
{3: 0, 4: 1, 5: 1}

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Breadth-first_search
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 326

Chapter 61: Webbrowser Module
Parameter Details

webbrowser.open()  
url the URL to open in the web browser

new 0 opens the URL in the existing tab, 1 opens in a new window, 2 opens in new tab

autoraise if set to True, the window will be moved on top of the other windows
webbrowser.open_new()  
url the URL to open in the web browser
webbrowser.open_new_tab()  
url the URL to open in the web browser
webbrowser.get()  
using the browser to use
webbrowser.register()  
url browser name

constructor path to the executable browser (help)

instance An instance of a web browser returned from the webbrowser.get() method

According to Python's standard documentation, the webbrowser module provides a high-level interface to allow
displaying Web-based documents to users. This topic explains and demonstrates proper usage of the webbrowser
module.

Section 61.1: Opening a URL with Default Browser
To simply open a URL, use the webbrowser.open() method:

import webbrowser
webbrowser.open("http://stackoverflow.com")

If a browser window is currently open, the method will open a new tab at the specified URL. If no window is open,
the method will open the operating system's default browser and navigate to the URL in the parameter. The open
method supports the following parameters:

url - the URL to open in the web browser (string) [required]
new - 0 opens in existing tab, 1 opens new window, 2 opens new tab (integer) [default 0]
autoraise - if set to True, the window will be moved on top of other applications' windows (Boolean)
[default False]

Note, the new and autoraise arguments rarely work as the majority of modern browsers refuse these commands.

Webbrowser can also try to open URLs in new windows with the open_new method:

import webbrowser
webbrowser.open_new("http://stackoverflow.com")

This method is commonly ignored by modern browsers and the URL is usually opened in a new tab. Opening a new
tab can be tried by the module using the open_new_tab method:

import webbrowser
webbrowser.open_new_tab("http://stackoverflow.com")

http://stackoverflow.com/questions/24873302/python-generic-webbrowser-get-open-for-chrome-exe-does-not-work
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 327

Section 61.2: Opening a URL with Dierent Browsers
The webbrowser module also supports different browsers using the register() and get() methods. The get
method is used to create a browser controller using a specific executable's path and the register method is used to
attach these executables to preset browser types for future use, commonly when multiple browser types are used.

import webbrowser
ff_path = webbrowser.get("C:/Program Files/Mozilla Firefox/firefox.exe")
ff = webbrowser.get(ff_path)
ff.open("http://stackoverflow.com/")

Registering a browser type:

import webbrowser
ff_path = webbrowser.get("C:/Program Files/Mozilla Firefox/firefox.exe")
ff = webbrowser.get(ff_path)
webbrowser.register('firefox', None, ff)
# Now to refer to use Firefox in the future you can use this
webbrowser.get('firefox').open("https://stackoverflow.com/")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 328

Chapter 62: tkinter
Released in Tkinter is Python's most popular GUI (Graphical User Interface) library. This topic explains proper usage
of this library and its features.

Section 62.1: Geometry Managers
Tkinter has three mechanisms for geometry management: place, pack, and grid.

The place manager uses absolute pixel coordinates.

The pack manager places widgets into one of 4 sides. New widgets are placed next to existing widgets.

The grid manager places widgets into a grid similar to a dynamically resizing spreadsheet.

Place

The most common keyword arguments for widget.place are as follows:

x, the absolute x-coordinate of the widget
y, the absolute y-coordinate of the widget
height, the absolute height of the widget
width, the absolute width of the widget

A code example using place:

class PlaceExample(Frame):
    def __init__(self,master):
        Frame.__init__(self,master)
        self.grid()
        top_text=Label(master,text="This is on top at the origin")
        #top_text.pack()
        top_text.place(x=0,y=0,height=50,width=200)
        bottom_right_text=Label(master,text="This is at position 200,400")
        #top_text.pack()
        bottom_right_text.place(x=200,y=400,height=50,width=200)
# Spawn Window
if __name__=="__main__":
    root=Tk()
    place_frame=PlaceExample(root)
    place_frame.mainloop()

Pack

widget.pack can take the following keyword arguments:

expand, whether or not to fill space left by parent
fill, whether to expand to fill all space (NONE (default), X, Y, or BOTH)
side, the side to pack against (TOP (default), BOTTOM, LEFT, or RIGHT)

Grid

The most commonly used keyword arguments of widget.grid are as follows:

row, the row of the widget (default smallest unoccupied)
rowspan, the number of columns a widget spans (default 1)
column, the column of the widget (default 0)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 329

columnspan, the number of columns a widget spans (default 1)
sticky, where to place widget if the grid cell is larger than it (combination of N,NE,E,SE,S,SW,W,NW)

The rows and columns are zero indexed. Rows increase going down, and columns increase going right.

A code example using grid:

from tkinter import *

class GridExample(Frame):
    def __init__(self,master):
        Frame.__init__(self,master)
        self.grid()
        top_text=Label(self,text="This text appears on top left")
        top_text.grid() # Default position 0, 0
        bottom_text=Label(self,text="This text appears on bottom left")
        bottom_text.grid() # Default position 1, 0
        right_text=Label(self,text="This text appears on the right and spans both rows",
                         wraplength=100)
        # Position is 0,1
        # Rowspan means actual position is [0-1],1
        right_text.grid(row=0,column=1,rowspan=2)

# Spawn Window
if __name__=="__main__":
    root=Tk()
    grid_frame=GridExample(root)
    grid_frame.mainloop()

Never mix pack and grid within the same frame! Doing so will lead to application deadlock!

Section 62.2: A minimal tkinter Application
tkinter is a GUI toolkit that provides a wrapper around the Tk/Tcl GUI library and is included with Python. The
following code creates a new window using tkinter and places some text in the window body.

Note: In Python 2, the capitalization may be slightly different, see Remarks section below.

import tkinter as tk

# GUI window is a subclass of the basic tkinter Frame object
class HelloWorldFrame(tk.Frame):
    def __init__(self, master):
        # Call superclass constructor
        tk.Frame.__init__(self, master)
        # Place frame into main window
        self.grid()
        # Create text box with "Hello World" text
        hello = tk.Label(self, text="Hello World! This label can hold strings!")
        # Place text box into frame
        hello.grid(row=0, column=0)

# Spawn window
if __name__ == "__main__":
    # Create main window object
    root = tk.Tk()
    # Set title of window
    root.title("Hello World!")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 330

    # Instantiate HelloWorldFrame object
    hello_frame = HelloWorldFrame(root)
    # Start GUI
    hello_frame.mainloop()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 331

Chapter 63: pyautogui module
pyautogui is a module used to control mouse and keyboard. This module is basically used to automate mouse click
and keyboard press tasks. For the mouse, the coordinates of the screen (0,0) start from the top-left corner. If you
are out of control, then quickly move the mouse cursor to top-left, it will take the control of mouse and keyboard
from the Python and give it back to you.

Section 63.1: Mouse Functions
These are some of useful mouse functions to control the mouse.

size()           #gave you the size of the screen
position()     #return current position of mouse
moveTo(200,0,duration=1.5)     #move the cursor  to (200,0) position  with 1.5 second delay    
moveRel()          #move the cursor relative to your current position.
click(337,46)           #it will click on the position mention there
dragRel()              #it will drag the mouse relative to position
pyautogui.displayMousePosition()     #gave you the current mouse position but should be done on
terminal.

Section 63.2: Keyboard Functions
These are some of useful keyboard functions to automate the key pressing.

typewrite('')    #this will type the string on the screen where current window has focused.
typewrite(['a','b','left','left','X','Y'])
pyautogui.KEYBOARD_KEYS    #get the list of all the keyboard_keys.
pyautogui.hotkey('ctrl','o')    #for the combination of keys to enter.

Section 63.3: Screenshot And Image Recognition
These function will help you to take the screenshot and also match the image with the part of the screen.

.screenshot('c:\\path')        #get the screenshot.

.locateOnScreen('c:\\path')    #search that image on screen and get the coordinates for you.
locateCenterOnScreen('c:\\path')       #get the coordinate for the image on screen.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 332

Chapter 64: Indexing and Slicing
Paramer Description
obj The object that you want to extract a "sub-object" from

start The index of obj that you want the sub-object to start from (keep in mind that Python is zero-indexed,
meaning that the first item of obj has an index of 0). If omitted, defaults to 0.

stop The (non-inclusive) index of obj that you want the sub-object to end at. If omitted, defaults to len(obj).
step Allows you to select only every step item. If omitted, defaults to 1.

Section 64.1: Basic Slicing
For any iterable (for eg. a string, list, etc), Python allows you to slice and return a substring or sublist of its data.

Format for slicing:

iterable_name[start:stop:step]

where,

start is the first index of the slice. Defaults to 0 (the index of the first element)
stop one past the last index of the slice. Defaults to len(iterable)
step is the step size (better explained by the examples below)

Examples:

a = "abcdef"
a            # "abcdef"
             # Same as a[:] or a[::] since it uses the defaults for all three indices
a[-1]        # "f"
a[:]         # "abcdef"
a[::]        # "abcdef"
a[3:]        # "def" (from index 3, to end(defaults to size of iterable))
a[:4]        # "abcd" (from beginning(default 0) to position 4 (excluded))
a[2:4]       # "cd" (from position 2, to position 4 (excluded))

In addition, any of the above can be used with the step size defined:

a[::2]       # "ace" (every 2nd element)
a[1:4:2]     # "bd" (from index 1, to index 4 (excluded), every 2nd element)

Indices can be negative, in which case they're computed from the end of the sequence

a[:-1]     # "abcde" (from index 0 (default), to the second last element (last element - 1))
a[:-2]     # "abcd" (from index 0 (default), to the third last element (last element -2))
a[-1:]     # "f" (from the last element to the end (default len())

Step sizes can also be negative, in which case slice will iterate through the list in reverse order:

a[3:1:-1]   # "dc" (from index 2 to None (default), in reverse order)

This construct is useful for reversing an iterable

a[::-1]     # "fedcba" (from last element (default len()-1), to first, in reverse order(-1))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 333

Notice that for negative steps the default end_index is None (see http://stackoverflow.com/a/12521981 )

a[5:None:-1] # "fedcba" (this is equivalent to a[::-1])
a[5:0:-1]    # "fedcb" (from the last element (index 5) to second element (index 1)

Section 64.2: Reversing an object
You can use slices to very easily reverse a str, list, or tuple (or basically any collection object that implements
slicing with the step parameter). Here is an example of reversing a string, although this applies equally to the other
types listed above:

s = 'reverse me!'
s[::-1]    # '!em esrever'

Let's quickly look at the syntax. [::-1] means that the slice should be from the beginning until the end of the string
(because start and end are omitted) and a step of -1 means that it should move through the string in reverse.

Section 64.3: Slice assignment
Another neat feature using slices is slice assignment. Python allows you to assign new slices to replace old slices of
a list in a single operation.

This means that if you have a list, you can replace multiple members in a single assignment:

lst = [1, 2, 3]
lst[1:3] = [4, 5]
print(lst) # Out: [1, 4, 5]

The assignment shouldn't match in size as well, so if you wanted to replace an old slice with a new slice that is
different in size, you could:

lst = [1, 2, 3, 4, 5]
lst[1:4] = [6]
print(lst) # Out: [1, 6, 5]

It's also possible to use the known slicing syntax to do things like replacing the entire list:

lst = [1, 2, 3]
lst[:] = [4, 5, 6]
print(lst) # Out: [4, 5, 6]

Or just the last two members:

lst = [1, 2, 3]
lst[-2:] = [4, 5, 6]
print(lst) # Out: [1, 4, 5, 6]

Section 64.4: Making a shallow copy of an array
A quick way to make a copy of an array (as opposed to assigning a variable with another reference to the original
array) is:

arr[:]

http://stackoverflow.com/a/12521981
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 334

Let's examine the syntax. [:] means that start, end, and slice are all omitted. They default to 0, len(arr), and 1,
respectively, meaning that subarray that we are requesting will have all of the elements of arr from the beginning
until the very end.

In practice, this looks something like:

arr = ['a', 'b', 'c']
copy = arr[:]
arr.append('d')
print(arr)    # ['a', 'b', 'c', 'd']
print(copy)   # ['a', 'b', 'c']

As you can see, arr.append('d') added d to arr, but copy remained unchanged!

Note that this makes a shallow copy, and is identical to arr.copy().

Section 64.5: Indexing custom classes: __getitem__,
__setitem__ and __delitem__
class MultiIndexingList:
    def __init__(self, value):
        self.value = value
       
    def __repr__(self):
        return repr(self.value)
   
    def __getitem__(self, item):
        if isinstance(item, (int, slice)):
            return self.__class__(self.value[item])
        return [self.value[i] for i in item]
   
    def __setitem__(self, item, value):
        if isinstance(item, int):
            self.value[item] = value
        elif isinstance(item, slice):
            raise ValueError('Cannot interpret slice with multiindexing')
        else:
            for i in item:
                if isinstance(i, slice):
                    raise ValueError('Cannot interpret slice with multiindexing')
                self.value[i] = value
   
    def __delitem__(self, item):
        if isinstance(item, int):
            del self.value[item]
        elif isinstance(item, slice):
            del self.value[item]
        else:
            if any(isinstance(elem, slice) for elem in item):
                raise ValueError('Cannot interpret slice with multiindexing')
            item = sorted(item, reverse=True)
            for elem in item:
                del self.value[elem]

This allows slicing and indexing for element access:

a = MultiIndexingList([1,2,3,4,5,6,7,8])
a
# Out: [1, 2, 3, 4, 5, 6, 7, 8]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 335

a[1,5,2,6,1]
# Out: [2, 6, 3, 7, 2]
a[4, 1, 5:, 2, ::2]
# Out: [5, 2, [6, 7, 8], 3, [1, 3, 5, 7]]
#       4|1-|----50:---|2-|-----::2-----   <-- indicated which element came from which index

While setting and deleting elements only allows for comma separated integer indexing (no slicing):

a[4] = 1000
a
# Out: [1, 2, 3, 4, 1000, 6, 7, 8]
a[2,6,1] = 100
a
# Out: [1, 100, 100, 4, 1000, 6, 100, 8]
del a[5]
a
# Out: [1, 100, 100, 4, 1000, 100, 8]
del a[4,2,5]
a
# Out: [1, 100, 4, 8]

Section 64.6: Basic Indexing
Python lists are 0-based i.e. the first element in the list can be accessed by the index 0

arr = ['a', 'b', 'c', 'd']
print(arr[0])
>> 'a'

You can access the second element in the list by index 1, third element by index 2 and so on:

print(arr[1])
>> 'b'
print(arr[2])
>> 'c'

You can also use negative indices to access elements from the end of the list. eg. index -1 will give you the last
element of the list and index -2 will give you the second-to-last element of the list:

print(arr[-1])
>> 'd'
print(arr[-2])
>> 'c'

If you try to access an index which is not present in the list, an IndexError will be raised:

print arr[6]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 337

Chapter 65: Plotting with Matplotlib
Matplotlib (https://matplotlib.org/) is a library for 2D plotting based on NumPy. Here are some basic examples.
More examples can be found in the official documentation (https://matplotlib.org/2.0.2/gallery.html and
https://matplotlib.org/2.0.2/examples/index.html)

Section 65.1: Plots with Common X-axis but dierent Y-axis :
Using twinx()
In this example, we will plot a sine curve and a hyperbolic sine curve in the same plot with a common x-axis having
different y-axis. This is accomplished by the use of twinx() command.

# Plotting tutorials in Python
# Adding Multiple plots by twin x axis
# Good for plots having different y axis range
# Separate axes and figure objects
# replicate axes object and plot curves
# use axes to set attributes

# Note:
# Grid for second curve unsuccessful : let me know if you find it! :(

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2.0*np.pi, 101)
y = np.sin(x)
z = np.sinh(x)

# separate the figure object and axes object
# from the plotting object
fig, ax1 = plt.subplots()

# Duplicate the axes with a different y axis
# and the same x axis
ax2 = ax1.twinx() # ax2 and ax1 will have common x axis and different y axis

# plot the curves on axes 1, and 2, and get the curve handles
curve1, = ax1.plot(x, y, label="sin", color='r')
curve2, = ax2.plot(x, z, label="sinh", color='b')

# Make a curves list to access the parameters in the curves
curves = [curve1, curve2]

# add legend via axes 1 or axes 2 object.
# one command is usually sufficient
# ax1.legend() # will not display the legend of ax2
# ax2.legend() # will not display the legend of ax1
ax1.legend(curves, [curve.get_label() for curve in curves])
# ax2.legend(curves, [curve.get_label() for curve in curves]) # also valid

# Global figure properties
plt.title("Plot of sine and hyperbolic sine")
plt.show()

https://matplotlib.org/)
https://matplotlib.org/2.0.2/gallery.html
https://matplotlib.org/2.0.2/examples/index.html)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 338

Section 65.2: Plots with common Y-axis and dierent X-axis
using twiny()
In this example, a plot with curves having common y-axis but different x-axis is demonstrated using twiny()
method. Also, some additional features such as the title, legend, labels, grids, axis ticks and colours are added to
the plot.

# Plotting tutorials in Python
# Adding Multiple plots by twin y axis
# Good for plots having different x axis range
# Separate axes and figure objects
# replicate axes object and plot curves
# use axes to set attributes

import numpy as np
import matplotlib.pyplot as plt

y = np.linspace(0, 2.0*np.pi, 101)
x1 = np.sin(y)
x2 = np.sinh(y)

# values for making ticks in x and y axis
ynumbers = np.linspace(0, 7, 15)
xnumbers1 = np.linspace(-1, 1, 11)
xnumbers2 = np.linspace(0, 300, 7)

# separate the figure object and axes object
# from the plotting object
fig, ax1 = plt.subplots()

https://i.stack.imgur.com/Qtcpv.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 339

# Duplicate the axes with a different x axis
# and the same y axis
ax2 = ax1.twiny() # ax2 and ax1 will have common y axis and different x axis

# plot the curves on axes 1, and 2, and get the axes handles
curve1, = ax1.plot(x1, y, label="sin", color='r')
curve2, = ax2.plot(x2, y, label="sinh", color='b')

# Make a curves list to access the parameters in the curves
curves = [curve1, curve2]

# add legend via axes 1 or axes 2 object.
# one command is usually sufficient
# ax1.legend() # will not display the legend of ax2
# ax2.legend() # will not display the legend of ax1
# ax1.legend(curves, [curve.get_label() for curve in curves])
ax2.legend(curves, [curve.get_label() for curve in curves]) # also valid

# x axis labels via the axes
ax1.set_xlabel("Magnitude", color=curve1.get_color())
ax2.set_xlabel("Magnitude", color=curve2.get_color())

# y axis label via the axes
ax1.set_ylabel("Angle/Value", color=curve1.get_color())
# ax2.set_ylabel("Magnitude", color=curve2.get_color()) # does not work
# ax2 has no property control over y axis

# y ticks - make them coloured as well
ax1.tick_params(axis='y', colors=curve1.get_color())
# ax2.tick_params(axis='y', colors=curve2.get_color()) # does not work
# ax2 has no property control over y axis

# x axis ticks via the axes
ax1.tick_params(axis='x', colors=curve1.get_color())
ax2.tick_params(axis='x', colors=curve2.get_color())

# set x ticks
ax1.set_xticks(xnumbers1)
ax2.set_xticks(xnumbers2)

# set y ticks
ax1.set_yticks(ynumbers)
# ax2.set_yticks(ynumbers) # also works

# Grids via axes 1 # use this if axes 1 is used to
# define the properties of common x axis
# ax1.grid(color=curve1.get_color())

# To make grids using axes 2
ax1.grid(color=curve2.get_color())
ax2.grid(color=curve2.get_color())
ax1.xaxis.grid(False)

# Global figure properties
plt.title("Plot of sine and hyperbolic sine")
plt.show()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 340

Section 65.3: A Simple Plot in Matplotlib
This example illustrates how to create a simple sine curve using Matplotlib

# Plotting tutorials in Python
# Launching a simple plot

import numpy as np
import matplotlib.pyplot as plt

# angle varying between 0 and 2*pi
x = np.linspace(0, 2.0*np.pi, 101)
y = np.sin(x)                        # sine function

plt.plot(x, y)
plt.show()

https://i.stack.imgur.com/vXROi.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 341

Section 65.4: Adding more features to a simple plot : axis
labels, title, axis ticks, grid, and legend
In this example, we take a sine curve plot and add more features to it; namely the title, axis labels, title, axis ticks,
grid and legend.

# Plotting tutorials in Python
# Enhancing a plot

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2.0*np.pi, 101)
y = np.sin(x)

# values for making ticks in x and y axis
xnumbers = np.linspace(0, 7, 15)
ynumbers = np.linspace(-1, 1, 11)

plt.plot(x, y, color='r', label='sin') # r - red colour
plt.xlabel("Angle in Radians")
plt.ylabel("Magnitude")
plt.title("Plot of some trigonometric functions")
plt.xticks(xnumbers)
plt.yticks(ynumbers)
plt.legend()
plt.grid()
plt.axis([0, 6.5, -1.1, 1.1]) # [xstart, xend, ystart, yend]
plt.show()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 342

Section 65.5: Making multiple plots in the same figure by
superimposition similar to MATLAB
In this example, a sine curve and a cosine curve are plotted in the same figure by superimposing the plots on top of
each other.

# Plotting tutorials in Python
# Adding Multiple plots by superimposition
# Good for plots sharing similar x, y limits
# Using single plot command and legend

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2.0*np.pi, 101)
y = np.sin(x)
z = np.cos(x)

# values for making ticks in x and y axis
xnumbers = np.linspace(0, 7, 15)
ynumbers = np.linspace(-1, 1, 11)

plt.plot(x, y, 'r', x, z, 'g') # r, g - red, green colour
plt.xlabel("Angle in Radians")
plt.ylabel("Magnitude")
plt.title("Plot of some trigonometric functions")
plt.xticks(xnumbers)
plt.yticks(ynumbers)
plt.legend(['sine', 'cosine'])
plt.grid()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 343

plt.axis([0, 6.5, -1.1, 1.1]) # [xstart, xend, ystart, yend]
plt.show()

Section 65.6: Making multiple Plots in the same figure using
plot superimposition with separate plot commands
Similar to the previous example, here, a sine and a cosine curve are plotted on the same figure using separate plot
commands. This is more Pythonic and can be used to get separate handles for each plot.

# Plotting tutorials in Python
# Adding Multiple plots by superimposition
# Good for plots sharing similar x, y limits
# Using multiple plot commands
# Much better and preferred than previous

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2.0*np.pi, 101)
y = np.sin(x)
z = np.cos(x)

# values for making ticks in x and y axis
xnumbers = np.linspace(0, 7, 15)
ynumbers = np.linspace(-1, 1, 11)

plt.plot(x, y, color='r', label='sin') # r - red colour
plt.plot(x, z, color='g', label='cos') # g - green colour
plt.xlabel("Angle in Radians")
plt.ylabel("Magnitude")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 344

plt.title("Plot of some trigonometric functions")
plt.xticks(xnumbers)
plt.yticks(ynumbers)
plt.legend()
plt.grid()
plt.axis([0, 6.5, -1.1, 1.1]) # [xstart, xend, ystart, yend]
plt.show()

https://i.stack.imgur.com/RriMr.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 345

Chapter 66: graph-tool
The python tools can be used to generate graph

Section 66.1: PyDotPlus
PyDotPlus is an improved version of the old pydot project that provides a Python Interface to Graphviz’s Dot
language.

Installation

For the latest stable version:

pip install pydotplus

For the development version:

pip install https://github.com/carlos-jenkins/pydotplus/archive/master.zip

Load graph as defined by a DOT file

The file is assumed to be in DOT format. It will be loaded, parsed and a Dot class will be returned,
representing the graph. For example, a simple demo.dot:

digraph demo1{ a -> b -> c; c ->a; }

import pydotplus
graph_a = pydotplus.graph_from_dot_file('demo.dot')
graph_a.write_svg('test.svg') # generate graph in svg.

You will get a svg(Scalable Vector Graphics) like this:

Section 66.2: PyGraphviz
Get PyGraphviz from the Python Package Index at http://pypi.python.org/pypi/pygraphviz

or install it with:

pip install pygraphviz

https://i.stack.imgur.com/Wz3LU.png
http://pypi.python.org/pypi/pygraphviz
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 346

and an attempt will be made to find and install an appropriate version that matches your operating system and
Python version.

You can install the development version (at github.com) with:

pip install git://github.com/pygraphviz/pygraphviz.git#egg=pygraphviz

Get PyGraphviz from the Python Package Index at http://pypi.python.org/pypi/pygraphviz

or install it with:

easy_install pygraphviz

and an attempt will be made to find and install an appropriate version that matches your operating system and
Python version.

Load graph as defined by a DOT file

The file is assumed to be in DOT format. It will be loaded, parsed and a Dot class will be returned,
representing the graph. For example,a simple demo.dot:

digraph demo1{ a -> b -> c; c ->a; }

Load it and draw it.

import pygraphviz as pgv
G = pgv.AGraph("demo.dot")
G.draw('test', format='svg', prog='dot')

You will get a svg(Scalable Vector Graphics) like this:

http://pypi.python.org/pypi/pygraphviz
https://i.stack.imgur.com/Wz3LU.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 347

Chapter 67: Generators
Generators are lazy iterators created by generator functions (using yield) or generator expressions (using
(an_expression for x in an_iterator)).

Section 67.1: Introduction
Generator expressions are similar to list, dictionary and set comprehensions, but are enclosed with parentheses.
The parentheses do not have to be present when they are used as the sole argument for a function call.

expression = (x**2 for x in range(10))

This example generates the 10 first perfect squares, including 0 (in which x = 0).

Generator functions are similar to regular functions, except that they have one or more yield statements in their
body. Such functions cannot return any values (however empty returns are allowed if you want to stop the
generator early).

def function():
    for x in range(10):
        yield x**2

This generator function is equivalent to the previous generator expression, it outputs the same.

Note: all generator expressions have their own equivalent functions, but not vice versa.

A generator expression can be used without parentheses if both parentheses would be repeated otherwise:

sum(i for i in range(10) if i % 2 == 0)   #Output: 20
any(x = 0 for x in foo)                   #Output: True or False depending on foo
type(a > b for a in foo if a % 2 == 1)    #Output: <class 'generator'>

Instead of:

sum((i for i in range(10) if i % 2 == 0))
any((x = 0 for x in foo))
type((a > b for a in foo if a % 2 == 1))

But not:

fooFunction(i for i in range(10) if i % 2 == 0,foo,bar)
return x = 0 for x in foo
barFunction(baz, a > b for a in foo if a % 2 == 1)

Calling a generator function produces a generator object, which can later be iterated over. Unlike other types of
iterators, generator objects may only be traversed once.

g1 = function()
print(g1)  # Out: <generator object function at 0x1012e1888>

Notice that a generator's body is not immediately executed: when you call function() in the example above, it
immediately returns a generator object, without executing even the first print statement. This allows generators to
consume less memory than functions that return a list, and it allows creating generators that produce infinitely long
sequences.

https://docs.python.org/3/reference/simple_stmts.html#yield
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 348

For this reason, generators are often used in data science, and other contexts involving large amounts of data.
Another advantage is that other code can immediately use the values yielded by a generator, without waiting for
the complete sequence to be produced.

However, if you need to use the values produced by a generator more than once, and if generating them costs
more than storing, it may be better to store the yielded values as a list than to re-generate the sequence. See
'Resetting a generator' below for more details.

Typically a generator object is used in a loop, or in any function that requires an iterable:

for x in g1:
    print("Received", x)

# Output:
# Received 0
# Received 1
# Received 4
# Received 9
# Received 16
# Received 25
# Received 36
# Received 49
# Received 64
# Received 81

arr1 = list(g1)
# arr1 = [], because the loop above already consumed all the values.
g2 = function()
arr2 = list(g2)  # arr2 = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Since generator objects are iterators, one can iterate over them manually using the next() function. Doing so will
return the yielded values one by one on each subsequent invocation.

Under the hood, each time you call next() on a generator, Python executes statements in the body of the
generator function until it hits the next yield statement. At this point it returns the argument of the yield
command, and remembers the point where that happened. Calling next() once again will resume execution from
that point and continue until the next yield statement.

If Python reaches the end of the generator function without encountering any more yields, a StopIteration
exception is raised (this is normal, all iterators behave in the same way).

g3 = function()
a = next(g3)  # a becomes 0
b = next(g3)  # b becomes 1
c = next(g3)  # c becomes 2
...
j = next(g3)  # Raises StopIteration, j remains undefined

Note that in Python 2 generator objects had .next() methods that could be used to iterate through the yielded
values manually. In Python 3 this method was replaced with the .__next__() standard for all iterators.

Resetting a generator

Remember that you can only iterate through the objects generated by a generator once. If you have already iterated
through the objects in a script, any further attempt do so will yield None.

If you need to use the objects generated by a generator more than once, you can either define the generator

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#next
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 349

function again and use it a second time, or, alternatively, you can store the output of the generator function in a list
on first use. Re-defining the generator function will be a good option if you are dealing with large volumes of data,
and storing a list of all data items would take up a lot of disc space. Conversely, if it is costly to generate the items
initially, you may prefer to store the generated items in a list so that you can re-use them.

Section 67.2: Infinite sequences
Generators can be used to represent infinite sequences:

def integers_starting_from(n):
    while True:
        yield n
        n += 1

natural_numbers = integers_starting_from(1)

Infinite sequence of numbers as above can also be generated with the help of itertools.count. The above code
could be written as below

natural_numbers = itertools.count(1)

You can use generator comprehensions on infinite generators to produce new generators:

multiples_of_two = (x * 2 for x in natural_numbers)
multiples_of_three = (x for x in natural_numbers if x % 3 == 0)

Be aware that an infinite generator does not have an end, so passing it to any function that will attempt to consume
the generator entirely will have dire consequences:

list(multiples_of_two)  # will never terminate, or raise an OS-specific error

Instead, use list/set comprehensions with range (or xrange for python < 3.0):

first_five_multiples_of_three = [next(multiples_of_three) for _ in range(5)]
# [3, 6, 9, 12, 15]

or use itertools.islice() to slice the iterator to a subset:

from itertools import islice
multiples_of_four = (x * 4 for x in integers_starting_from(1))
first_five_multiples_of_four = list(islice(multiples_of_four, 5))
# [4, 8, 12, 16, 20]

Note that the original generator is updated too, just like all other generators coming from the same "root":

next(natural_numbers)    # yields 16
next(multiples_of_two)   # yields 34
next(multiples_of_four)  # yields 24

An infinite sequence can also be iterated with a for-loop. Make sure to include a conditional break statement so
that the loop would terminate eventually:

for idx, number in enumerate(multiplies_of_two):
    print(number)
    if idx == 9:

https://docs.python.org/3/library/itertools.html#itertools.count
https://docs.python.org/3/library/itertools.html#itertools.count
https://docs.python.org/3/library/itertools.html#itertools.count
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/itertools.html#itertools.islice
https://docs.python.org/3/library/itertools.html#itertools.islice
https://docs.python.org/3/library/itertools.html#itertools.islice
https://docs.python.org/3/library/itertools.html#itertools.islice
https://docs.python.org/3/library/itertools.html#itertools.islice
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 350

        break  # stop after taking the first 10 multiplies of two

Classic example - Fibonacci numbers
import itertools

def fibonacci():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

first_ten_fibs = list(itertools.islice(fibonacci(), 10))
# [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

def nth_fib(n):
    return next(itertools.islice(fibonacci(), n - 1, n))

ninety_nineth_fib = nth_fib(99)  # 354224848179261915075

Section 67.3: Sending objects to a generator
In addition to receiving values from a generator, it is possible to send an object to a generator using the send()
method.

def accumulator():
    total = 0
    value = None
    while True:
        # receive sent value
        value = yield total
        if value is None: break
        # aggregate values
        total += value

generator = accumulator()

# advance until the first "yield"
next(generator)      # 0

# from this point on, the generator aggregates values
generator.send(1)    # 1
generator.send(10)   # 11
generator.send(100)  # 111
# ...

# Calling next(generator) is equivalent to calling generator.send(None)
next(generator)      # StopIteration

What happens here is the following:

When you first call next(generator), the program advances to the first yield statement, and returns the
value of total at that point, which is 0. The execution of the generator suspends at this point.
When you then call generator.send(x), the interpreter takes the argument x and makes it the return value
of the last yield statement, which gets assigned to value. The generator then proceeds as usual, until it
yields the next value.
When you finally call next(generator), the program treats this as if you're sending None to the generator.
There is nothing special about None, however, this example uses None as a special value to ask the generator
to stop.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 351

Section 67.4: Yielding all values from another iterable
Python 3.x Version ≥ 3.3

Use yield from if you want to yield all values from another iterable:

def foob(x):
    yield from range(x * 2)
    yield from range(2)

list(foob(5))  # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1]

This works with generators as well.

def fibto(n):
    a, b = 1, 1
    while True:
        if a >= n: break
        yield a
        a, b = b, a + b

def usefib():
    yield from fibto(10)
    yield from fibto(20)

list(usefib())  # [1, 1, 2, 3, 5, 8, 1, 1, 2, 3, 5, 8, 13]

Section 67.5: Iteration
A generator object supports the iterator protocol. That is, it provides a next() method (__next__() in Python 3.x),
which is used to step through its execution, and its __iter__ method returns itself. This means that a generator can
be used in any language construct which supports generic iterable objects.

# naive partial implementation of the Python 2.x xrange()
def xrange(n):
    i = 0
    while i < n:
        yield i
        i += 1

# looping
for i in xrange(10):
    print(i)  # prints the values 0, 1, ..., 9

# unpacking
a, b, c = xrange(3)  # 0, 1, 2

# building a list
l = list(xrange(10))  # [0, 1, ..., 9]

Section 67.6: The next() function
The next() built-in is a convenient wrapper which can be used to receive a value from any iterator (including a
generator iterator) and to provide a default value in case the iterator is exhausted.

def nums():
    yield 1

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#next
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 352

    yield 2
    yield 3
generator = nums()

next(generator, None)  # 1
next(generator, None)  # 2
next(generator, None)  # 3
next(generator, None)  # None
next(generator, None)  # None
# ...

The syntax is next(iterator[, default]). If iterator ends and a default value was passed, it is returned. If no
default was provided, StopIteration is raised.

Section 67.7: Coroutines
Generators can be used to implement coroutines:

# create and advance generator to the first yield
def coroutine(func):
    def start(*args,**kwargs):
        cr = func(*args,**kwargs)
        next(cr)
        return cr
    return start

# example coroutine
@coroutine
def adder(sum = 0):
    while True:
        x = yield sum
        sum += x

# example use
s = adder()
s.send(1) # 1
s.send(2) # 3

Coroutines are commonly used to implement state machines, as they are primarily useful for creating single-
method procedures that require a state to function properly. They operate on an existing state and return the value
obtained on completion of the operation.

Section 67.8: Refactoring list-building code
Suppose you have complex code that creates and returns a list by starting with a blank list and repeatedly
appending to it:

def create():
    result = []
    # logic here...
    result.append(value) # possibly in several places
    # more logic...
    return result # possibly in several places

values = create()

When it's not practical to replace the inner logic with a list comprehension, you can turn the entire function into a
generator in-place, and then collect the results:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 353

def create_gen():
    # logic...
    yield value
    # more logic
    return # not needed if at the end of the function, of course

values = list(create_gen())

If the logic is recursive, use yield from to include all the values from the recursive call in a "flattened" result:

def preorder_traversal(node):
    yield node.value
    for child in node.children:
        yield from preorder_traversal(child)

Section 67.9: Yield with recursion: recursively listing all files in
a directory
First, import the libraries that work with files:

from os import listdir
from os.path import isfile, join, exists

A helper function to read only files from a directory:

def get_files(path):
    for file in listdir(path):
        full_path = join(path, file)
        if isfile(full_path):
            if exists(full_path):
                yield full_path

Another helper function to get only the subdirectories:

def get_directories(path):
    for directory in listdir(path):
        full_path = join(path, directory)
        if not isfile(full_path):
            if exists(full_path):
                yield full_path

Now use these functions to recursively get all files within a directory and all its subdirectories (using generators):

def get_files_recursive(directory):
    for file in get_files(directory):
        yield file
    for subdirectory in get_directories(directory):
        for file in get_files_recursive(subdirectory): # here the recursive call
            yield file

This function can be simplified using yield from:

def get_files_recursive(directory):
    yield from get_files(directory)
    for subdirectory in get_directories(directory):
        yield from get_files_recursive(subdirectory)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 354

Section 67.10: Generator expressions
It's possible to create generator iterators using a comprehension-like syntax.

generator = (i * 2 for i in range(3))

next(generator)  # 0
next(generator)  # 2
next(generator)  # 4
next(generator)  # raises StopIteration

If a function doesn't necessarily need to be passed a list, you can save on characters (and improve readability) by
placing a generator expression inside a function call. The parenthesis from the function call implicitly make your
expression a generator expression.

sum(i ** 2 for i in range(4))  # 0^2 + 1^2 + 2^2 + 3^2 = 0 + 1 + 4 + 9 = 14

Additionally, you will save on memory because instead of loading the entire list you are iterating over ([0, 1, 2,
3] in the above example), the generator allows Python to use values as needed.

Section 67.11: Using a generator to find Fibonacci Numbers
A practical use case of a generator is to iterate through values of an infinite series. Here's an example of finding the
first ten terms of the Fibonacci Sequence.

def fib(a=0, b=1):
    """Generator that yields Fibonacci numbers. `a` and `b` are the seed values"""
    while True:
        yield a
        a, b = b, a + b

f = fib()
print(', '.join(str(next(f)) for _ in range(10)))

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Section 67.12: Searching
The next function is useful even without iterating. Passing a generator expression to next is a quick way to search
for the first occurrence of an element matching some predicate. Procedural code like

def find_and_transform(sequence, predicate, func):
    for element in sequence:
        if predicate(element):
            return func(element)
    raise ValueError

item = find_and_transform(my_sequence, my_predicate, my_func)

can be replaced with:

item = next(my_func(x) for x in my_sequence if my_predicate(x))
# StopIteration will be raised if there are no matches; this exception can
# be caught and transformed, if desired.

https://oeis.org/A000045
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 355

For this purpose, it may be desirable to create an alias, such as first = next, or a wrapper function to convert the
exception:

def first(generator):
    try:
        return next(generator)
    except StopIteration:
        raise ValueError

Section 67.13: Iterating over generators in parallel
To iterate over several generators in parallel, use the zip builtin:

for x, y in zip(a,b):
    print(x,y)

Results in:

1 x
2 y
3 z

In python 2 you should use itertools.izip instead. Here we can also see that the all the zip functions yield tuples.

Note that zip will stop iterating as soon as one of the iterables runs out of items. If you'd like to iterate for as long as
the longest iterable, use itertools.zip_longest().

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 356

Chapter 68: Reduce
Parameter Details
function function that is used for reducing the iterable (must take two arguments). (positional-only)

iterable iterable that's going to be reduced. (positional-only)

initializer start-value of the reduction. (optional, positional-only)

Section 68.1: Overview
# No import needed

# No import required...
from functools import reduce # ... but it can be loaded from the functools module

from functools import reduce # mandatory

reduce reduces an iterable by applying a function repeatedly on the next element of an iterable and the
cumulative result so far.

def add(s1, s2):
    return s1 + s2

asequence = [1, 2, 3]

reduce(add, asequence)  # equivalent to: add(add(1,2),3)
# Out: 6

In this example, we defined our own add function. However, Python comes with a standard equivalent function in
the operator module:

import operator
reduce(operator.add, asequence)
# Out: 6

reduce can also be passed a starting value:

reduce(add, asequence, 10)
# Out: 16

Section 68.2: Using reduce
def multiply(s1, s2):
    print('{arg1} * {arg2} = {res}'.format(arg1=s1,
                                           arg2=s2,
                                           res=s1*s2))
    return s1 * s2

asequence = [1, 2, 3]

Given an initializer the function is started by applying it to the initializer and the first iterable element:

cumprod = reduce(multiply, asequence, 5)
# Out: 5 * 1 = 5

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 357

#      5 * 2 = 10
#      10 * 3 = 30
print(cumprod)
# Out: 30

Without initializer parameter the reduce starts by applying the function to the first two list elements:

cumprod = reduce(multiply, asequence)
# Out: 1 * 2 = 2
#      2 * 3 = 6
print(cumprod)
# Out: 6

Section 68.3: Cumulative product
import operator
reduce(operator.mul, [10, 5, -3])
# Out: -150

Section 68.4: Non short-circuit variant of any/all
reduce will not terminate the iteration before the iterable has been completely iterated over so it can be used to
create a non short-circuit any() or all() function:

import operator
# non short-circuit "all"
reduce(operator.and_, [False, True, True, True]) # = False

# non short-circuit "any"
reduce(operator.or_, [True, False, False, False]) # = True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 358

Chapter 69: Map Function
Parameter Details

function function for mapping (must take as many parameters as there are iterables) (positional-only)

iterable the function is applied to each element of the iterable (positional-only)

*additional_iterables see iterable, but as many as you like (optional, positional-only)

Section 69.1: Basic use of map, itertools.imap and
future_builtins.map
The map function is the simplest one among Python built-ins used for functional programming. map() applies a
specified function to each element in an iterable:

names = ['Fred', 'Wilma', 'Barney']

Python 3.x Version ≥ 3.0

map(len, names)  # map in Python 3.x is a class; its instances are iterable
# Out: <map object at 0x00000198B32E2CF8>

A Python 3-compatible map is included in the future_builtins module:

Python 2.x Version ≥ 2.6

from future_builtins import map  # contains a Python 3.x compatible map()
map(len, names)                  # see below
# Out: <itertools.imap instance at 0x3eb0a20>

Alternatively, in Python 2 one can use imap from itertools to get a generator

Python 2.x Version ≥ 2.3

map(len, names)   # map() returns a list
# Out: [4, 5, 6]

from itertools import imap
imap(len, names)  # itertools.imap() returns a generator
# Out: <itertools.imap at 0x405ea20>

The result can be explicitly converted to a list to remove the differences between Python 2 and 3:

list(map(len, names))
# Out: [4, 5, 6]

map() can be replaced by an equivalent list comprehension or generator expression:

[len(item) for item in names] # equivalent to Python 2.x map()
# Out: [4, 5, 6]

(len(item) for item in names) # equivalent to Python 3.x map()
# Out: <generator object <genexpr> at 0x00000195888D5FC0>

Section 69.2: Mapping each value in an iterable
For example, you can take the absolute value of each element:

list(map(abs, (1, -1, 2, -2, 3, -3))) # the call to `list` is unnecessary in 2.x

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 359

# Out: [1, 1, 2, 2, 3, 3]

Anonymous function also support for mapping a list:

map(lambda x:x*2, [1, 2, 3, 4, 5])
# Out: [2, 4, 6, 8, 10]

or converting decimal values to percentages:

def to_percent(num):
    return num * 100

list(map(to_percent, [0.95, 0.75, 1.01, 0.1]))
# Out: [95.0, 75.0, 101.0, 10.0]

or converting dollars to euros (given an exchange rate):

from functools import partial
from operator import mul

rate = 0.9  # fictitious exchange rate, 1 dollar = 0.9 euros
dollars = {'under_my_bed': 1000,
           'jeans': 45,
           'bank': 5000}

sum(map(partial(mul, rate), dollars.values()))
# Out: 5440.5

functools.partial is a convenient way to fix parameters of functions so that they can be used with map instead of
using lambda or creating customized functions.

Section 69.3: Mapping values of dierent iterables
For example calculating the average of each i-th element of multiple iterables:

def average(*args):
    return float(sum(args)) / len(args)  # cast to float - only mandatory for python 2.x

measurement1 = [100, 111, 99, 97]
measurement2 = [102, 117, 91, 102]
measurement3 = [104, 102, 95, 101]

list(map(average, measurement1, measurement2, measurement3))
# Out: [102.0, 110.0, 95.0, 100.0]

There are different requirements if more than one iterable is passed to map depending on the version of python:

The function must take as many parameters as there are iterables:

def median_of_three(a, b, c):
    return sorted((a, b, c))[1]

list(map(median_of_three, measurement1, measurement2))

TypeError: median_of_three() missing 1 required positional argument: 'c'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 360

list(map(median_of_three, measurement1, measurement2, measurement3, measurement3))

TypeError: median_of_three() takes 3 positional arguments but 4 were given

Python 2.x Version ≥ 2.0.1

map: The mapping iterates as long as one iterable is still not fully consumed but assumes None from the fully
consumed iterables:

import operator

measurement1 = [100, 111, 99, 97]
measurement2 = [102, 117]

# Calculate difference between elements
list(map(operator.sub, measurement1, measurement2))

TypeError: unsupported operand type(s) for -: 'int' and 'NoneType'

itertools.imap and future_builtins.map: The mapping stops as soon as one iterable stops:

import operator
from itertools import imap

measurement1 = [100, 111, 99, 97]
measurement2 = [102, 117]

# Calculate difference between elements
list(imap(operator.sub, measurement1, measurement2))
# Out: [-2, -6]
list(imap(operator.sub, measurement2, measurement1))
# Out: [2, 6]

Python 3.x Version ≥ 3.0.0

The mapping stops as soon as one iterable stops:

import operator

measurement1 = [100, 111, 99, 97]
measurement2 = [102, 117]

# Calculate difference between elements
list(map(operator.sub, measurement1, measurement2))
# Out: [-2, -6]
list(map(operator.sub, measurement2, measurement1))
# Out: [2, 6]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 361

Section 69.4: Transposing with Map: Using "None" as function
argument (python 2.x only)
from itertools import imap
from future_builtins import map as fmap # Different name to highlight differences

image = [[1, 2, 3],
         [4, 5, 6],
         [7, 8, 9]]

list(map(None, *image))
# Out: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
list(fmap(None, *image))
# Out: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
list(imap(None, *image))
# Out: [(1, 4, 7), (2, 5, 8), (3, 6, 9)]

image2 = [[1, 2, 3],
          [4, 5],
          [7, 8, 9]]
list(map(None, *image2))
# Out: [(1, 4, 7), (2, 5, 8), (3, None, 9)]  # Fill missing values with None
list(fmap(None, *image2))
# Out: [(1, 4, 7), (2, 5, 8)]                # ignore columns with missing values
list(imap(None, *image2))
# Out: [(1, 4, 7), (2, 5, 8)]                # dito

Python 3.x Version ≥ 3.0.0

list(map(None, *image))

TypeError: 'NoneType' object is not callable

But there is a workaround to have similar results:

def conv_to_list(*args):
    return list(args)

list(map(conv_to_list, *image))
# Out: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Section 69.5: Series and Parallel Mapping
map() is a built-in function, which means that it is available everywhere without the need to use an 'import'
statement. It is available everywhere just like print() If you look at Example 5 you will see that I had to use an import
statement before I could use pretty print (import pprint). Thus pprint is not a built-in function

Series mapping

In this case each argument of the iterable is supplied as argument to the mapping function in ascending order. This
arises when we have just one iterable to map and the mapping function requires a single argument.

Example 1

insects = ['fly', 'ant', 'beetle', 'cankerworm']
f = lambda x: x + ' is an insect'
print(list(map(f, insects))) # the function defined by f is executed on each item of the iterable

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 362

insects

results in

['fly is an insect', 'ant is an insect', 'beetle is an insect', 'cankerworm is an insect']

Example 2

print(list(map(len, insects))) # the len function is executed each item in the insect list

results in

[3, 3, 6, 10]

Parallel mapping

In this case each argument of the mapping function is pulled from across all iterables (one from each iterable) in
parallel. Thus the number of iterables supplied must match the number of arguments required by the function.

carnivores = ['lion', 'tiger', 'leopard', 'arctic fox']
herbivores = ['african buffalo', 'moose', 'okapi', 'parakeet']
omnivores = ['chicken', 'dove', 'mouse', 'pig']

def animals(w, x, y, z):
    return '{0}, {1}, {2}, and {3} ARE ALL ANIMALS'.format(w.title(), x, y, z)

Example 3

# Too many arguments
# observe here that map is trying to pass one item each from each of the four iterables to len. This
leads len to complain that
# it is being fed too many arguments
print(list(map(len, insects, carnivores, herbivores, omnivores)))

results in

TypeError: len() takes exactly one argument (4 given)

Example 4

# Too few arguments
# observe here that map is supposed to execute animal on individual elements of insects one-by-one.
But animals complain when
# it only gets one argument, whereas it was expecting four.
print(list(map(animals, insects)))

results in

TypeError: animals() missing 3 required positional arguments: 'x', 'y', and 'z'

Example 5

# here map supplies w, x, y, z with one value from across the list
import pprint
pprint.pprint(list(map(animals, insects, carnivores, herbivores, omnivores)))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 363

results in

 ['Fly, lion, african buffalo, and chicken ARE ALL ANIMALS',
 'Ant, tiger, moose, and dove ARE ALL ANIMALS',
 'Beetle, leopard, okapi, and mouse ARE ALL ANIMALS',
 'Cankerworm, arctic fox, parakeet, and pig ARE ALL ANIMALS']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 365

Chapter 70: Exponentiation
Section 70.1: Exponentiation using builtins: ** and pow()
Exponentiation can be used by using the builtin pow-function or the ** operator:

2 ** 3    # 8
pow(2, 3) # 8

For most (all in Python 2.x) arithmetic operations the result's type will be that of the wider operand. This is not true
for **; the following cases are exceptions from this rule:

Base: int, exponent: int < 0:

2 ** -3
# Out: 0.125 (result is a float)

This is also valid for Python 3.x.

Before Python 2.2.0, this raised a ValueError.

Base: int < 0 or float < 0, exponent: float != int

(-2) ** (0.5)  # also (-2.) ** (0.5)    
# Out: (8.659560562354934e-17+1.4142135623730951j) (result is complex)

Before python 3.0.0, this raised a ValueError.

The operator module contains two functions that are equivalent to the **-operator:

import operator
operator.pow(4, 2)      # 16
operator.__pow__(4, 3)  # 64

or one could directly call the __pow__ method:

val1, val2 = 4, 2
val1.__pow__(val2)      # 16
val2.__rpow__(val1)     # 16
# in-place power operation isn't supported by immutable classes like int, float, complex:
# val1.__ipow__(val2)  

Section 70.2: Square root: math.sqrt() and cmath.sqrt
The math module contains the math.sqrt()-function that can compute the square root of any number (that can be
converted to a float) and the result will always be a float:

import math

math.sqrt(9)                # 3.0
math.sqrt(11.11)            # 3.3331666624997918
math.sqrt(Decimal('6.25'))  # 2.5

The math.sqrt() function raises a ValueError if the result would be complex:

https://en.wikipedia.org/wiki/Exponentiation
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 366

math.sqrt(-10)              

ValueError: math domain error

math.sqrt(x) is faster than math.pow(x, 0.5) or x ** 0.5 but the precision of the results is the same. The cmath
module is extremely similar to the math module, except for the fact it can compute complex numbers and all of its
results are in the form of a + bi. It can also use .sqrt():

import cmath

cmath.sqrt(4)  # 2+0j
cmath.sqrt(-4) # 2j

What's with the j? j is the equivalent to the square root of -1. All numbers can be put into the form a + bi, or in this
case, a + bj. a is the real part of the number like the 2 in 2+0j. Since it has no imaginary part, b is 0. b represents
part of the imaginary part of the number like the 2 in 2j. Since there is no real part in this, 2j can also be written as
0 + 2j.

Section 70.3: Modular exponentiation: pow() with 3 arguments
Supplying pow() with 3 arguments pow(a, b, c) evaluates the modular exponentiation ab mod c:

pow(3, 4, 17)   # 13

# equivalent unoptimized expression:
3 ** 4 % 17     # 13

# steps:
3 ** 4          # 81
81 % 17         # 13

For built-in types using modular exponentiation is only possible if:

First argument is an int
Second argument is an int >= 0
Third argument is an int != 0

These restrictions are also present in python 3.x

For example one can use the 3-argument form of pow to define a modular inverse function:

def modular_inverse(x, p):
    """Find a such as  a·x ≡ 1 (mod p), assuming p is prime."""
    return pow(x, p-2, p)

[modular_inverse(x, 13) for x in range(1,13)]
# Out: [1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12]

Section 70.4: Computing large integer roots
Even though Python natively supports big integers, taking the nth root of very large numbers can fail in Python.

x = 2 ** 100
cube = x ** 3

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 367

root = cube ** (1.0 / 3)

OverflowError: long int too large to convert to float

When dealing with such large integers, you will need to use a custom function to compute the nth root of a
number.

def nth_root(x, n):
    # Start with some reasonable bounds around the nth root.
    upper_bound = 1
    while upper_bound ** n <= x:
        upper_bound *= 2
    lower_bound = upper_bound // 2
    # Keep searching for a better result as long as the bounds make sense.
    while lower_bound < upper_bound:
        mid = (lower_bound + upper_bound) // 2
        mid_nth = mid ** n
        if lower_bound < mid and mid_nth < x:
            lower_bound = mid
        elif upper_bound > mid and mid_nth > x:
            upper_bound = mid
        else:
            # Found perfect nth root.
            return mid
    return mid + 1

x = 2 ** 100
cube = x ** 3
root = nth_root(cube, 3)
x == root
# True

Section 70.5: Exponentiation using the math module:
math.pow()
The math-module contains another math.pow() function. The difference to the builtin pow()-function or ** operator
is that the result is always a float:

import math
math.pow(2, 2)    # 4.0
math.pow(-2., 2)  # 4.0

Which excludes computations with complex inputs:

math.pow(2, 2+0j)

TypeError: can't convert complex to float

and computations that would lead to complex results:

math.pow(-2, 0.5)

ValueError: math domain error

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 368

Section 70.6: Exponential function: math.exp() and
cmath.exp()
Both the math and cmath-module contain the Euler number: e and using it with the builtin pow()-function or **-
operator works mostly like math.exp():

import math

math.e ** 2  # 7.3890560989306495
math.exp(2)  # 7.38905609893065

import cmath
cmath.e ** 2 # 7.3890560989306495
cmath.exp(2) # (7.38905609893065+0j)

However the result is different and using the exponential function directly is more reliable than builtin
exponentiation with base math.e:

print(math.e ** 10)       # 22026.465794806703
print(math.exp(10))       # 22026.465794806718
print(cmath.exp(10).real) # 22026.465794806718
#     difference starts here ---------------^

Section 70.7: Exponential function minus 1: math.expm1()
The math module contains the expm1()-function that can compute the expression math.e ** x - 1 for very small x
with higher precision than math.exp(x) or cmath.exp(x) would allow:

import math

print(math.e ** 1e-3 - 1)  # 0.0010005001667083846
print(math.exp(1e-3) - 1)  # 0.0010005001667083846
print(math.expm1(1e-3))    # 0.0010005001667083417
#                            ------------------^

For very small x the difference gets bigger:

print(math.e ** 1e-15 - 1) # 1.1102230246251565e-15
print(math.exp(1e-15) - 1) # 1.1102230246251565e-15
print(math.expm1(1e-15))   # 1.0000000000000007e-15
#                              ^-------------------

The improvement is significant in scientific computing. For example the Planck's law contains an exponential
function minus 1:

def planks_law(lambda_, T):
    from scipy.constants import h, k, c  # If no scipy installed hardcode these!
    return 2 * h * c ** 2 / (lambda_ ** 5 * math.expm1(h * c / (lambda_ * k * T)))

def planks_law_naive(lambda_, T):
    from scipy.constants import h, k, c  # If no scipy installed hardcode these!
    return 2 * h * c ** 2 / (lambda_ ** 5 * (math.e ** (h * c / (lambda_ * k * T)) - 1))

planks_law(100, 5000)        # 4.139080074896474e-19
planks_law_naive(100, 5000)  # 4.139080073488451e-19
#                                        ^----------

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
https://en.wikipedia.org/wiki/Planck%27s_law
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 369

planks_law(1000, 5000)       # 4.139080128493406e-23
planks_law_naive(1000, 5000) # 4.139080233183142e-23
#                                      ^------------

Section 70.8: Magic methods and exponentiation: builtin,
math and cmath
Supposing you have a class that stores purely integer values:

class Integer(object):
    def __init__(self, value):
        self.value = int(value) # Cast to an integer
       
    def __repr__(self):
        return '{cls}({val})'.format(cls=self.__class__.__name__,
                                     val=self.value)
   
    def __pow__(self, other, modulo=None):
        if modulo is None:
            print('Using __pow__')
            return self.__class__(self.value ** other)
        else:
            print('Using __pow__ with modulo')
            return self.__class__(pow(self.value, other, modulo))
   
    def __float__(self):
        print('Using __float__')
        return float(self.value)
   
    def __complex__(self):
        print('Using __complex__')
        return complex(self.value, 0)

Using the builtin pow function or ** operator always calls __pow__:

Integer(2) ** 2                 # Integer(4)
# Prints: Using __pow__
Integer(2) ** 2.5               # Integer(5)
# Prints: Using __pow__
pow(Integer(2), 0.5)            # Integer(1)
# Prints: Using __pow__  
operator.pow(Integer(2), 3)     # Integer(8)
# Prints: Using __pow__
operator.__pow__(Integer(3), 3) # Integer(27)
# Prints: Using __pow__

The second argument of the __pow__() method can only be supplied by using the builtin-pow() or by directly calling
the method:

pow(Integer(2), 3, 4)           # Integer(0)
# Prints: Using __pow__ with modulo
Integer(2).__pow__(3, 4)        # Integer(0)
# Prints: Using __pow__ with modulo  

While the math-functions always convert it to a float and use the float-computation:

import math

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 370

math.pow(Integer(2), 0.5) # 1.4142135623730951
# Prints: Using __float__

cmath-functions try to convert it to complex but can also fallback to float if there is no explicit conversion to
complex:

import cmath

cmath.exp(Integer(2))     # (7.38905609893065+0j)
# Prints: Using __complex__

del Integer.__complex__   # Deleting __complex__ method - instances cannot be cast to complex

cmath.exp(Integer(2))     # (7.38905609893065+0j)
# Prints: Using __float__

Neither math nor cmath will work if also the __float__()-method is missing:

del Integer.__float__  # Deleting __complex__ method

math.sqrt(Integer(2))  # also cmath.exp(Integer(2))

TypeError: a float is required

Section 70.9: Roots: nth-root with fractional exponents
While the math.sqrt function is provided for the specific case of square roots, it's often convenient to use the
exponentiation operator (**) with fractional exponents to perform nth-root operations, like cube roots.

The inverse of an exponentiation is exponentiation by the exponent's reciprocal. So, if you can cube a number by
putting it to the exponent of 3, you can find the cube root of a number by putting it to the exponent of 1/3.

>>> x = 3
>>> y = x ** 3
>>> y
27
>>> z = y ** (1.0 / 3)
>>> z
3.0
>>> z == x
True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 371

Chapter 71: Searching
Section 71.1: Searching for an element
All built-in collections in Python implement a way to check element membership using in.

List
alist = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
5 in alist   # True
10 in alist  # False

Tuple
atuple = ('0', '1', '2', '3', '4')
4 in atuple    # False
'4' in atuple  # True

String
astring = 'i am a string'
'a' in astring   # True
'am' in astring  # True
'I' in astring   # False

Set
aset = {(10, 10), (20, 20), (30, 30)}
(10, 10) in aset  # True
10 in aset        # False

Dict

dict is a bit special: the normal in only checks the keys. If you want to search in values you need to specify it. The
same if you want to search for key-value pairs.

adict = {0: 'a', 1: 'b', 2: 'c', 3: 'd'}
1 in adict                 # True   - implicitly searches in keys
'a' in adict               # False
2 in adict.keys()          # True   - explicitly searches in keys
'a' in adict.values()      # True   - explicitly searches in values
(0, 'a') in adict.items()  # True   - explicitly searches key/value pairs

Section 71.2: Searching in custom classes: __contains__ and
__iter__
To allow the use of in for custom classes the class must either provide the magic method __contains__ or, failing
that, an __iter__-method.

Suppose you have a class containing a list of lists:

class ListList:
    def __init__(self, value):
        self.value = value
        # Create a set of all values for fast access
        self.setofvalues = set(item for sublist in self.value for item in sublist)
       
    def __iter__(self):
        print('Using __iter__.')
        # A generator over all sublist elements
        return (item for sublist in self.value for item in sublist)
       

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 372

    def __contains__(self, value):
        print('Using __contains__.')
        # Just lookup if the value is in the set
        return value in self.setofvalues

        # Even without the set you could use the iter method for the contains-check:
        # return any(item == value for item in iter(self))

Using membership testing is possible using in:

a = ListList([[1,1,1],[0,1,1],[1,5,1]])
10 in a    # False
# Prints: Using __contains__.
5 in a     # True
# Prints: Using __contains__.

even after deleting the __contains__ method:

del ListList.__contains__
5 in a     # True
# Prints: Using __iter__.

Note: The looping in (as in for i in a) will always use __iter__ even if the class implements a __contains__
method.

Section 71.3: Getting the index for strings: str.index(),
str.rindex() and str.find(), str.rfind()
String also have an index method but also more advanced options and the additional str.find. For both of these
there is a complementary reversed method.

astring = 'Hello on StackOverflow'
astring.index('o')  # 4
astring.rindex('o') # 20

astring.find('o')   # 4
astring.rfind('o')  # 20

The difference between index/rindex and find/rfind is what happens if the substring is not found in the string:

astring.index('q') # ValueError: substring not found
astring.find('q')  # -1

All of these methods allow a start and end index:

astring.index('o', 5)    # 6
astring.index('o', 6)    # 6 - start is inclusive
astring.index('o', 5, 7) # 6
astring.index('o', 5, 6) #  - end is not inclusive

ValueError: substring not found

astring.rindex('o', 20) # 20
astring.rindex('o', 19) # 20 - still from left to right

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 373

astring.rindex('o', 4, 7) # 6

Section 71.4: Getting the index list and tuples: list.index(),
tuple.index()
list and tuple have an index-method to get the position of the element:

alist = [10, 16, 26, 5, 2, 19, 105, 26]
# search for 16 in the list
alist.index(16) # 1
alist[1]        # 16

alist.index(15)

ValueError: 15 is not in list

But only returns the position of the first found element:

atuple = (10, 16, 26, 5, 2, 19, 105, 26)
atuple.index(26)   # 2
atuple[2]          # 26
atuple[7]          # 26 - is also 26!

Section 71.5: Searching key(s) for a value in dict
dict have no builtin method for searching a value or key because dictionaries are unordered. You can create a
function that gets the key (or keys) for a specified value:

def getKeysForValue(dictionary, value):
    foundkeys = []
    for keys in dictionary:
        if dictionary[key] == value:
            foundkeys.append(key)
    return foundkeys

This could also be written as an equivalent list comprehension:

def getKeysForValueComp(dictionary, value):
    return [key for key in dictionary if dictionary[key] == value]

If you only care about one found key:

def getOneKeyForValue(dictionary, value):
    return next(key for key in dictionary if dictionary[key] == value)

The first two functions will return a list of all keys that have the specified value:

adict = {'a': 10, 'b': 20, 'c': 10}
getKeysForValue(adict, 10)     # ['c', 'a'] - order is random could as well be ['a', 'c']
getKeysForValueComp(adict, 10) # ['c', 'a'] - dito
getKeysForValueComp(adict, 20) # ['b']
getKeysForValueComp(adict, 25) # []

The other one will only return one key:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 374

getOneKeyForValue(adict, 10)   # 'c'  - depending on the circumstances this could also be 'a'
getOneKeyForValue(adict, 20)   # 'b'

and raise a StopIteration-Exception if the value is not in the dict:

getOneKeyForValue(adict, 25)

StopIteration

Section 71.6: Getting the index for sorted sequences:
bisect.bisect_left()
Sorted sequences allow the use of faster searching algorithms: bisect.bisect_left()1:

import bisect

def index_sorted(sorted_seq, value):
    """Locate the leftmost value exactly equal to x or raise a ValueError"""
    i = bisect.bisect_left(sorted_seq, value)
    if i != len(sorted_seq) and sorted_seq[i] == value:
        return i
    raise ValueError

alist = [i for i in range(1, 100000, 3)] # Sorted list from 1 to 100000 with step 3
index_sorted(alist, 97285) # 32428
index_sorted(alist, 4)     # 1
index_sorted(alist, 97286)

ValueError

For very large sorted sequences the speed gain can be quite high. In case for the first search approximately 500
times as fast:

%timeit index_sorted(alist, 97285)
# 100000 loops, best of 3: 3 µs per loop
%timeit alist.index(97285)
# 1000 loops, best of 3: 1.58 ms per loop

While it's a bit slower if the element is one of the very first:

%timeit index_sorted(alist, 4)
# 100000 loops, best of 3: 2.98 µs per loop
%timeit alist.index(4)
# 1000000 loops, best of 3: 580 ns per loop

Section 71.7: Searching nested sequences
Searching in nested sequences like a list of tuple requires an approach like searching the keys for values in dict
but needs customized functions.

The index of the outermost sequence if the value was found in the sequence:

http://docs.python.org/library/bisect.html#searching-sorted-lists
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 375

def outer_index(nested_sequence, value):
    return next(index for index, inner in enumerate(nested_sequence)
                      for item in inner
                      if item == value)

alist_of_tuples = [(4, 5, 6), (3, 1, 'a'), (7, 0, 4.3)]
outer_index(alist_of_tuples, 'a')  # 1
outer_index(alist_of_tuples, 4.3)  # 2

or the index of the outer and inner sequence:

def outer_inner_index(nested_sequence, value):
    return next((oindex, iindex) for oindex, inner in enumerate(nested_sequence)
                                 for iindex, item in enumerate(inner)
                                 if item == value)

outer_inner_index(alist_of_tuples, 'a') # (1, 2)
alist_of_tuples[1][2]  # 'a'

outer_inner_index(alist_of_tuples, 7)   # (2, 0)
alist_of_tuples[2][0]  # 7

In general (not always) using next and a generator expression with conditions to find the first occurrence of the
searched value is the most efficient approach.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 376

Chapter 72: Sorting, Minimum and
Maximum
Section 72.1: Make custom classes orderable
min, max, and sorted all need the objects to be orderable. To be properly orderable, the class needs to define all of
the 6 methods __lt__, __gt__, __ge__, __le__, __ne__ and __eq__:

class IntegerContainer(object):
    def __init__(self, value):
        self.value = value
       
    def __repr__(self):
        return "{}({})".format(self.__class__.__name__, self.value)
   
    def __lt__(self, other):
        print('{!r} - Test less than {!r}'.format(self, other))
        return self.value < other.value
   
    def __le__(self, other):
        print('{!r} - Test less than or equal to {!r}'.format(self, other))
        return self.value <= other.value

    def __gt__(self, other):
        print('{!r} - Test greater than {!r}'.format(self, other))
        return self.value > other.value

    def __ge__(self, other):
        print('{!r} - Test greater than or equal to {!r}'.format(self, other))
        return self.value >= other.value

    def __eq__(self, other):
        print('{!r} - Test equal to {!r}'.format(self, other))
        return self.value == other.value

    def __ne__(self, other):
        print('{!r} - Test not equal to {!r}'.format(self, other))
        return self.value != other.value

Though implementing all these methods would seem unnecessary, omitting some of them will make your code
prone to bugs.

Examples:

alist = [IntegerContainer(5), IntegerContainer(3),
         IntegerContainer(10), IntegerContainer(7)
        ]

res = max(alist)
# Out: IntegerContainer(3) - Test greater than IntegerContainer(5)
#      IntegerContainer(10) - Test greater than IntegerContainer(5)
#      IntegerContainer(7) - Test greater than IntegerContainer(10)
print(res)
# Out: IntegerContainer(10)

res = min(alist)  
# Out: IntegerContainer(3) - Test less than IntegerContainer(5)
#      IntegerContainer(10) - Test less than IntegerContainer(3)

http://stackoverflow.com/a/8796908/918959
http://stackoverflow.com/a/8796908/918959
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 377

#      IntegerContainer(7) - Test less than IntegerContainer(3)
print(res)
# Out: IntegerContainer(3)

res = sorted(alist)
# Out: IntegerContainer(3) - Test less than IntegerContainer(5)
#      IntegerContainer(10) - Test less than IntegerContainer(3)
#      IntegerContainer(10) - Test less than IntegerContainer(5)
#      IntegerContainer(7) - Test less than IntegerContainer(5)
#      IntegerContainer(7) - Test less than IntegerContainer(10)
print(res)
# Out: [IntegerContainer(3), IntegerContainer(5), IntegerContainer(7), IntegerContainer(10)]

sorted with reverse=True also uses __lt__:

res = sorted(alist, reverse=True)
# Out: IntegerContainer(10) - Test less than IntegerContainer(7)
#      IntegerContainer(3) - Test less than IntegerContainer(10)
#      IntegerContainer(3) - Test less than IntegerContainer(10)
#      IntegerContainer(3) - Test less than IntegerContainer(7)
#      IntegerContainer(5) - Test less than IntegerContainer(7)
#      IntegerContainer(5) - Test less than IntegerContainer(3)
print(res)
# Out: [IntegerContainer(10), IntegerContainer(7), IntegerContainer(5), IntegerContainer(3)]

But sorted can use __gt__ instead if the default is not implemented:

del IntegerContainer.__lt__   # The IntegerContainer no longer implements "less than"

res = min(alist)
# Out: IntegerContainer(5) - Test greater than IntegerContainer(3)
#      IntegerContainer(3) - Test greater than IntegerContainer(10)
#      IntegerContainer(3) - Test greater than IntegerContainer(7)
print(res)
# Out: IntegerContainer(3)

Sorting methods will raise a TypeError if neither __lt__ nor __gt__ are implemented:

del IntegerContainer.__gt__   # The IntegerContainer no longer implements "greater then"

res = min(alist)

TypeError: unorderable types: IntegerContainer() < IntegerContainer()

functools.total_ordering decorator can be used simplifying the effort of writing these rich comparison methods.
If you decorate your class with total_ordering, you need to implement __eq__, __ne__ and only one of the __lt__,
__le__, __ge__ or __gt__, and the decorator will fill in the rest:

import functools

@functools.total_ordering
class IntegerContainer(object):
    def __init__(self, value):
        self.value = value
       
    def __repr__(self):
        return "{}({})".format(self.__class__.__name__, self.value)

https://docs.python.org/3.3/library/functools.html#functools.total_ordering
https://docs.python.org/3.3/library/functools.html#functools.total_ordering
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 378

   
    def __lt__(self, other):
        print('{!r} - Test less than {!r}'.format(self, other))
        return self.value < other.value
   
    def __eq__(self, other):
        print('{!r} - Test equal to {!r}'.format(self, other))
        return self.value == other.value
   
    def __ne__(self, other):
        print('{!r} - Test not equal to {!r}'.format(self, other))
        return self.value != other.value

IntegerContainer(5) > IntegerContainer(6)
# Output: IntegerContainer(5) - Test less than IntegerContainer(6)
# Returns: False

IntegerContainer(6) > IntegerContainer(5)
# Output: IntegerContainer(6) - Test less than IntegerContainer(5)
# Output: IntegerContainer(6) - Test equal to IntegerContainer(5)
# Returns True

Notice how the > (greater than) now ends up calling the less than method, and in some cases even the __eq__
method. This also means that if speed is of great importance, you should implement each rich comparison method
yourself.

Section 72.2: Special case: dictionaries
Getting the minimum or maximum or using sorted depends on iterations over the object. In the case of dict, the
iteration is only over the keys:

adict = {'a': 3, 'b': 5, 'c': 1}
min(adict)
# Output: 'a'
max(adict)
# Output: 'c'
sorted(adict)
# Output: ['a', 'b', 'c']

To keep the dictionary structure, you have to iterate over the .items():

min(adict.items())
# Output: ('a', 3)
max(adict.items())
# Output: ('c', 1)
sorted(adict.items())
# Output: [('a', 3), ('b', 5), ('c', 1)]

For sorted, you could create an OrderedDict to keep the sorting while having a dict-like structure:

from collections import OrderedDict
OrderedDict(sorted(adict.items()))
# Output: OrderedDict([('a', 3), ('b', 5), ('c', 1)])
res = OrderedDict(sorted(adict.items()))
res['a']
# Output: 3

By value

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 379

Again this is possible using the key argument:

min(adict.items(), key=lambda x: x[1])
# Output: ('c', 1)
max(adict.items(), key=operator.itemgetter(1))
# Output: ('b', 5)
sorted(adict.items(), key=operator.itemgetter(1), reverse=True)
# Output: [('b', 5), ('a', 3), ('c', 1)]

Section 72.3: Using the key argument
Finding the minimum/maximum of a sequence of sequences is possible:

list_of_tuples = [(0, 10), (1, 15), (2, 8)]
min(list_of_tuples)
# Output: (0, 10)

but if you want to sort by a specific element in each sequence use the key-argument:

min(list_of_tuples, key=lambda x: x[0])         # Sorting by first element
# Output: (0, 10)

min(list_of_tuples, key=lambda x: x[1])         # Sorting by second element
# Output: (2, 8)

sorted(list_of_tuples, key=lambda x: x[0])      # Sorting by first element (increasing)
# Output: [(0, 10), (1, 15), (2, 8)]

sorted(list_of_tuples, key=lambda x: x[1])      # Sorting by first element
# Output: [(2, 8), (0, 10), (1, 15)]

import operator  
# The operator module contains efficient alternatives to the lambda function
max(list_of_tuples, key=operator.itemgetter(0)) # Sorting by first element
# Output: (2, 8)

max(list_of_tuples, key=operator.itemgetter(1)) # Sorting by second element
# Output: (1, 15)

sorted(list_of_tuples, key=operator.itemgetter(0), reverse=True) # Reversed (decreasing)
# Output: [(2, 8), (1, 15), (0, 10)]

sorted(list_of_tuples, key=operator.itemgetter(1), reverse=True) # Reversed(decreasing)
# Output: [(1, 15), (0, 10), (2, 8)]

Section 72.4: Default Argument to max, min
You can't pass an empty sequence into max or min:

min([])

ValueError: min() arg is an empty sequence

However, with Python 3, you can pass in the keyword argument default with a value that will be returned if the
sequence is empty, instead of raising an exception:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 380

max([], default=42)        
# Output: 42
max([], default=0)        
# Output: 0

Section 72.5: Getting a sorted sequence
Using one sequence:

sorted((7, 2, 1, 5))                 # tuple
# Output: [1, 2, 5, 7]

sorted(['c', 'A', 'b'])              # list
# Output: ['A', 'b', 'c']

sorted({11, 8, 1})                   # set
# Output: [1, 8, 11]

sorted({'11': 5, '3': 2, '10': 15})  # dict
# Output: ['10', '11', '3']          # only iterates over the keys

sorted('bdca')                       # string
# Output: ['a','b','c','d']

The result is always a new list; the original data remains unchanged.

Section 72.6: Extracting N largest or N smallest items from an
iterable
To find some number (more than one) of largest or smallest values of an iterable, you can use the nlargest and
nsmallest of the heapq module:

import heapq

# get 5 largest items from the range

heapq.nlargest(5, range(10))
# Output: [9, 8, 7, 6, 5]

heapq.nsmallest(5, range(10))
# Output: [0, 1, 2, 3, 4]

This is much more efficient than sorting the whole iterable and then slicing from the end or beginning. Internally
these functions use the binary heap priority queue data structure, which is very efficient for this use case.

Like min, max and sorted, these functions accept the optional key keyword argument, which must be a function
that, given an element, returns its sort key.

Here is a program that extracts 1000 longest lines from a file:

import heapq
with open(filename) as f:
    longest_lines = heapq.nlargest(1000, f, key=len)

Here we open the file, and pass the file handle f to nlargest. Iterating the file yields each line of the file as a
separate string; nlargest then passes each element (or line) is passed to the function len to determine its sort key.

https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html
https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Priority_queue
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 381

len, given a string, returns the length of the line in characters.

This only needs storage for a list of 1000 largest lines so far, which can be contrasted with

longest_lines = sorted(f, key=len)[1000:]

which will have to hold the entire file in memory.

Section 72.7: Getting the minimum or maximum of several
values
min(7,2,1,5)
# Output: 1

max(7,2,1,5)
# Output: 7

Section 72.8: Minimum and Maximum of a sequence
Getting the minimum of a sequence (iterable) is equivalent of accessing the first element of a sorted sequence:

min([2, 7, 5])
# Output: 2
sorted([2, 7, 5])[0]
# Output: 2

The maximum is a bit more complicated, because sorted keeps order and max returns the first encountered value.
In case there are no duplicates the maximum is the same as the last element of the sorted return:

max([2, 7, 5])
# Output: 7
sorted([2, 7, 5])[-1]
# Output: 7

But not if there are multiple elements that are evaluated as having the maximum value:

class MyClass(object):
    def __init__(self, value, name):
        self.value = value
        self.name = name
       
    def __lt__(self, other):
        return self.value < other.value
   
    def __repr__(self):
        return str(self.name)

sorted([MyClass(4, 'first'), MyClass(1, 'second'), MyClass(4, 'third')])
# Output: [second, first, third]
max([MyClass(4, 'first'), MyClass(1, 'second'), MyClass(4, 'third')])
# Output: first

Any iterable containing elements that support < or > operations are allowed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 382

Chapter 73: Counting
Section 73.1: Counting all occurrence of all items in an
iterable: collections.Counter
from collections import Counter

c = Counter(["a", "b", "c", "d", "a", "b", "a", "c", "d"])
c
# Out: Counter({'a': 3, 'b': 2, 'c': 2, 'd': 2})
c["a"]
# Out: 3

c[7]     # not in the list (7 occurred 0 times!)
# Out: 0

The collections.Counter can be used for any iterable and counts every occurrence for every element.

Note: One exception is if a dict or another collections.Mapping-like class is given, then it will not count them,
rather it creates a Counter with these values:

Counter({"e": 2})
# Out: Counter({"e": 2})

Counter({"e": "e"})        # warning Counter does not verify the values are int
# Out: Counter({"e": "e"})

Section 73.2: Getting the most common value(-s):
collections.Counter.most_common()
Counting the keys of a Mapping isn't possible with collections.Counter but we can count the values:

from collections import Counter
adict = {'a': 5, 'b': 3, 'c': 5, 'd': 2, 'e':2, 'q': 5}
Counter(adict.values())
# Out: Counter({2: 2, 3: 1, 5: 3})

The most common elements are available by the most_common-method:

# Sorting them from most-common to least-common value:
Counter(adict.values()).most_common()
# Out: [(5, 3), (2, 2), (3, 1)]

# Getting the most common value
Counter(adict.values()).most_common(1)
# Out: [(5, 3)]

# Getting the two most common values
Counter(adict.values()).most_common(2)
# Out: [(5, 3), (2, 2)]

Section 73.3: Counting the occurrences of one item in a
sequence: list.count() and tuple.count()
alist = [1, 2, 3, 4, 1, 2, 1, 3, 4]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 383

alist.count(1)
# Out: 3

atuple = ('bear', 'weasel', 'bear', 'frog')
atuple.count('bear')
# Out: 2
atuple.count('fox')
# Out: 0

Section 73.4: Counting the occurrences of a substring in a
string: str.count()
astring = 'thisisashorttext'
astring.count('t')
# Out: 4

This works even for substrings longer than one character:

astring.count('th')
# Out: 1
astring.count('is')
# Out: 2
astring.count('text')
# Out: 1

which would not be possible with collections.Counter which only counts single characters:

from collections import Counter
Counter(astring)
# Out: Counter({'a': 1, 'e': 1, 'h': 2, 'i': 2, 'o': 1, 'r': 1, 's': 3, 't': 4, 'x': 1})

Section 73.5: Counting occurrences in numpy array
To count the occurrences of a value in a numpy array. This will work:

>>> import numpy as np
>>> a=np.array([0,3,4,3,5,4,7])
>>> print np.sum(a==3)
2

The logic is that the boolean statement produces a array where all occurrences of the requested values are 1 and
all others are zero. So summing these gives the number of occurencies. This works for arrays of any shape or dtype.

There are two methods I use to count occurrences of all unique values in numpy. Unique and bincount. Unique
automatically flattens multidimensional arrays, while bincount only works with 1d arrays only containing positive
integers.

>>> unique,counts=np.unique(a,return_counts=True)
>>> print unique,counts # counts[i] is equal to occurrences of unique[i] in a
[0 3 4 5 7] [1 2 2 1 1]
>>> bin_count=np.bincount(a)
>>> print bin_count # bin_count[i] is equal to occurrences of i in a
[1 0 0 2 2 1 0 1]

If your data are numpy arrays it is generally much faster to use numpy methods then to convert your data to
generic methods.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 384

Chapter 74: The Print Function
Section 74.1: Print basics
In Python 3 and higher, print is a function rather than a keyword.

print('hello world!')
# out: hello world!

foo = 1
bar = 'bar'
baz = 3.14

print(foo)    
# out: 1
print(bar)    
# out: bar
print(baz)
# out: 3.14

You can also pass a number of parameters to print:

print(foo, bar, baz)
# out: 1 bar 3.14

Another way to print multiple parameters is by using a +

print(str(foo) + " " + bar + " " + str(baz))
# out: 1 bar 3.14

What you should be careful about when using + to print multiple parameters, though, is that the type of the
parameters should be the same. Trying to print the above example without the cast to string first would result in
an error, because it would try to add the number 1 to the string "bar" and add that to the number 3.14.

# Wrong:
# type:int  str  float
print(foo + bar + baz)
# will result in an error

This is because the content of print will be evaluated first:

print(4 + 5)
# out: 9
print("4" + "5")
# out: 45
print([4] + [5])
# out: [4, 5]

Otherwise, using a + can be very helpful for a user to read output of variables In the example below the output is
very easy to read!

The script below demonstrates this

import random
#telling python to include a function to create random numbers
randnum = random.randint(0, 12)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 385

#make a random number between 0 and 12 and assign it to a variable
print("The randomly generated number was - " + str(randnum))

You can prevent the print function from automatically printing a newline by using the end parameter:

print("this has no newline at the end of it... ", end="")
print("see?")
# out: this has no newline at the end of it... see?

If you want to write to a file, you can pass it as the parameter file:

with open('my_file.txt', 'w+') as my_file:
    print("this goes to the file!", file=my_file)

this goes to the file!

Section 74.2: Print parameters
You can do more than just print text. print also has several parameters to help you.

Argument sep: place a string between arguments.

Do you need to print a list of words separated by a comma or some other string?

>>> print('apples','bananas', 'cherries', sep=', ')
apple, bananas, cherries
>>> print('apple','banana', 'cherries', sep=', ')
apple, banana, cherries
>>>

Argument end: use something other than a newline at the end

Without the end argument, all print() functions write a line and then go to the beginning of the next line. You can
change it to do nothing (use an empty string of ''), or double spacing between paragraphs by using two newlines.

>>> print("<a", end=''); print(" class='jidn'" if 1 else "", end=''); print("/>")
<a class='jidn'/>
>>> print("paragraph1", end="\n\n"); print("paragraph2")
paragraph1

paragraph2
>>>

Argument file: send output to someplace other than sys.stdout.

Now you can send your text to either stdout, a file, or StringIO and not care which you are given. If it quacks like a
file, it works like a file.

>>> def sendit(out, *values, sep=' ', end='\n'):
...     print(*values, sep=sep, end=end, file=out)
...
>>> sendit(sys.stdout, 'apples', 'bananas', 'cherries', sep='\t')
apples    bananas    cherries
>>> with open("delete-me.txt", "w+") as f:
...    sendit(f, 'apples', 'bananas', 'cherries', sep=' ', end='\n')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 386

...
>>> with open("delete-me.txt", "rt") as f:
...     print(f.read())
...
apples bananas cherries

>>>

There is a fourth parameter flush which will forcibly flush the stream.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 388

Chapter 75: Regular Expressions (Regex)
Python makes regular expressions available through the re module.

Regular expressions are combinations of characters that are interpreted as rules for matching substrings. For
instance, the expression 'amount\D+\d+' will match any string composed by the word amount plus an integral
number, separated by one or more non-digits, such as:amount=100, amount is 3, amount is equal to: 33, etc.

Section 75.1: Matching the beginning of a string
The first argument of re.match() is the regular expression, the second is the string to match:

import re

pattern = r"123"
string = "123zzb"

re.match(pattern, string)
# Out: <_sre.SRE_Match object; span=(0, 3), match='123'>

match = re.match(pattern, string)

match.group()
# Out: '123'

You may notice that the pattern variable is a string prefixed with r, which indicates that the string is a raw string
literal.

A raw string literal has a slightly different syntax than a string literal, namely a backslash \ in a raw string literal
means "just a backslash" and there's no need for doubling up backlashes to escape "escape sequences" such as
newlines (\n), tabs (\t), backspaces (\), form-feeds (\r), and so on. In normal string literals, each backslash must be
doubled up to avoid being taken as the start of an escape sequence.

Hence, r"\n" is a string of 2 characters: \ and n. Regex patterns also use backslashes, e.g. \d refers to any digit
character. We can avoid having to double escape our strings ("\\d") by using raw strings (r"\d").

For instance:

string = "\\t123zzb" # here the backslash is escaped, so there's no tab, just '\' and 't'
pattern = "\\t123"   # this will match \t (escaping the backslash) followed by 123
re.match(pattern, string).group()   # no match
re.match(pattern, "\t123zzb").group()  # matches '\t123'

pattern = r"\\t123"  
re.match(pattern, string).group()   # matches '\\t123'

Matching is done from the start of the string only. If you want to match anywhere use re.search instead:

match = re.match(r"(123)", "a123zzb")

match is None
# Out: True

match = re.search(r"(123)", "a123zzb")

match.group()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 389

# Out: '123'

Section 75.2: Searching
pattern = r"(your base)"
sentence = "All your base are belong to us."

match = re.search(pattern, sentence)
match.group(1)
# Out: 'your base'

match = re.search(r"(belong.*)", sentence)
match.group(1)
# Out: 'belong to us.'

Searching is done anywhere in the string unlike re.match. You can also use re.findall.

You can also search at the beginning of the string (use ^),

match = re.search(r"^123", "123zzb")
match.group(0)
# Out: '123'

match = re.search(r"^123", "a123zzb")
match is None
# Out: True

at the end of the string (use $),

match = re.search(r"123$", "zzb123")
match.group(0)
# Out: '123'

match = re.search(r"123$", "123zzb")
match is None
# Out: True

or both (use both ^ and $):

match = re.search(r"^123$", "123")
match.group(0)
# Out: '123'

Section 75.3: Precompiled patterns
import re

precompiled_pattern = re.compile(r"(\d+)")
matches = precompiled_pattern.search("The answer is 41!")
matches.group(1)
# Out: 41

matches = precompiled_pattern.search("Or was it 42?")
matches.group(1)
# Out: 42

Compiling a pattern allows it to be reused later on in a program. However, note that Python caches recently-used

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 390

expressions (docs, SO answer), so "programs that use only a few regular expressions at a time needn’t worry about
compiling regular expressions".

import re

precompiled_pattern = re.compile(r"(.*\d+)")
matches = precompiled_pattern.match("The answer is 41!")
print(matches.group(1))
# Out: The answer is 41

matches = precompiled_pattern.match("Or was it 42?")
print(matches.group(1))
# Out: Or was it 42

It can be used with re.match().

Section 75.4: Flags
For some special cases we need to change the behavior of the Regular Expression, this is done using flags. Flags can
be set in two ways, through the flags keyword or directly in the expression.

Flags keyword

Below an example for re.search but it works for most functions in the re module.

m = re.search("b", "ABC")  
m is None
# Out: True

m = re.search("b", "ABC", flags=re.IGNORECASE)
m.group()
# Out: 'B'

m = re.search("a.b", "A\nBC", flags=re.IGNORECASE)
m is None
# Out: True

m = re.search("a.b", "A\nBC", flags=re.IGNORECASE|re.DOTALL)
m.group()
# Out: 'A\nB'

Common Flags

Flag Short Description
re.IGNORECASE, re.I Makes the pattern ignore the case

re.DOTALL, re.S Makes . match everything including newlines

re.MULTILINE, re.M Makes ^ match the begin of a line and $ the end of a line
re.DEBUG Turns on debug information

For the complete list of all available flags check the docs

Inline flags

From the docs:

(?iLmsux) (One or more letters from the set 'i', 'L', 'm', 's', 'u', 'x'.)

https://docs.python.org/3/library/re.html#re.compile
http://stackoverflow.com/a/452143/1240268
https://docs.python.org/2/library/re.html#module-contents
https://docs.python.org/2/library/re.html#regular-expression-syntax
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 391

The group matches the empty string; the letters set the corresponding flags: re.I (ignore case), re.L (locale
dependent), re.M (multi-line), re.S (dot matches all), re.U (Unicode dependent), and re.X (verbose), for the
entire regular expression. This is useful if you wish to include the flags as part of the regular expression,
instead of passing a flag argument to the re.compile() function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

Section 75.5: Replacing
Replacements can be made on strings using re.sub.

Replacing strings
re.sub(r"t[0-9][0-9]", "foo", "my name t13 is t44 what t99 ever t44")
# Out: 'my name foo is foo what foo ever foo'

Using group references

Replacements with a small number of groups can be made as follows:

re.sub(r"t([0-9])([0-9])", r"t\2\1", "t13 t19 t81 t25")
# Out: 't31 t91 t18 t52'

However, if you make a group ID like '10', this doesn't work: \10 is read as 'ID number 1 followed by 0'. So you have
to be more specific and use the \g<i> notation:

re.sub(r"t([0-9])([0-9])", r"t\g<2>\g<1>", "t13 t19 t81 t25")
# Out: 't31 t91 t18 t52'

Using a replacement function
items = ["zero", "one", "two"]
re.sub(r"a\[([0-3])\]", lambda match: items[int(match.group(1))], "Items: a[0], a[1], something,
a[2]")
# Out: 'Items: zero, one, something, two'

Section 75.6: Find All Non-Overlapping Matches
re.findall(r"[0-9]{2,3}", "some 1 text 12 is 945 here 4445588899")
# Out: ['12', '945', '444', '558', '889']

Note that the r before "[0-9]{2,3}" tells python to interpret the string as-is; as a "raw" string.

You could also use re.finditer() which works in the same way as re.findall() but returns an iterator with
SRE_Match objects instead of a list of strings:

results = re.finditer(r"([0-9]{2,3})", "some 1 text 12 is 945 here 4445588899")
print(results)
# Out: <callable-iterator object at 0x105245890>
for result in results:
     print(result.group(0))
''' Out:
12
945
444
558

https://docs.python.org/2/library/re.html#re.sub
https://docs.python.org/2/library/re.html#re.sub
https://docs.python.org/2/library/re.html#re.sub
https://docs.python.org/2/library/re.html#re.sub
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 392

889
'''

Section 75.7: Checking for allowed characters
If you want to check that a string contains only a certain set of characters, in this case a-z, A-Z and 0-9, you can do
so like this,

import re

def is_allowed(string):
    characherRegex = re.compile(r'[^a-zA-Z0-9.]')
    string = characherRegex.search(string)
    return not bool(string)
   
print (is_allowed("abyzABYZ0099"))
# Out: 'True'

print (is_allowed("#*@#$%^"))
# Out: 'False'

You can also adapt the expression line from [^a-zA-Z0-9.] to [^a-z0-9.], to disallow uppercase letters for
example.

Partial credit: http://stackoverflow.com/a/1325265/2697955

Section 75.8: Splitting a string using regular expressions
You can also use regular expressions to split a string. For example,

import re
data = re.split(r'\s+', 'James 94 Samantha 417 Scarlett 74')
print( data )
# Output: ['James', '94', 'Samantha', '417', 'Scarlett', '74']

Section 75.9: Grouping
Grouping is done with parentheses. Calling group() returns a string formed of the matching parenthesized
subgroups.

match.group() # Group without argument returns the entire match found
# Out: '123'
match.group(0) # Specifying 0 gives the same result as specifying no argument
# Out: '123'

Arguments can also be provided to group() to fetch a particular subgroup.

From the docs:

If there is a single argument, the result is a single string; if there are multiple arguments, the result is a
tuple with one item per argument.

Calling groups() on the other hand, returns a list of tuples containing the subgroups.

http://stackoverflow.com/a/1325265/2697955
https://docs.python.org/2/library/re.html#re.MatchObject.group
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 393

sentence = "This is a phone number 672-123-456-9910"
pattern = r".*(phone).*?([\d-]+)"

match = re.match(pattern, sentence)

match.groups()   # The entire match as a list of tuples of the paranthesized subgroups
# Out: ('phone', '672-123-456-9910')

m.group()        # The entire match as a string
# Out: 'This is a phone number 672-123-456-9910'

m.group(0)       # The entire match as a string
# Out: 'This is a phone number 672-123-456-9910'

m.group(1)       # The first parenthesized subgroup.
# Out: 'phone'

m.group(2)       # The second parenthesized subgroup.
# Out: '672-123-456-9910'

m.group(1, 2)    # Multiple arguments give us a tuple.
# Out: ('phone', '672-123-456-9910')

Named groups
match = re.search(r'My name is (?P<name>[A-Za-z ]+)', 'My name is John Smith')
match.group('name')
# Out: 'John Smith'

match.group(1)
# Out: 'John Smith'

Creates a capture group that can be referenced by name as well as by index.

Non-capturing groups

Using (?:) creates a group, but the group isn't captured. This means you can use it as a group, but it won't pollute
your "group space".

re.match(r'(\d+)(\+(\d+))?', '11+22').groups()
# Out: ('11', '+22', '22')

re.match(r'(\d+)(?:\+(\d+))?', '11+22').groups()
# Out: ('11', '22')

This example matches 11+22 or 11, but not 11+. This is since the + sign and the second term are grouped. On the
other hand, the + sign isn't captured.

Section 75.10: Escaping Special Characters
Special characters (like the character class brackets [ and ] below) are not matched literally:

match = re.search(r'[b]', 'a[b]c')
match.group()
# Out: 'b'

By escaping the special characters, they can be matched literally:

match = re.search(r'\[b\]', 'a[b]c')
match.group()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 394

# Out: '[b]'

The re.escape() function can be used to do this for you:

re.escape('a[b]c')
# Out: 'a\\[b\\]c'
match = re.search(re.escape('a[b]c'), 'a[b]c')
match.group()
# Out: 'a[b]c'

The re.escape() function escapes all special characters, so it is useful if you are composing a regular expression
based on user input:

username = 'A.C.'  # suppose this came from the user
re.findall(r'Hi {}!'.format(username), 'Hi A.C.! Hi ABCD!')
# Out: ['Hi A.C.!', 'Hi ABCD!']
re.findall(r'Hi {}!'.format(re.escape(username)), 'Hi A.C.! Hi ABCD!')
# Out: ['Hi A.C.!']

Section 75.11: Match an expression only in specific locations
Often you want to match an expression only in specific places (leaving them untouched in others, that is). Consider
the following sentence:

An apple a day keeps the doctor away (I eat an apple everyday).

Here the "apple" occurs twice which can be solved with so called backtracking control verbs which are supported by
the newer regex module. The idea is:

forget_this | or this | and this as well | (but keep this)

With our apple example, this would be:

import regex as re
string = "An apple a day keeps the doctor away (I eat an apple everyday)."
rx = re.compile(r'''
    \([^()]*\) (*SKIP)(*FAIL)  # match anything in parentheses and "throw it away"
    |                          # or
    apple                      # match an apple
    ''', re.VERBOSE)
apples = rx.findall(string)
print(apples)
# only one

This matches "apple" only when it can be found outside of the parentheses.

Here's how it works:

While looking from left to right, the regex engine consumes everything to the left, the (*SKIP) acts as an
"always-true-assertion". Afterwards, it correctly fails on (*FAIL) and backtracks.
Now it gets to the point of (*SKIP) from right to left (aka while backtracking) where it is forbidden to go any
further to the left. Instead, the engine is told to throw away anything to the left and jump to the point where
the (*SKIP) was invoked.

https://pypi.python.org/pypi/regex
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 395

Section 75.12: Iterating over matches using `re.finditer`
You can use re.finditer to iterate over all matches in a string. This gives you (in comparison to re.findall extra
information, such as information about the match location in the string (indexes):

import re
text = 'You can try to find an ant in this string'
pattern = 'an?\w' # find 'an' either with or without a following word character

for match in re.finditer(pattern, text):
    # Start index of match (integer)
    sStart = match.start()

    # Final index of match (integer)
    sEnd = match.end()

    # Complete match (string)
    sGroup = match.group()

    # Print match
    print('Match "{}" found at: [{},{}]'.format(sGroup, sStart,sEnd))

Result:

Match "an" found at: [5,7]
Match "an" found at: [20,22]
Match "ant" found at: [23,26]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 396

Chapter 76: Copying data
Section 76.1: Copy a dictionary
A dictionary object has the method copy. It performs a shallow copy of the dictionary.

>>> d1 = {1:[]}
>>> d2 = d1.copy()
>>> d1 is d2
False
>>> d1[1] is d2[1]
True

Section 76.2: Performing a shallow copy
A shallow copy is a copy of a collection without performing a copy of its elements.

>>> import copy
>>> c = [[1,2]]
>>> d = copy.copy(c)
>>> c is d
False
>>> c[0] is d[0]
True

Section 76.3: Performing a deep copy
If you have nested lists, it is desirable to clone the nested lists as well. This action is called deep copy.

>>> import copy
>>> c = [[1,2]]
>>> d = copy.deepcopy(c)
>>> c is d
False
>>> c[0] is d[0]
False

Section 76.4: Performing a shallow copy of a list
You can create shallow copies of lists using slices.

>>> l1 = [1,2,3]
>>> l2 = l1[:]     # Perform the shallow copy.
>>> l2
[1,2,3]
>>> l1 is l2
False

Section 76.5: Copy a set
Sets also have a copymethod. You can use this method to perform a shallow copy.

>>> s1 = {()}
>>> s2 = s1.copy()
>>> s1 is s2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 397

False
>>> s2.add(3)
>>> s1
{[]}
>>> s2
{3,[]}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 398

Chapter 77: Context Managers (“with”
Statement)
While Python's context managers are widely used, few understand the purpose behind their use. These statements,
commonly used with reading and writing files, assist the application in conserving system memory and improve
resource management by ensuring specific resources are only in use for certain processes. This topic explains and
demonstrates the use of Python's context managers.

Section 77.1: Introduction to context managers and the with
statement
A context manager is an object that is notified when a context (a block of code) starts and ends. You commonly use
one with the with statement. It takes care of the notifying.

For example, file objects are context managers. When a context ends, the file object is closed automatically:

open_file = open(filename)
with open_file:
    file_contents = open_file.read()

# the open_file object has automatically been closed.

The above example is usually simplified by using the as keyword:

with open(filename) as open_file:
    file_contents = open_file.read()

# the open_file object has automatically been closed.

Anything that ends execution of the block causes the context manager's exit method to be called. This includes
exceptions, and can be useful when an error causes you to prematurely exit from an open file or connection.
Exiting a script without properly closing files/connections is a bad idea, that may cause data loss or other problems.
By using a context manager you can ensure that precautions are always taken to prevent damage or loss in this
way. This feature was added in Python 2.5.

Section 77.2: Writing your own context manager
A context manager is any object that implements two magic methods __enter__() and __exit__() (although it can
implement other methods as well):

class AContextManager():

    def __enter__(self):
        print("Entered")
        # optionally return an object
        return "A-instance"

    def __exit__(self, exc_type, exc_value, traceback):
        print("Exited" + (" (with an exception)" if exc_type else ""))
        # return True if you want to suppress the exception

If the context exits with an exception, the information about that exception will be passed as a triple exc_type,
exc_value, traceback (these are the same variables as returned by the sys.exc_info() function). If the context

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 399

exits normally, all three of these arguments will be None.

If an exception occurs and is passed to the __exit__ method, the method can return True in order to suppress the
exception, or the exception will be re-raised at the end of the __exit__ function.

with AContextManager() as a:
    print("a is %r" % a)
# Entered
# a is 'A-instance'
# Exited

with AContextManager() as a:
    print("a is %d" % a)
# Entered
# Exited (with an exception)
# Traceback (most recent call last):
#   File "<stdin>", line 2, in <module>
# TypeError: %d format: a number is required, not str

Note that in the second example even though an exception occurs in the middle of the body of the with-statement,
the __exit__ handler still gets executed, before the exception propagates to the outer scope.

If you only need an __exit__ method, you can return the instance of the context manager:

class MyContextManager:
    def __enter__(self):
        return self

    def __exit__(self):
        print('something')

Section 77.3: Writing your own contextmanager using
generator syntax
It is also possible to write a context manager using generator syntax thanks to the contextlib.contextmanager
decorator:

import contextlib

@contextlib.contextmanager
def context_manager(num):
    print('Enter')
    yield num + 1
    print('Exit')

with context_manager(2) as cm:
    # the following instructions are run when the 'yield' point of the context
    # manager is reached.
    # 'cm' will have the value that was yielded
    print('Right in the middle with cm = {}'.format(cm))

produces:

Enter
Right in the middle with cm = 3
Exit

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 400

The decorator simplifies the task of writing a context manager by converting a generator into one. Everything
before the yield expression becomes the __enter__ method, the value yielded becomes the value returned by the
generator (which can be bound to a variable in the with statement), and everything after the yield expression
becomes the __exit__ method.

If an exception needs to be handled by the context manager, a try..except..finally-block can be written in the
generator and any exception raised in the with-block will be handled by this exception block.

@contextlib.contextmanager
def error_handling_context_manager(num):
    print("Enter")
    try:
        yield num + 1
    except ZeroDivisionError:
        print("Caught error")
    finally:
        print("Cleaning up")
    print("Exit")

with error_handling_context_manager(-1) as cm:
    print("Dividing by cm = {}".format(cm))
    print(2 / cm)

This produces:

Enter
Dividing by cm = 0
Caught error
Cleaning up
Exit

Section 77.4: Multiple context managers
You can open several content managers at the same time:

with open(input_path) as input_file, open(output_path, 'w') as output_file:

    # do something with both files.
   
    # e.g. copy the contents of input_file into output_file
    for line in input_file:
        output_file.write(line + '\n')

It has the same effect as nesting context managers:

with open(input_path) as input_file:
    with open(output_path, 'w') as output_file:
        for line in input_file:
            output_file.write(line + '\n')

Section 77.5: Assigning to a target
Many context managers return an object when entered. You can assign that object to a new name in the with
statement.

For example, using a database connection in a with statement could give you a cursor object:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 401

with database_connection as cursor:
    cursor.execute(sql_query)

File objects return themselves, this makes it possible to both open the file object and use it as a context manager in
one expression:

with open(filename) as open_file:
    file_contents = open_file.read()

Section 77.6: Manage Resources
class File():
    def __init__(self, filename, mode):
        self.filename = filename
        self.mode = mode

    def __enter__(self):
        self.open_file = open(self.filename, self.mode)
        return self.open_file

    def __exit__(self, *args):
        self.open_file.close()

__init__() method sets up the object, in this case setting up the file name and mode to open file. __enter__()
opens and returns the file and __exit__() just closes it.

Using these magic methods (__enter__, __exit__) allows you to implement objects which can be used easily with
the with statement.

Use File class:

for _ in range(10000):
    with File('foo.txt', 'w') as f:
        f.write('foo')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 402

Chapter 78: The __name__ special
variable
The __name__ special variable is used to check whether a file has been imported as a module or not, and to identify
a function, class, module object by their __name__ attribute.

Section 78.1: __name__ == '__main__'
The special variable __name__ is not set by the user. It is mostly used to check whether or not the module is being
run by itself or run because an import was performed. To avoid your module to run certain parts of its code when it
gets imported, check if __name__ == '__main__'.

Let module_1.py be just one line long:

import module2.py

And let's see what happens, depending on module2.py

Situation 1

module2.py

print('hello')

Running module1.py will print hello
Running module2.py will print hello

Situation 2

module2.py

if __name__ == '__main__':
    print('hello')

Running module1.py will print nothing
Running module2.py will print hello

Section 78.2: Use in logging
When configuring the built-in logging functionality, a common pattern is to create a logger with the __name__ of the
current module:

logger = logging.getLogger(__name__)

This means that the fully-qualified name of the module will appear in the logs, making it easier to see where
messages have come from.

Section 78.3: function_class_or_module.__name__
The special attribute __name__ of a function, class or module is a string containing its name.

import os

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 403

class C:
    pass

def f(x):
    x += 2
    return x

print(f)
# <function f at 0x029976B0>
print(f.__name__)
# f

print(C)
# <class '__main__.C'>
print(C.__name__)
# C

print(os)
# <module 'os' from '/spam/eggs/'>
print(os.__name__)
# os

The __name__ attribute is not, however, the name of the variable which references the class, method or function,
rather it is the name given to it when defined.

def f():
    pass

print(f.__name__)
# f - as expected

g = f
print(g.__name__)
# f - even though the variable is named g, the function is still named f

This can be used, among others, for debugging:

def enter_exit_info(func):
    def wrapper(*arg, **kw):
        print '-- entering', func.__name__
        res = func(*arg, **kw)
        print '-- exiting', func.__name__
        return res
    return wrapper

@enter_exit_info
def f(x):
    print 'In:', x
    res = x + 2
    print 'Out:', res
    return res

a = f(2)

# Outputs:
#     -- entering f
#     In: 2
#     Out: 4
#     -- exiting f

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 404

Chapter 79: Checking Path Existence and
Permissions
Parameter Details
os.F_OK Value to pass as the mode parameter of access() to test the existence of path.

os.R_OK Value to include in the mode parameter of access() to test the readability of path.

os.W_OK Value to include in the mode parameter of access() to test the writability of path.

os.X_OK Value to include in the mode parameter of access() to determine if path can be executed.

Section 79.1: Perform checks using os.access
os.access is much better solution to check whether directory exists and it's accessible for reading and writing.

import os
path = "/home/myFiles/directory1"

## Check if path exists
os.access(path, os.F_OK)

## Check if path is Readable
os.access(path, os.R_OK)

## Check if path is Writable
os.access(path, os.W_OK)

## Check if path is Executable
os.access(path, os.E_OK)

also it's possible to perform all checks together

os.access(path, os.F_OK & os.R_OK & os.W_OK & os.E_OK)

All the above returns True if access is allowed and False if not allowed. These are available on unix and windows.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 406

Chapter 80: Creating Python packages
Section 80.1: Introduction
Every package requires a setup.py file which describes the package.

Consider the following directory structure for a simple package:

+-- package_name
|       |
|       +-- __init__.py
|      
+-- setup.py

The __init__.py contains only the line def foo(): return 100.

The following setup.py will define the package:

from setuptools import setup

setup(
    name='package_name',                    # package name
    version='0.1',                          # version
    description='Package Description',      # short description
    url='http://example.com',               # package URL
    install_requires=[],                    # list of packages this package depends
                                            # on.
    packages=['package_name'],              # List of module names that installing
                                            # this package will provide.
)

virtualenv is great to test package installs without modifying your other Python environments:

$ virtualenv .virtualenv
...
$ source .virtualenv/bin/activate
$ python setup.py install
running install
...
Installed .../package_name-0.1-....egg
...
$ python
>>> import package_name
>>> package_name.foo()
100

Section 80.2: Uploading to PyPI
Once your setup.py is fully functional (see Introduction), it is very easy to upload your package to PyPI.

Setup a .pypirc File

This file stores logins and passwords to authenticate your accounts. It is typically stored in your home directory.

# .pypirc file

https://docs.python.org/3/distutils/setupscript.html#writing-the-setup-script
https://docs.python.org/3/distutils/setupscript.html#writing-the-setup-script
https://virtualenv.pypa.io/en/stable/
https://pypi.python.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 407

[distutils]
index-servers =
  pypi
  pypitest

[pypi]
repository=https://pypi.python.org/pypi
username=your_username
password=your_password

[pypitest]
repository=https://testpypi.python.org/pypi
username=your_username
password=your_password

It is safer to use twine for uploading packages, so make sure that is installed.

$ pip install twine

Register and Upload to testpypi (optional)

Note: PyPI does not allow overwriting uploaded packages, so it is prudent to first test your deployment on a
dedicated test server, e.g. testpypi. This option will be discussed. Consider a versioning scheme for your package
prior to uploading such as calendar versioning or semantic versioning.

Either log in, or create a new account at testpypi. Registration is only required the first time, although registering
more than once is not harmful.

$ python setup.py register -r pypitest

While in the root directory of your package:

$ twine upload dist/* -r pypitest

Your package should now be accessible through your account.

Testing

Make a test virtual environment. Try to pip install your package from either testpypi or PyPI.

# Using virtualenv
$ mkdir testenv
$ cd testenv
$ virtualenv .virtualenv
...
$ source .virtualenv/bin/activate
# Test from testpypi
(.virtualenv)  pip install --verbose --extra-index-url https://testpypi.python.org/pypi
package_name
...
# Or test from PyPI
(.virtualenv) $ pip install package_name
...

(.virtualenv) $ python
Python 3.5.1 (default, Jan 27 2016, 19:16:39)
[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import package_name

https://packaging.python.org/distributing/#upload-your-distributions
https://bitbucket.org/pypa/pypi/issues/206/cannot-overwrite-package-files
https://caremad.io/2016/02/versioning-software/
http://sedimental.org/designing_a_version.html#calendar_versioning
http://semver.org/
https://testpypi.python.org/pypi
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 408

>>> package_name.foo()
100

If successful, your package is least importable. You might consider testing your API as well before your final upload
to PyPI. If you package failed during testing, do not worry. You can still fix it, re-upload to testpypi and test again.

Register and Upload to PyPI

Make sure twine is installed:

$ pip install twine

Either log in, or create a new account at PyPI.

$ python setup.py register -r pypi
$ twine upload dist/*

That's it! Your package is now live.

If you discover a bug, simply upload a new version of your package.

Documentation

Don't forget to include at least some kind of documentation for your package. PyPi takes as the default formatting
language reStructuredText.

Readme

If your package doesn't have a big documentation, include what can help other users in README.rst file. When the
file is ready, another one is needed to tell PyPi to show it.

Create setup.cfg file and put these two lines in it:

[metadata]
description-file = README.rst

Note that if you try to put Markdown file into your package, PyPi will read it as a pure text file without any
formatting.

Licensing

It's often more than welcome to put a LICENSE.txt file in your package with one of the OpenSource licenses to tell
users if they can use your package for example in commercial projects or if your code is usable with their license.

In more readable way some licenses are explained at TL;DR.

Section 80.3: Making package executable
If your package isn't only a library, but has a piece of code that can be used either as a showcase or a standalone
application when your package is installed, put that piece of code into __main__.py file.

Put the __main__.py in the package_name folder. This way you will be able to run it directly from console:

python -m package_name

https://pypi.python.org/pypi
https://pypi.python.org/pypi/package_name
https://opensource.org/licenses
https://tldrlegal.com/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 409

If there's no __main__.py file available, the package won't run with this command and this error will be printed:

python: No module named package_name.__main__; 'package_name' is a package and cannot be directly
executed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 410

Chapter 81: Usage of "pip" module: PyPI
Package Manager
Sometimes you may need to use pip package manager inside python eg. when some imports may raise
ImportError and you want to handle the exception. If you unpack on Windows
Python_root/Scripts/pip.exeinside is stored __main__.py file, where main class from pip package is imported.
This means pip package is used whenever you use pip executable. For usage of pip as executable see: pip: PyPI
Package Manager

Section 81.1: Example use of commands
import pip

command = 'install'
parameter = 'selenium'
second_param = 'numpy' # You can give as many package names as needed
switch = '--upgrade'

pip.main([command, parameter, second_param, switch])

Only needed parameters are obligatory, so both pip.main(['freeze']) and pip.main(['freeze', '', '']) are
acceptable.

Batch install

It is possible to pass many package names in one call, but if one install/upgrade fails, whole installation process
stops and ends with status '1'.

import pip

installed = pip.get_installed_distributions()
list = []
for i in installed:
    list.append(i.key)

pip.main(['install']+list+['--upgrade'])

If you don't want to stop when some installs fail, call installation in loop.

for i in installed:
        pip.main(['install']+i.key+['--upgrade'])

Section 81.2: Handling ImportError Exception
When you use python file as module there is no need always check if package is installed but it is still useful for
scripts.

if __name__ == '__main__':
    try:
        import requests
    except ImportError:
        print("To use this module you need 'requests' module")
        t = input('Install requests? y/n: ')
        if t == 'y':

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 411

            import pip
            pip.main(['install', 'requests'])
            import requests
            import os
            import sys
            pass
        else:
            import os
            import sys
            print('Some functionality can be unavailable.')
else:
    import requests
    import os
    import sys

Section 81.3: Force install
Many packages for example on version 3.4 would run on 3.6 just fine, but if there are no distributions for specific
platform, they can't be installed, but there is workaround. In .whl files (known as wheels) naming convention decide
whether you can install package on specified platform. Eg.
scikit_learn‑0.18.1‑cp36‑cp36m‑win_amd64.whl[package_name]-[version]-[python interpreter]-[python-
interpreter]-[Operating System].whl. If name of wheel file is changed, so platform does match, pip tries to install
package even if platform or python version does not match. Removing platform or interpreter from name will rise
an error in newest version of pip module kjhfkjdf.whl is not a valid wheel filename..

Alternatively .whl file can be unpacked using an archiver as 7-zip. - It usually contains distribution meta folder and
folder with source files. These source files can be simply unpacked to site-packages directory unless this wheel
contain installation script, if so, it has to be run first.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 412

Chapter 82: pip: PyPI Package Manager
pip is the most widely-used package manager for the Python Package Index, installed by default with recent
versions of Python.

Section 82.1: Install Packages
To install the latest version of a package named SomePackage:

$ pip install SomePackage

To install a specific version of a package:

$ pip install SomePackage==1.0.4

To specify a minimum version to install for a package:

$ pip install SomePackage>=1.0.4

If commands shows permission denied error on Linux/Unix then use sudo with the commands

Install from requirements files
$ pip install -r requirements.txt

Each line of the requirements file indicates something to be installed, and like arguments to pip install, Details on
the format of the files are here: Requirements File Format.

After install the package you can check it using freeze command:

$ pip freeze

Section 82.2: To list all packages installed using `pip`
To list installed packages:

$ pip list
# example output
docutils (0.9.1)
Jinja2 (2.6)
Pygments (1.5)
Sphinx (1.1.2)

To list outdated packages, and show the latest version available:

$ pip list --outdated
# example output
docutils (Current: 0.9.1 Latest: 0.10)
Sphinx (Current: 1.1.2 Latest: 1.1.3)

Section 82.3: Upgrade Packages
Running

https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 413

$ pip install --upgrade SomePackage

will upgrade package SomePackage and all its dependencies. Also, pip automatically removes older version of the
package before upgrade.

To upgrade pip itself, do

$ pip install --upgrade pip

on Unix or

$ python -m pip install --upgrade pip

on Windows machines.

Section 82.4: Uninstall Packages
To uninstall a package:

$ pip uninstall SomePackage

Section 82.5: Updating all outdated packages on Linux
pip doesn't current contain a flag to allow a user to update all outdated packages in one shot. However, this can be
accomplished by piping commands together in a Linux environment:

pip list --outdated --local | grep -v '^\-e' | cut -d = -f 1  | xargs -n1 pip install -U

This command takes all packages in the local virtualenv and checks if they are outdated. From that list, it gets the
package name and then pipes that to a pip install -U command. At the end of this process, all local packages
should be updated.

Section 82.6: Updating all outdated packages on Windows
pip doesn't current contain a flag to allow a user to update all outdated packages in one shot. However, this can be
accomplished by piping commands together in a Windows environment:

for /F "delims= " %i in ('pip list --outdated --local') do pip install -U %i

This command takes all packages in the local virtualenv and checks if they are outdated. From that list, it gets the
package name and then pipes that to a pip install -U command. At the end of this process, all local packages
should be updated.

Section 82.7: Create a requirements.txt file of all packages on
the system
pip assists in creating requirements.txt files by providing the freeze option.

pip freeze > requirements.txt

This will save a list of all packages and their version installed on the system to a file named requirements.txt in the
current folder.

https://pip.pypa.io/en/stable/reference/pip_freeze/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 414

Section 82.8: Using a certain Python version with pip
If you have both Python 3 and Python 2 installed, you can specify which version of Python you would like pip to use.
This is useful when packages only support Python 2 or 3 or when you wish to test with both.

If you want to install packages for Python 2, run either:

pip install [package]

or:

pip2 install [package]

If you would like to install packages for Python 3, do:

pip3 install [package]

You can also invoke installation of a package to a specific python installation with:

\path\to\that\python.exe -m pip install some_package # on Windows OR
/usr/bin/python25 -m pip install some_package # on OS-X/Linux

On OS-X/Linux/Unix platforms it is important to be aware of the distinction between the system version of python,
(which upgrading make render your system inoperable), and the user version(s) of python. You may, depending on
which you are trying to upgrade, need to prefix these commands with sudo and input a password.

Likewise on Windows some python installations, especially those that are a part of another package, can end up
installed in system directories - those you will have to upgrade from a command window running in Admin mode -
if you find that it looks like you need to do this it is a very good idea to check which python installation you are
trying to upgrade with a command such as python -c"import sys;print(sys.path);" or py -3.5 -c"import
sys;print(sys.path);" you can also check which pip you are trying to run with pip --version

On Windows, if you have both python 2 and python 3 installed, and on your path and your python 3 is greater than
3.4 then you will probably also have the python launcher py on your system path. You can then do tricks like:

py -3 -m pip install -U some_package # Install/Upgrade some_package to the latest python 3
py -3.3 -m pip install -U some_package # Install/Upgrade some_package to python 3.3 if present
py -2 -m pip install -U some_package # Install/Upgrade some_package to the latest python 2 - 64 bit
if present
py -2.7-32 -m pip install -U some_package # Install/Upgrade some_package to python 2.7 - 32 bit if
present

If you are running & maintaining multiple versions of python I would strongly recommend reading up about the
python virtualenv or venv virtual environments which allow you to isolate both the version of python and which
packages are present.

Section 82.9: Create a requirements.txt file of packages only
in the current virtualenv
pip assists in creating requirements.txt files by providing the freeze option.

pip freeze --local > requirements.txt

The --local parameter will only output a list of packages and versions that are installed locally to a virtualenv.

https://virtualenv.pypa.io/en/stable/
https://pip.pypa.io/en/stable/reference/pip_freeze/#cmdoption-l
https://pip.pypa.io/en/stable/reference/pip_freeze/#cmdoption-l
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 415

Global packages will not be listed.

Section 82.10: Installing packages not yet on pip as wheels
Many, pure python, packages are not yet available on the Python Package Index as wheels but still install fine.
However, some packages on Windows give the dreaded vcvarsall.bat not found error.

The problem is that the package that you are trying to install contains a C or C++ extension and is not currently
available as a pre-built wheel from the python package index, pypi, and on windows you do not have the tool chain
needed to build such items.

The simplest answer is to go to Christoph Gohlke's excellent site and locate the appropriate version of the libraries
that you need. By appropriate in the package name a -cpNN- has to match your version of python, i.e. if you are
using windows 32 bit python even on win64 the name must include -win32- and if using the 64 bit python it must
include -win_amd64- and then the python version must match, i.e. for Python 34 the filename must include -cp34-,
etc. this is basically the magic that pip does for you on the pypi site.

Alternatively, you need to get the appropriate windows development kit for the version of python that you are
using, the headers for any library that the package you are trying to build interfaces to, possibly the python headers
for the version of python, etc.

Python 2.7 used Visual Studio 2008, Python 3.3 and 3.4 used Visual Studio 2010, and Python 3.5+ uses Visual Studio
2015.

Install “Visual C++ Compiler Package for Python 2.7”, which is available from Microsoft’s website or
Install “Windows SDK for Windows 7 and .NET Framework 4” (v7.1), which is available from Microsoft’s
website or
Install Visual Studio 2015 Community Edition, (or any later version, when these are released), ensuring you
select the options to install C & C++ support no longer the default -I am told that this can take up to 8 hours
to download and install so make sure that those options are set on the first try.

Then you may need to locate the header files, at the matching revision for any libraries that your desired package
links to and download those to an appropriate locations.

Finally you can let pip do your build - of course if the package has dependencies that you don't yet have you may
also need to find the header files for them as well.

Alternatives: It is also worth looking out, both on pypi or Christop's site, for any slightly earlier version of the
package that you are looking for that is either pure python or pre-built for your platform and python version and
possibly using those, if found, until your package does become available. Likewise if you are using the very latest
version of python you may find that it takes the package maintainers a little time to catch up so for projects that
really need a specific package you may have to use a slightly older python for the moment. You can also check the
packages source site to see if there is a forked version that is available pre-built or as pure python and searching for
alternative packages that provide the functionality that you require but are available - one example that springs to
mind is the Pillow, actively maintained, drop in replacement for PIL currently not updated in 6 years and not available
for python 3.

Afterword, I would encourage anybody who is having this problem to go to the bug tracker for the package and
add to, or raise if there isn't one already, a ticket politely requesting that the package maintainers provide a wheel
on pypi for your specific combination of platform and python, if this is done then normally things will get better
with time, some package maintainers don't realise that they have missed a given combination that people may be
using.

http://www.lfd.uci.edu/%7Egohlke/pythonlibs/
https://www.microsoft.com/en-gb/download/details.aspx?id=44266
https://www.microsoft.com/en-gb/download/details.aspx?id=8279
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://pypi.python.org/pypi/Pillow/3.4.2
https://pypi.python.org/pypi/PIL/1.1.6
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 416

Note on Installing Pre-Releases

Pip follows the rules of Semantic Versioning and by default prefers released packages over pre-releases. So if a
given package has been released as V0.98 and there is also a release candidate V1.0-rc1 the default behaviour of
pip install will be to install V0.98 - if you wish to install the release candidate, you are advised to test in a virtual
environment first, you can enable do so with --pip install --pre package-name or --pip install --pre --
upgrade package-name. In many cases pre-releases or release candidates may not have wheels built for all platform
& version combinations so you are more likely to encounter the issues above.

Note on Installing Development Versions

You can also use pip to install development versions of packages from github and other locations, since such code
is in flux it is very unlikely to have wheels built for it, so any impure packages will require the presence of the build
tools, and they may be broken at any time so the user is strongly encouraged to only install such packages in a
virtual environment.

Three options exist for such installations:

Download compressed snapshot, most online version control systems have the option to download a1.
compressed snapshot of the code. This can be downloaded manually and then installed with pip install
path/to/downloaded/file note that for most compression formats pip will handle unpacking to a cache area,
etc.
Let pip handle the download & install for you with: pip install URL/of/package/repository - you may also2.
need to use the --trusted-host, --client-cert and/or --proxy flags for this to work correctly, especially in
a corporate environment. e.g:

 > py -3.5-32 -m venv demo-pip
> demo-pip\Scripts\activate.bat
> python -m pip install -U pip
Collecting pip
Using cached pip-9.0.1-py2.py3-none-any.whl
Installing collected packages: pip
Found existing installation: pip 8.1.1
Uninstalling pip-8.1.1:
Successfully uninstalled pip-8.1.1
Successfully installed pip-9.0.1
> pip install git+https://github.com/sphinx-doc/sphinx/
Collecting git+https://github.com/sphinx-doc/sphinx/
Cloning https://github.com/sphinx-doc/sphinx/ to c:\users\steve-
~1\appdata\local\temp\pip-04yn9hpp-build
Collecting six>=1.5 (from Sphinx==1.7.dev20170506)
Using cached six-1.10.0-py2.py3-none-any.whl
Collecting Jinja2>=2.3 (from Sphinx==1.7.dev20170506)
Using cached Jinja2-2.9.6-py2.py3-none-any.whl
Collecting Pygments>=2.0 (from Sphinx==1.7.dev20170506)
Using cached Pygments-2.2.0-py2.py3-none-any.whl
Collecting docutils>=0.11 (from Sphinx==1.7.dev20170506)
Using cached docutils-0.13.1-py3-none-any.whl
Collecting snowballstemmer>=1.1 (from Sphinx==1.7.dev20170506)
Using cached snowballstemmer-1.2.1-py2.py3-none-any.whl
Collecting babel!=2.0,>=1.3 (from Sphinx==1.7.dev20170506)
Using cached Babel-2.4.0-py2.py3-none-any.whl
Collecting alabaster<0.8,>=0.7 (from Sphinx==1.7.dev20170506)
Using cached alabaster-0.7.10-py2.py3-none-any.whl
Collecting imagesize (from Sphinx==1.7.dev20170506)
Using cached imagesize-0.7.1-py2.py3-none-any.whl
Collecting requests>=2.0.0 (from Sphinx==1.7.dev20170506)
Using cached requests-2.13.0-py2.py3-none-any.whl

http://semver.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 417

Collecting typing (from Sphinx==1.7.dev20170506)
Using cached typing-3.6.1.tar.gz
Requirement already satisfied: setuptools in f:\toolbuild\temp\demo-pip\lib\site-packages (from
Sphinx==1.7.dev20170506)
Collecting sphinxcontrib-websupport (from Sphinx==1.7.dev20170506)
Downloading sphinxcontrib_websupport-1.0.0-py2.py3-none-any.whl
Collecting colorama>=0.3.5 (from Sphinx==1.7.dev20170506)
Using cached colorama-0.3.9-py2.py3-none-any.whl
Collecting MarkupSafe>=0.23 (from Jinja2>=2.3->Sphinx==1.7.dev20170506)
Using cached MarkupSafe-1.0.tar.gz
Collecting pytz>=0a (from babel!=2.0,>=1.3->Sphinx==1.7.dev20170506)
Using cached pytz-2017.2-py2.py3-none-any.whl
Collecting sqlalchemy>=0.9 (from sphinxcontrib-websupport->Sphinx==1.7.dev20170506)
Downloading SQLAlchemy-1.1.9.tar.gz (5.2MB)
100% |################################| 5.2MB 220kB/s
Collecting whoosh>=2.0 (from sphinxcontrib-websupport->Sphinx==1.7.dev20170506)
Downloading Whoosh-2.7.4-py2.py3-none-any.whl (468kB)
100% |################################| 471kB 1.1MB/s
Installing collected packages: six, MarkupSafe, Jinja2, Pygments, docutils, snowballstemmer, pytz,
babel, alabaster, imagesize, requests, typing, sqlalchemy, whoosh, sphinxcontrib-websupport,
colorama, Sphinx
Running setup.py install for MarkupSafe ... done
Running setup.py install for typing ... done
Running setup.py install for sqlalchemy ... done
Running setup.py install for Sphinx ... done
Successfully installed Jinja2-2.9.6 MarkupSafe-1.0 Pygments-2.2.0 Sphinx-1.7.dev20170506
alabaster-0.7.10 babel-2.4.0 colorama-0.3.9 docutils-0.13.1 imagesize-0.7.1 pytz-2017.2
requests-2.13.0 six-1.10.0 snowballstemmer-1.2.1 sphinxcontrib-websupport-1.0.0 sqlalchemy-1.1.9
typing-3.6.1 whoosh-2.7.4

Note the git+ prefix to the URL.

Clone the repository using git, mercurial or other acceptable tool, preferably a DVCS tool, and use pip3.
install path/to/cloned/repo - this will both process any requires.text file and perform the build and setup
steps, you can manually change directory to your cloned repository and run pip install -r requires.txt and
then python setup.py install to get the same effect. The big advantages of this approach is that while the
initial clone operation may take longer than the snapshot download you can update to the latest with, in the
case of git: git pull origin master and if the current version contains errors you can use pip uninstall
package-name then use git checkout commands to move back through the repository history to earlier
version(s) and re-try.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 418

Chapter 83: Parsing Command Line
arguments
Most command line tools rely on arguments passed to the program upon its execution. Instead of prompting for
input, these programs expect data or specific flags (which become booleans) to be set. This allows both the user
and other programs to run the Python file passing it data as it starts. This section explains and demonstrates the
implementation and usage of command line arguments in Python.

Section 83.1: Hello world in argparse
The following program says hello to the user. It takes one positional argument, the name of the user, and can also
be told the greeting.

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('name',
    help='name of user'
)

parser.add_argument('-g', '--greeting',
    default='Hello',
    help='optional alternate greeting'
)

args = parser.parse_args()

print("{greeting}, {name}!".format(
       greeting=args.greeting,
       name=args.name)
)

$ python hello.py --help
usage: hello.py [-h] [-g GREETING] name

positional arguments:
  name                  name of user

optional arguments:
  -h, --help            show this help message and exit
  -g GREETING, --greeting GREETING
                        optional alternate greeting

$ python hello.py world
Hello, world!
$ python hello.py John -g Howdy
Howdy, John!

For more details please read the argparse documentation.

Section 83.2: Using command line arguments with argv
Whenever a Python script is invoked from the command line, the user may supply additional command line
arguments which will be passed on to the script. These arguments will be available to the programmer from the
system variable sys.argv ("argv" is a traditional name used in most programming languages, and it means
"argument vector").

https://docs.python.org/3/library/argparse.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 419

By convention, the first element in the sys.argv list is the name of the Python script itself, while the rest of the
elements are the tokens passed by the user when invoking the script.

# cli.py
import sys
print(sys.argv)

$ python cli.py
=> ['cli.py']

$ python cli.py fizz
=> ['cli.py', 'fizz']

$ python cli.py fizz buzz
=> ['cli.py', 'fizz', 'buzz']

Here's another example of how to use argv. We first strip off the initial element of sys.argv because it contains the
script's name. Then we combine the rest of the arguments into a single sentence, and finally print that sentence
prepending the name of the currently logged-in user (so that it emulates a chat program).

import getpass
import sys

words = sys.argv[1:]
sentence = " ".join(words)
print("[%s] %s" % (getpass.getuser(), sentence))

The algorithm commonly used when "manually" parsing a number of non-positional arguments is to iterate over
the sys.argv list. One way is to go over the list and pop each element of it:

# reverse and copy sys.argv
argv = reversed(sys.argv)
# extract the first element
arg = argv.pop()
# stop iterating when there's no more args to pop()
while len(argv) > 0:
    if arg in ('-f', '--foo'):
        print('seen foo!')
    elif arg in ('-b', '--bar'):
        print('seen bar!')
    elif arg in ('-a', '--with-arg'):
        arg = arg.pop()
        print('seen value: {}'.format(arg))
    # get the next value
    arg = argv.pop()

Section 83.3: Setting mutually exclusive arguments with
argparse
If you want two or more arguments to be mutually exclusive. You can use the function
argparse.ArgumentParser.add_mutually_exclusive_group(). In the example below, either foo or bar can exist
but not both at the same time.

import argparse

parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 420

group.add_argument("-f", "--foo")
group.add_argument("-b", "--bar")
args = parser.parse_args()
print "foo = ", args.foo
print "bar = ", args.bar

If you try to run the script specifying both --foo and --bar arguments, the script will complain with the below
message.

error: argument -b/--bar: not allowed with argument -f/--foo

Section 83.4: Basic example with docopt
docopt turns command-line argument parsing on its head. Instead of parsing the arguments, you just write the
usage string for your program, and docopt parses the usage string and uses it to extract the command line
arguments.

"""
Usage:
    script_name.py [-a] [-b] <path>

Options:
    -a            Print all the things.
    -b            Get more bees into the path.
"""
from docopt import docopt

if __name__ == "__main__":
    args = docopt(__doc__)
    import pprint; pprint.pprint(args)

Sample runs:

$ python script_name.py
Usage:
    script_name.py [-a] [-b] <path>
$ python script_name.py something
{'-a': False,
 '-b': False,
 '<path>': 'something'}
$ python script_name.py something -a
{'-a': True,
 '-b': False,
 '<path>': 'something'}
$ python script_name.py -b something -a
{'-a': True,
 '-b': True,
 '<path>': 'something'}

Section 83.5: Custom parser error message with argparse
You can create parser error messages according to your script needs. This is through the
argparse.ArgumentParser.error function. The below example shows the script printing a usage and an error
message to stderr when --foo is given but not --bar.

import argparse

http://docopt.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 421

parser = argparse.ArgumentParser()
parser.add_argument("-f", "--foo")
parser.add_argument("-b", "--bar")
args = parser.parse_args()
if args.foo and args.bar is None:
    parser.error("--foo requires --bar. You did not specify bar.")

print "foo =", args.foo
print "bar =", args.bar

Assuming your script name is sample.py, and we run: python sample.py --foo ds_in_fridge

The script will complain with the following:

usage: sample.py [-h] [-f FOO] [-b BAR]
sample.py: error: --foo requires --bar. You did not specify bar.

Section 83.6: Conceptual grouping of arguments with
argparse.add_argument_group()
When you create an argparse ArgumentParser() and run your program with '-h' you get an automated usage
message explaining what arguments you can run your software with. By default, positional arguments and
conditional arguments are separated into two categories, for example, here is a small script (example.py) and the
output when you run python example.py -h.

import argparse

parser = argparse.ArgumentParser(description='Simple example')
parser.add_argument('name', help='Who to greet', default='World')
parser.add_argument('--bar_this')
parser.add_argument('--bar_that')
parser.add_argument('--foo_this')
parser.add_argument('--foo_that')
args = parser.parse_args()

usage: example.py [-h] [--bar_this BAR_THIS] [--bar_that BAR_THAT]
                        [--foo_this FOO_THIS] [--foo_that FOO_THAT]
                        name

Simple example

positional arguments:
  name                 Who to greet

optional arguments:
  -h, --help           show this help message and exit
  --bar_this BAR_THIS
  --bar_that BAR_THAT
  --foo_this FOO_THIS
  --foo_that FOO_THAT

There are some situations where you want to separate your arguments into further conceptual sections to assist
your user. For example, you may wish to have all the input options in one group, and all the output formatting
options in another. The above example can be adjusted to separate the --foo_* args from the --bar_* args like so.

import argparse

parser = argparse.ArgumentParser(description='Simple example')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 422

parser.add_argument('name', help='Who to greet', default='World')
# Create two argument groups
foo_group = parser.add_argument_group(title='Foo options')
bar_group = parser.add_argument_group(title='Bar options')
# Add arguments to those groups
foo_group.add_argument('--bar_this')
foo_group.add_argument('--bar_that')
bar_group.add_argument('--foo_this')
bar_group.add_argument('--foo_that')
args = parser.parse_args()

Which produces this output when python example.py -h is run:

usage: example.py [-h] [--bar_this BAR_THIS] [--bar_that BAR_THAT]
                        [--foo_this FOO_THIS] [--foo_that FOO_THAT]
                        name

Simple example

positional arguments:
  name                 Who to greet

optional arguments:
  -h, --help           show this help message and exit

Foo options:
  --bar_this BAR_THIS
  --bar_that BAR_THAT

Bar options:
  --foo_this FOO_THIS
  --foo_that FOO_THAT

Section 83.7: Advanced example with docopt and
docopt_dispatch
As with docopt, with [docopt_dispatch] you craft your --help in the __doc__ variable of your entry-point module.
There, you call dispatch with the doc string as argument, so it can run the parser over it.

That being done, instead of handling manually the arguments (which usually ends up in a high cyclomatic if/else
structure), you leave it to dispatch giving only how you want to handle the set of arguments.

This is what the dispatch.on decorator is for: you give it the argument or sequence of arguments that should
trigger the function, and that function will be executed with the matching values as parameters.

"""Run something in development or production mode.

Usage: run.py --development <host> <port>
       run.py --production <host> <port>
       run.py items add <item>
       run.py items delete <item>

"""
from docopt_dispatch import dispatch

@dispatch.on('--development')
def development(host, port, **kwargs):
    print('in *development* mode')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 423

@dispatch.on('--production')
def development(host, port, **kwargs):
    print('in *production* mode')

@dispatch.on('items', 'add')
def items_add(item, **kwargs):
    print('adding item...')

@dispatch.on('items', 'delete')
def items_delete(item, **kwargs):
    print('deleting item...')

if __name__ == '__main__':
    dispatch(__doc__)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 424

Chapter 84: Subprocess Library
Parameter Details
args A single executable, or sequence of executable and arguments - 'ls', ['ls', '-la']
shell Run under a shell? The default shell to /bin/sh on POSIX.
cwd Working directory of the child process.

Section 84.1: More flexibility with Popen
Using subprocess.Popen give more fine-grained control over launched processes than subprocess.call.

Launching a subprocess
process = subprocess.Popen([r'C:\path\to\app.exe', 'arg1', '--flag', 'arg'])

The signature for Popen is very similar to the call function; however, Popen will return immediately instead of
waiting for the subprocess to complete like call does.

Waiting on a subprocess to complete
process = subprocess.Popen([r'C:\path\to\app.exe', 'arg1', '--flag', 'arg'])
process.wait()

Reading output from a subprocess
process = subprocess.Popen([r'C:\path\to\app.exe'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)

# This will block until process completes
stdout, stderr = process.communicate()
print stdout
print stderr

Interactive access to running subprocesses

You can read and write on stdin and stdout even while the subprocess hasn't completed. This could be useful
when automating functionality in another program.

Writing to a subprocess
process = subprocess.Popen([r'C:\path\to\app.exe'], stdout = subprocess.PIPE, stdin =
subprocess.PIPE)

process.stdin.write('line of input\n') # Write input

line  = process.stdout.readline() # Read a line from stdout

# Do logic on line read.

However, if you only need one set of input and output, rather than dynamic interaction, you should use
communicate() rather than directly accessing stdin and stdout.

Reading a stream from a subprocess

In case you want to see the output of a subprocess line by line, you can use the following snippet:

process = subprocess.Popen(<your_command>, stdout=subprocess.PIPE)
while process.poll() is None:
    output_line = process.stdout.readline()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 425

in the case the subcommand output do not have EOL character, the above snippet does not work. You can then
read the output character by character as follows:

process = subprocess.Popen(<your_command>, stdout=subprocess.PIPE)
while process.poll() is None:
    output_line = process.stdout.read(1)

The 1 specified as argument to the read method tells read to read 1 character at time. You can specify to read as
many characters you want using a different number. Negative number or 0 tells to read to read as a single string
until the EOF is encountered (see here).

In both the above snippets, the process.poll() is None until the subprocess finishes. This is used to exit the loop
once there is no more output to read.

The same procedure could be applied to the stderr of the subprocess.

Section 84.2: Calling External Commands
The simplest use case is using the subprocess.call function. It accepts a list as the first argument. The first item in
the list should be the external application you want to call. The other items in the list are arguments that will be
passed to that application.

subprocess.call([r'C:\path\to\app.exe', 'arg1', '--flag', 'arg'])

For shell commands, set shell=True and provide the command as a string instead of a list.

subprocess.call('echo "Hello, world"', shell=True)

Note that the two command above return only the exit status of the subprocess. Moreover, pay attention when
using shell=True since it provides security issues (see here).

If you want to be able to get the standard output of the subprocess, then substitute the subprocess.call with
subprocess.check_output. For more advanced use, refer to this.

Section 84.3: How to create the command list argument
The subprocess method that allows running commands needs the command in form of a list (at least using
shell_mode=True).

The rules to create the list are not always straightforward to follow, especially with complex commands.
Fortunately, there is a very helpful tool that allows doing that: shlex. The easiest way of creating the list to be used
as command is the following:

import shlex
cmd_to_subprocess = shlex.split(command_used_in_the_shell)

A simple example:

import shlex
shlex.split('ls --color -l -t -r')

out: ['ls', '--color', '-l', '-t', '-r']

https://docs.python.org/2/library/io.html
https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 427

Chapter 85: setup.py
Parameter Usage
name Name of your distribution.
version Version string of your distribution.

packages List of Python packages (that is, directories containing modules) to include. This can be specified
manually, but a call to setuptools.find_packages() is typically used instead.

py_modules List of top-level Python modules (that is, single .py files) to include.

Section 85.1: Purpose of setup.py
The setup script is the center of all activity in building, distributing, and installing modules using the Distutils. Its
purpose is the correct installation of the software.

If all you want to do is distribute a module called foo, contained in a file foo.py, then your setup script can be as
simple as this:

from distutils.core import setup

setup(name='foo',
      version='1.0',
      py_modules=['foo'],
      )

To create a source distribution for this module, you would create a setup script, setup.py, containing the above
code, and run this command from a terminal:

python setup.py sdist

sdist will create an archive file (e.g., tarball on Unix, ZIP file on Windows) containing your setup script setup.py, and
your module foo.py. The archive file will be named foo-1.0.tar.gz (or .zip), and will unpack into a directory foo-1.0.

If an end-user wishes to install your foo module, all she has to do is download foo-1.0.tar.gz (or .zip), unpack it,
and—from the foo-1.0 directory—run

python setup.py install

Section 85.2: Using source control metadata in setup.py
setuptools_scm is an officially-blessed package that can use Git or Mercurial metadata to determine the version
number of your package, and find Python packages and package data to include in it.

from setuptools import setup, find_packages

setup(
    setup_requires=['setuptools_scm'],
    use_scm_version=True,
    packages=find_packages(),
    include_package_data=True,
)

This example uses both features; to only use SCM metadata for the version, replace the call to find_packages()
with your manual package list, or to only use the package finder, remove use_scm_version=True.

https://pypi.python.org/pypi/setuptools_scm
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 428

Section 85.3: Adding command line scripts to your python
package
Command line scripts inside python packages are common. You can organise your package in such a way that
when a user installs the package, the script will be available on their path.

If you had the greetings package which had the command line script hello_world.py.

greetings/
   greetings/
      __init__.py
      hello_world.py

You could run that script by running:

python greetings/greetings/hello_world.py

However if you would like to run it like so:

hello_world.py

You can achieve this by adding scripts to your setup() in setup.py like this:

from setuptools import setup
setup(
  name='greetings',
  scripts=['hello_world.py']
)

When you install the greetings package now, hello_world.py will be added to your path.

Another possibility would be to add an entry point:

entry_points={'console_scripts': ['greetings=greetings.hello_world:main']}

This way you just have to run it like:

greetings

Section 85.4: Adding installation options
As seen in previous examples, basic use of this script is:

python setup.py install

But there is even more options, like installing the package and have the possibility to change the code and test it
without having to re-install it. This is done using:

python setup.py develop

If you want to perform specific actions like compiling a Sphinx documentation or building fortran code, you can
create your own option like this:

cmdclasses = dict()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 429

class BuildSphinx(Command):

    """Build Sphinx documentation."""

    description = 'Build Sphinx documentation'
    user_options = []

    def initialize_options(self):
        pass

    def finalize_options(self):
        pass

    def run(self):
        import sphinx
        sphinx.build_main(['setup.py', '-b', 'html', './doc', './doc/_build/html'])
        sphinx.build_main(['setup.py', '-b', 'man', './doc', './doc/_build/man'])

cmdclasses['build_sphinx'] = BuildSphinx

setup(
...
cmdclass=cmdclasses,
)

initialize_options and finalize_options will be executed before and after the run function as their names
suggests it.

After that, you will be able to call your option:

python setup.py build_sphinx

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 430

Chapter 86: Recursion
Section 86.1: The What, How, and When of Recursion
Recursion occurs when a function call causes that same function to be called again before the original function call
terminates. For example, consider the well-known mathematical expression x! (i.e. the factorial operation). The
factorial operation is defined for all nonnegative integers as follows:

If the number is 0, then the answer is 1.
Otherwise, the answer is that number times the factorial of one less than that number.

In Python, a naïve implementation of the factorial operation can be defined as a function as follows:

def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)

Recursion functions can be difficult to grasp sometimes, so let's walk through this step-by-step. Consider the
expression factorial(3). This and all function calls create a new environment. An environment is basically just a
table that maps identifiers (e.g. n, factorial, print, etc.) to their corresponding values. At any point in time, you
can access the current environment using locals(). In the first function call, the only local variable that gets
defined is n = 3. Therefore, printing locals() would show {'n': 3}. Since n == 3, the return value becomes n *
factorial(n - 1).

At this next step is where things might get a little confusing. Looking at our new expression, we already know what
n is. However, we don't yet know what factorial(n - 1) is. First, n - 1 evaluates to 2. Then, 2 is passed to
factorial as the value for n. Since this is a new function call, a second environment is created to store this new n.
Let A be the first environment and B be the second environment. A still exists and equals {'n': 3}, however, B
(which equals {'n': 2}) is the current environment. Looking at the function body, the return value is, again, n *
factorial(n - 1). Without evaluating this expression, let's substitute it into the original return expression. By
doing this, we're mentally discarding B, so remember to substitute n accordingly (i.e. references to B's n are
replaced with n - 1 which uses A's n). Now, the original return expression becomes n * ((n - 1) * factorial((n
- 1) - 1)). Take a second to ensure that you understand why this is so.

Now, let's evaluate the factorial((n - 1) - 1)) portion of that. Since A's n == 3, we're passing 1 into factorial.
Therefore, we are creating a new environment C which equals {'n': 1}. Again, the return value is n * factorial(n
- 1). So let's replace factorial((n - 1) - 1)) of the “original” return expression similarly to how we adjusted the
original return expression earlier. The “original” expression is now n * ((n - 1) * ((n - 2) * factorial((n -
2) - 1))).

Almost done. Now, we need to evaluate factorial((n - 2) - 1). This time, we're passing in 0. Therefore, this
evaluates to 1. Now, let's perform our last substitution. The “original” return expression is now n * ((n - 1) * ((n
- 2) * 1)). Recalling that the original return expression is evaluated under A, the expression becomes 3 * ((3 -
1) * ((3 - 2) * 1)). This, of course, evaluates to 6. To confirm that this is the correct answer, recall that 3! == 3
* 2 * 1 == 6. Before reading any further, be sure that you fully understand the concept of environments and how
they apply to recursion.

The statement if n == 0: return 1 is called a base case. This is because, it exhibits no recursion. A base case is
absolutely required. Without one, you'll run into infinite recursion. With that said, as long as you have at least one
base case, you can have as many cases as you want. For example, we could have equivalently written factorial as

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 431

follows:

def factorial(n):
    if n == 0:
        return 1
    elif n == 1:
        return 1
    else:
        return n * factorial(n - 1)

You may also have multiple recursion cases, but we won't get into that since it's relatively uncommon and is often
difficult to mentally process.

You can also have “parallel” recursive function calls. For example, consider the Fibonacci sequence which is defined
as follows:

If the number is 0, then the answer is 0.
If the number is 1, then the answer is 1.
Otherwise, the answer is the sum of the previous two Fibonacci numbers.

We can define this is as follows:

def fib(n):
    if n == 0 or n == 1:
        return n
    else:
        return fib(n - 2) + fib(n - 1)

I won't walk through this function as thoroughly as I did with factorial(3), but the final return value of fib(5) is
equivalent to the following (syntactically invalid) expression:

(
  fib((n - 2) - 2)
  +
  (
    fib(((n - 2) - 1) - 2)
    +
    fib(((n - 2) - 1) - 1)
  )
)
+
(
  (
    fib(((n - 1) - 2) - 2)
    +
    fib(((n - 1) - 2) - 1)
  )
  +
  (
    fib(((n - 1) - 1) - 2)
    +
    (
      fib((((n - 1) - 1) - 1) - 2)
      +
      fib((((n - 1) - 1) - 1) - 1)
    )
  )
)

https://en.wikipedia.org/wiki/Fibonacci_number
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 432

This becomes (1 + (0 + 1)) + ((0 + 1) + (1 + (0 + 1))) which of course evaluates to 5.

Now, let's cover a few more vocabulary terms:

A tail call is simply a recursive function call which is the last operation to be performed before returning a
value. To be clear, return foo(n - 1) is a tail call, but return foo(n - 1) + 1 is not (since the addition is
the last operation).
Tail call optimization (TCO) is a way to automatically reduce recursion in recursive functions.
Tail call elimination (TCE) is the reduction of a tail call to an expression that can be evaluated without
recursion. TCE is a type of TCO.

Tail call optimization is helpful for a number of reasons:

The interpreter can minimize the amount of memory occupied by environments. Since no computer has
unlimited memory, excessive recursive function calls would lead to a stack overflow.
The interpreter can reduce the number of stack frame switches.

Python has no form of TCO implemented for a number of a reasons. Therefore, other techniques are required to
skirt this limitation. The method of choice depends on the use case. With some intuition, the definitions of
factorial and fib can relatively easily be converted to iterative code as follows:

def factorial(n):
    product = 1
    while n > 1:
        product *= n
        n -= 1
    return product

def fib(n):
    a, b = 0, 1
    while n > 0:
        a, b = b, a + b
        n -= 1
    return a

This is usually the most efficient way to manually eliminate recursion, but it can become rather difficult for more
complex functions.

Another useful tool is Python's lru_cache decorator which can be used to reduce the number of redundant
calculations.

You now have an idea as to how to avoid recursion in Python, but when should you use recursion? The answer is
“not often”. All recursive functions can be implemented iteratively. It's simply a matter of figuring out how to do so.
However, there are rare cases in which recursion is okay. Recursion is common in Python when the expected inputs
wouldn't cause a significant number of a recursive function calls.

If recursion is a topic that interests you, I implore you to study functional languages such as Scheme or Haskell. In
such languages, recursion is much more useful.

Please note that the above example for the Fibonacci sequence, although good at showing how to apply the
definition in python and later use of the lru cache, has an inefficient running time since it makes 2 recursive calls for
each non base case. The number of calls to the function grows exponentially to n.
Rather non-intuitively a more efficient implementation would use linear recursion:

def fib(n):
    if n <= 1:

https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Call_stack
http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 433

        return (n,0)
    else:
        (a, b) = fib(n - 1)
        return (a + b, a)

But that one has the issue of returning a pair of numbers. This emphasizes that some functions really do not gain
much from recursion.

Section 86.2: Tree exploration with recursion
Say we have the following tree:

root
- A
  - AA
  - AB
- B
  - BA
  - BB
    - BBA

Now, if we wish to list all the names of the elements, we could do this with a simple for-loop. We assume there is a
function get_name() to return a string of the name of a node, a function get_children() to return a list of all the
sub-nodes of a given node in the tree, and a function get_root() to get the root node.

root = get_root(tree)
for node in get_children(root):
    print(get_name(node))
    for child in get_children(node):
        print(get_name(child))
        for grand_child in get_children(child):
            print(get_name(grand_child))
# prints: A, AA, AB, B, BA, BB, BBA

This works well and fast, but what if the sub-nodes, got sub-nodes of its own? And those sub-nodes might have
more sub-nodes... What if you don't know beforehand how many there will be? A method to solve this is the use of
recursion.

def list_tree_names(node):
    for child in get_children(node):
        print(get_name(child))
        list_tree_names(node=child)

list_tree_names(node=get_root(tree))
# prints: A, AA, AB, B, BA, BB, BBA

Perhaps you wish to not print, but return a flat list of all node names. This can be done by passing a rolling list as a
parameter.

def list_tree_names(node, lst=[]):
    for child in get_children(node):
        lst.append(get_name(child))
        list_tree_names(node=child, lst=lst)
    return lst

list_tree_names(node=get_root(tree))
# returns ['A', 'AA', 'AB', 'B', 'BA', 'BB', 'BBA']

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 434

Section 86.3: Sum of numbers from 1 to n
If I wanted to find out the sum of numbers from 1 to n where n is a natural number, I can do 1 + 2 + 3 + 4 + ...
+ (several hours later) + n. Alternatively, I could write a for loop:

n = 0
for i in range (1, n+1):
    n += i

Or I could use a technique known as recursion:

def recursion(n):
    if n == 1:
        return 1
    return n + recursion(n - 1)

Recursion has advantages over the above two methods. Recursion takes less time than writing out 1 + 2 + 3 for a
sum from 1 to 3. For recursion(4), recursion can be used to work backwards:

Function calls: ( 4 -> 4 + 3 -> 4 + 3 + 2 -> 4 + 3 + 2 + 1 -> 10 )

Whereas the for loop is working strictly forwards: ( 1 -> 1 + 2 -> 1 + 2 + 3 -> 1 + 2 + 3 + 4 -> 10 ). Sometimes the
recursive solution is simpler than the iterative solution. This is evident when implementing a reversal of a linked list.

Section 86.4: Increasing the Maximum Recursion Depth
There is a limit to the depth of possible recursion, which depends on the Python implementation. When the limit is
reached, a RuntimeError exception is raised:

RuntimeError: Maximum Recursion Depth Exceeded

Here's a sample of a program that would cause this error:

def cursing(depth):
  try:
    cursing(depth + 1) # actually, re-cursing
  except RuntimeError as RE:
    print('I recursed {} times!'.format(depth))
cursing(0)
# Out: I recursed 1083 times!

It is possible to change the recursion depth limit by using

sys.setrecursionlimit(limit)

You can check what the current parameters of the limit are by running:

sys.getrecursionlimit()

Running the same method above with our new limit we get

sys.setrecursionlimit(2000)
cursing(0)
# Out: I recursed 1997 times!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 435

From Python 3.5, the exception is a RecursionError, which is derived from RuntimeError.

Section 86.5: Tail Recursion - Bad Practice
When the only thing returned from a function is a recursive call, it is referred to as tail recursion.

Here's an example countdown written using tail recursion:

def countdown(n):
    if n == 0:
        print "Blastoff!"
    else:
        print n
        countdown(n-1)

Any computation that can be made using iteration can also be made using recursion. Here is a version of find_max
written using tail recursion:

def find_max(seq, max_so_far):
    if not seq:
        return max_so_far
    if max_so_far < seq[0]:
        return find_max(seq[1:], seq[0])
    else:
        return find_max(seq[1:], max_so_far)

Tail recursion is considered a bad practice in Python, since the Python compiler does not handle optimization for
tail recursive calls. The recursive solution in cases like this use more system resources than the equivalent iterative
solution.

Section 86.6: Tail Recursion Optimization Through Stack
Introspection
By default Python's recursion stack cannot exceed 1000 frames. This can be changed by setting the
sys.setrecursionlimit(15000) which is faster however, this method consumes more memory. Instead, we can
also solve the Tail Recursion problem using stack introspection.

#!/usr/bin/env python2.4
# This program shows off a python decorator which implements tail call optimization. It
# does this by throwing an exception if it is its own grandparent, and catching such
# exceptions to recall the stack.

import sys

class TailRecurseException:
    def __init__(self, args, kwargs):
        self.args = args
        self.kwargs = kwargs

def tail_call_optimized(g):
"""
This function decorates a function with tail call
optimization. It does this by throwing an exception
if it is its own grandparent, and catching such
exceptions to fake the tail call optimization.
 
This function fails if the decorated

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 436

function recurses in a non-tail context.
"""
     
    def func(*args, **kwargs):
        f = sys._getframe()
        if f.f_back and f.f_back.f_back and f.f_back.f_back.f_code == f.f_code:
            raise TailRecurseException(args, kwargs)
        else:
            while 1:
                try:
                    return g(*args, **kwargs)
                except TailRecurseException, e:
                    args = e.args
                    kwargs = e.kwargs
    func.__doc__ = g.__doc__
    return func

To optimize the recursive functions, we can use the @tail_call_optimized decorator to call our function. Here's a
few of the common recursion examples using the decorator described above:

Factorial Example:

@tail_call_optimized
def factorial(n, acc=1):
  "calculate a factorial"
  if n == 0:
    return acc
  return factorial(n-1, n*acc)

print factorial(10000)
# prints a big, big number,
# but doesn't hit the recursion limit.

Fibonacci Example:

@tail_call_optimized
def fib(i, current = 0, next = 1):
  if i == 0:
    return current
  else:
    return fib(i - 1, next, current + next)

print fib(10000)
# also prints a big number,
# but doesn't hit the recursion limit.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 437

Chapter 87: Type Hints
Section 87.1: Adding types to a function
Let's take an example of a function which receives two arguments and returns a value indicating their sum:

def two_sum(a, b):
    return a + b

By looking at this code, one can not safely and without doubt indicate the type of the arguments for function
two_sum. It works both when supplied with int values:

print(two_sum(2, 1))  # result: 3

and with strings:

print(two_sum("a", "b"))  # result: "ab"

and with other values, such as lists, tuples et cetera.

Due to this dynamic nature of python types, where many are applicable for a given operation, any type checker
would not be able to reasonably assert whether a call for this function should be allowed or not.

To assist our type checker we can now provide type hints for it in the Function definition indicating the type that we
allow.

To indicate that we only want to allow int types we can change our function definition to look like:

def two_sum(a: int, b: int):
    return a + b

Annotations follow the argument name and are separated by a : character.

Similarly, to indicate only str types are allowed, we'd change our function to specify it:

def two_sum(a: str, b: str):
    return a + b

Apart from specifying the type of the arguments, one could also indicate the return value of a function call. This is
done by adding the -> character followed by the type after the closing parenthesis in the argument list but before
the : at the end of the function declaration:

def two_sum(a: int, b: int) -> int:
    return a + b

Now we've indicated that the return value when calling two_sum should be of type int. Similarly we can define
appropriate values for str, float, list, set and others.

Although type hints are mostly used by type checkers and IDEs, sometimes you may need to retrieve them. This can
be done using the __annotations__ special attribute:

two_sum.__annotations__
# {'a': <class 'int'>, 'b': <class 'int'>, 'return': <class 'int'>}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 438

Section 87.2: NamedTuple
Creating a namedtuple with type hints is done using the function NamedTuple from the typing module:

import typing
Point = typing.NamedTuple('Point', [('x', int), ('y', int)])

Note that the name of the resulting type is the first argument to the function, but it should be assigned to a variable
with the same name to ease the work of type checkers.

Section 87.3: Generic Types
The typing.TypeVar is a generic type factory. It's primary goal is to serve as a parameter/placeholder for generic
function/class/method annotations:

import typing

T = typing.TypeVar("T")

def get_first_element(l: typing.Sequence[T]) -> T:
    """Gets the first element of a sequence."""
    return l[0]

Section 87.4: Variables and Attributes
Variables are annotated using comments:

x = 3  # type: int
x = negate(x)
x = 'a type-checker might catch this error'

Python 3.x Version ≥ 3.6

Starting from Python 3.6, there is also new syntax for variable annotations. The code above might use the form

x: int = 3

Unlike with comments, it is also possible to just add a type hint to a variable that was not previously declared,
without setting a value to it:

y: int

Additionally if these are used in the module or the class level, the type hints can be retrieved using
typing.get_type_hints(class_or_module):

class Foo:
    x: int
    y: str = 'abc'

print(typing.get_type_hints(Foo))
# ChainMap({'x': <class 'int'>, 'y': <class 'str'>}, {})

Alternatively, they can be accessed by using the __annotations__ special variable or attribute:

x: int
print(__annotations__)

https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://www.python.org/dev/peps/pep-0526/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 439

# {'x': <class 'int'>}

class C:
    s: str
print(C.__annotations__)
# {'s': <class 'str'>}

Section 87.5: Class Members and Methods
class A:
    x = None  # type: float
    def __init__(self, x: float) -> None:
        """
        self should not be annotated
        init should be annotated to return None
        """
        self.x = x
   
    @classmethod
    def from_int(cls, x: int) -> 'A':
        """
        cls should not be annotated
        Use forward reference to refer to current class with string literal 'A'
        """
        return cls(float(x))

Forward reference of the current class is needed since annotations are evaluated when the function is defined.
Forward references can also be used when referring to a class that would cause a circular import if imported.

Section 87.6: Type hints for keyword arguments
def hello_world(greeting: str = 'Hello'):
    print(greeting + ' world!')

Note the spaces around the equal sign as opposed to how keyword arguments are usually styled.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 440

Chapter 88: Exceptions
Errors detected during execution are called exceptions and are not unconditionally fatal. Most exceptions are not
handled by programs; it is possible to write programs that handle selected exceptions. There are specific features
in Python to deal with exceptions and exception logic. Furthermore, exceptions have a rich type hierarchy, all
inheriting from the BaseException type.

Section 88.1: Catching Exceptions
Use try...except: to catch exceptions. You should specify as precise an exception as you can:

try:
    x = 5 / 0
except ZeroDivisionError as e:
    # `e` is the exception object
    print("Got a divide by zero! The exception was:", e)
    # handle exceptional case
    x = 0  
finally:
    print "The END"
    # it runs no matter what execute.

The exception class that is specified - in this case, ZeroDivisionError - catches any exception that is of that class or
of any subclass of that exception.

For example, ZeroDivisionError is a subclass of ArithmeticError:

>>> ZeroDivisionError.__bases__
(<class 'ArithmeticError'>,)

And so, the following will still catch the ZeroDivisionError:

try:
    5 / 0
except ArithmeticError:
    print("Got arithmetic error")

Section 88.2: Do not catch everything!
While it's often tempting to catch every Exception:

try:
    very_difficult_function()
except Exception:
    # log / try to reconnect / exit gratiously
finally:
    print "The END"
    # it runs no matter what execute.

Or even everything (that includes BaseException and all its children including Exception):

try:
    even_more_difficult_function()
except:
    pass  # do whatever needed

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 441

In most cases it's bad practice. It might catch more than intended, such as SystemExit, KeyboardInterrupt and
MemoryError - each of which should generally be handled differently than usual system or logic errors. It also
means there's no clear understanding for what the internal code may do wrong and how to recover properly from
that condition. If you're catching every error, you won't know what error occurred or how to fix it.

This is more commonly referred to as 'bug masking' and should be avoided. Let your program crash instead of
silently failing or even worse, failing at deeper level of execution. (Imagine it's a transactional system)

Usually these constructs are used at the very outer level of the program, and will log the details of the error so that
the bug can be fixed, or the error can be handled more specifically.

Section 88.3: Re-raising exceptions
Sometimes you want to catch an exception just to inspect it, e.g. for logging purposes. After the inspection, you
want the exception to continue propagating as it did before.

In this case, simply use the raise statement with no parameters.

try:
    5 / 0
except ZeroDivisionError:
    print("Got an error")
    raise

Keep in mind, though, that someone further up in the caller stack can still catch the exception and handle it
somehow. The done output could be a nuisance in this case because it will happen in any case (caught or not
caught). So it might be a better idea to raise a different exception, containing your comment about the situation as
well as the original exception:

try:
    5 / 0
except ZeroDivisionError as e:
    raise ZeroDivisionError("Got an error", e)

But this has the drawback of reducing the exception trace to exactly this raise while the raise without argument
retains the original exception trace.

In Python 3 you can keep the original stack by using the raise-from syntax:

    raise ZeroDivisionError("Got an error") from e

Section 88.4: Catching multiple exceptions
There are a few ways to catch multiple exceptions.

The first is by creating a tuple of the exception types you wish to catch and handle in the same manner. This
example will cause the code to ignore KeyError and AttributeError exceptions.

try:
    d = {}
    a = d[1]
    b = d.non_existing_field
except (KeyError, AttributeError) as e:
    print("A KeyError or an AttributeError exception has been caught.")

https://docs.python.org/3/tutorial/errors.html#handling-exceptions
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 442

If you wish to handle different exceptions in different ways, you can provide a separate exception block for each
type. In this example, we still catch the KeyError and AttributeError, but handle the exceptions in different
manners.

try:
    d = {}
    a = d[1]
    b = d.non_existing_field
except KeyError as e:
    print("A KeyError has occurred. Exception message:", e)
except AttributeError as e:
    print("An AttributeError has occurred. Exception message:", e)

Section 88.5: Exception Hierarchy
Exception handling occurs based on an exception hierarchy, determined by the inheritance structure of the
exception classes.

For example, IOError and OSError are both subclasses of EnvironmentError. Code that catches an IOError will not
catch an OSError. However, code that catches an EnvironmentError will catch both IOErrors and OSErrors.

The hierarchy of built-in exceptions:

Python 2.x Version ≥ 2.3

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- StopIteration
+-- StandardError
| +-- BufferError
| +-- ArithmeticError
| | +-- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
| +-- EnvironmentError
| | +-- IOError
| | +-- OSError
| | +-- WindowsError (Windows)
| | +-- VMSError (VMS)
| +-- EOFError
| +-- ImportError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- MemoryError
| +-- NameError
| | +-- UnboundLocalError
| +-- ReferenceError
| +-- RuntimeError
| | +-- NotImplementedError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- SystemError
| +-- TypeError
| +-- ValueError

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 443

| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning

Python 3.x Version ≥ 3.0

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 444

+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

Section 88.6: Else
Code in an else block will only be run if no exceptions were raised by the code in the try block. This is useful if you
have some code you don’t want to run if an exception is thrown, but you don’t want exceptions thrown by that
code to be caught.

For example:

try:
    data = {1: 'one', 2: 'two'}
    print(data[1])
except KeyError as e:
    print('key not found')
else:
    raise ValueError()
# Output: one
# Output: ValueError

Note that this kind of else: cannot be combined with an if starting the else-clause to an elif. If you have a
following if it needs to stay indented below that else::

try:
    ...
except ...:
    ...
else:
    if ...:
        ...
    elif ...:
        ...
    else:
        ...

Section 88.7: Raising Exceptions
If your code encounters a condition it doesn't know how to handle, such as an incorrect parameter, it should raise
the appropriate exception.

def even_the_odds(odds):
    if odds % 2 != 1:
        raise ValueError("Did not get an odd number")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 445

   
    return odds + 1

Section 88.8: Creating custom exception types
Create a class inheriting from Exception:

class FooException(Exception):
    pass
try:
    raise FooException("insert description here")
except FooException:
    print("A FooException was raised.")

or another exception type:

class NegativeError(ValueError):
      pass

def foo(x):
    # function that only accepts positive values of x
    if x < 0:
        raise NegativeError("Cannot process negative numbers")
    ...  # rest of function body
try:
    result = foo(int(input("Enter a positive integer: ")))  # raw_input in Python 2.x
except NegativeError:
    print("You entered a negative number!")
else:
    print("The result was " + str(result))

Section 88.9: Practical examples of exception handling
User input

Imagine you want a user to enter a number via input. You want to ensure that the input is a number. You can use
try/except for this:

Python 3.x Version ≥ 3.0

while True:
    try:
        nb = int(input('Enter a number: '))
        break
    except ValueError:
        print('This is not a number, try again.')

Note: Python 2.x would use raw_input instead; the function input exists in Python 2.x but has different semantics.
In the above example, input would also accept expressions such as 2 + 2 which evaluate to a number.

If the input could not be converted to an integer, a ValueError is raised. You can catch it with except. If no
exception is raised, break jumps out of the loop. After the loop, nb contains an integer.

Dictionaries

Imagine you are iterating over a list of consecutive integers, like range(n), and you have a list of dictionaries d that
contains information about things to do when you encounter some particular integers, say skip the d[i] next ones.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 446

d = [{7: 3}, {25: 9}, {38: 5}]

for i in range(len(d)):
    do_stuff(i)
    try:
       dic = d[i]
       i += dic[i]
    except KeyError:
       i += 1

A KeyError will be raised when you try to get a value from a dictionary for a key that doesn’t exist.

Section 88.10: Exceptions are Objects too
Exceptions are just regular Python objects that inherit from the built-in BaseException. A Python script can use the
raise statement to interrupt execution, causing Python to print a stack trace of the call stack at that point and a
representation of the exception instance. For example:

>>> def failing_function():
...     raise ValueError('Example error!')
>>> failing_function()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in failing_function
ValueError: Example error!

which says that a ValueError with the message 'Example error!' was raised by our failing_function(), which
was executed in the interpreter.

Calling code can choose to handle any and all types of exception that a call can raise:

>>> try:
...     failing_function()
... except ValueError:
...     print('Handled the error')
Handled the error

You can get hold of the exception objects by assigning them in the except... part of the exception handling code:

>>> try:
...     failing_function()
... except ValueError as e:
...     print('Caught exception', repr(e))
Caught exception ValueError('Example error!',)

A complete list of built-in Python exceptions along with their descriptions can be found in the Python
Documentation: https://docs.python.org/3.5/library/exceptions.html. And here is the full list arranged hierarchically:
Exception Hierarchy.

Section 88.11: Running clean-up code with finally
Sometimes, you may want something to occur regardless of whatever exception happened, for example, if you
have to clean up some resources.

The finally block of a try clause will happen regardless of whether any exceptions were raised.

https://docs.python.org/3.5/library/exceptions.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 447

resource = allocate_some_expensive_resource()
try:
    do_stuff(resource)
except SomeException as e:
    log_error(e)
    raise  # re-raise the error
finally:
    free_expensive_resource(resource)

This pattern is often better handled with context managers (using the with statement).

Section 88.12: Chain exceptions with raise from
In the process of handling an exception, you may want to raise another exception. For example, if you get an
IOError while reading from a file, you may want to raise an application-specific error to present to the users of your
library, instead.

Python 3.x Version ≥ 3.0

You can chain exceptions to show how the handling of exceptions proceeded:

>>> try:
    5 / 0
except ZeroDivisionError as e:
    raise ValueError("Division failed") from e

Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
ValueError: Division failed

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 448

Chapter 89: Raise Custom Errors /
Exceptions
Python has many built-in exceptions which force your program to output an error when something in it goes
wrong.

However, sometimes you may need to create custom exceptions that serve your purpose.

In Python, users can define such exceptions by creating a new class. This exception class has to be derived, either
directly or indirectly, from Exception class. Most of the built-in exceptions are also derived from this class.

Section 89.1: Custom Exception
Here, we have created a user-defined exception called CustomError which is derived from the Exception class. This
new exception can be raised, like other exceptions, using the raise statement with an optional error message.

class CustomError(Exception):
       pass

x = 1

if x == 1:
    raise CustomError('This is custom error')

Output:

Traceback (most recent call last):
File "error_custom.py", line 8, in
raise CustomError('This is custom error')
__main__.CustomError: This is custom error

Section 89.2: Catch custom Exception
This example shows how to catch custom Exception

class CustomError(Exception):
     pass

try:
    raise CustomError('Can you catch me ?')
except CustomError as e:
    print ('Catched CustomError :{}'.format(e))
except Exception as e:
    print ('Generic exception: {}'.format(e))

Output:

Catched CustomError :Can you catch me ?

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 450

Chapter 90: Commonwealth Exceptions
Here in Stack Overflow we often see duplicates talking about the same errors: "ImportError: No module named
'??????', SyntaxError: invalid syntax or NameError: name '???' is not defined. This is an effort to reduce
them and to have some documentation to link to.

Section 90.1: Other Errors
AssertError

The assert statement exists in almost every programming language. When you do:

assert condition

or:

assert condition, message

It's equivalent to this:

if __debug__:
    if not condition: raise AssertionError(message)

Assertions can include an optional message, and you can disable them when you're done debugging.

Note: the built-in variable debug is True under normal circumstances, False when optimization is requested
(command line option -O). Assignments to debug are illegal. The value for the built-in variable is determined when
the interpreter starts.

KeyboardInterrupt

Error raised when the user presses the interrupt key, normally  Ctrl  +  C  or  del .

ZeroDivisionError

You tried to calculate 1/0 which is undefined. See this example to find the divisors of a number:

Python 2.x Version ≥ 2.0 Version ≤ 2.7

div = float(raw_input("Divisors of: "))
for x in xrange(div+1): #includes the number itself and zero
    if div/x == div//x:
        print x, "is a divisor of", div

Python 3.x Version ≥ 3.0

div = int(input("Divisors of: "))
for x in range(div+1): #includes the number itself and zero
    if div/x == div//x:
        print(x, "is a divisor of", div)

It raises ZeroDivisionError because the for loop assigns that value to x. Instead it should be:

Python 2.x Version ≥ 2.0 Version ≤ 2.7

div = float(raw_input("Divisors of: "))
for x in xrange(1,div+1): #includes the number itself but not zero
    if div/x == div//x:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 451

        print x, "is a divisor of", div

Python 3.x Version ≥ 3.0

div = int(input("Divisors of: "))
for x in range(1,div+1): #includes the number itself but not zero
    if div/x == div//x:
        print(x, "is a divisor of", div)

Section 90.2: NameError: name '???' is not defined
Is raised when you tried to use a variable, method or function that is not initialized (at least not before). In other
words, it is raised when a requested local or global name is not found. It's possible that you misspelt the name of
the object or forgot to import something. Also maybe it's in another scope. We'll cover those with separate
examples.

It's simply not defined nowhere in the code

It's possible that you forgot to initialize it, especially if it is a constant

foo   # This variable is not defined
bar() # This function is not defined

Maybe it's defined later:
baz()

def baz():
    pass

Or it wasn't imported:
#needs import math

def sqrt():
    x = float(input("Value: "))
    return math.sqrt(x)

Python scopes and the LEGB Rule:

The so-called LEGB Rule talks about the Python scopes. Its name is based on the different scopes, ordered by the
correspondent priorities:

Local → Enclosed → Global → Built-in.

Local: Variables not declared global or assigned in a function.
Enclosing: Variables defined in a function that is wrapped inside another function.
Global: Variables declared global, or assigned at the top-level of a file.
Built-in: Variables preassigned in the built-in names module.

As an example:

for i in range(4):
    d = i * 2
print(d)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 452

d is accessible because the for loop does not mark a new scope, but if it did, we would have an error and its
behavior would be similar to:

def noaccess():
    for i in range(4):
        d = i * 2
noaccess()
print(d)

Python says NameError: name 'd' is not defined

Section 90.3: TypeErrors
These exceptions are caused when the type of some object should be different

TypeError: [definition/method] takes ? positional arguments but ? was given

A function or method was called with more (or less) arguments than the ones it can accept.

Example

If more arguments are given:

def foo(a): return a
foo(a,b,c,d) #And a,b,c,d are defined

If less arguments are given:

def foo(a,b,c,d): return a += b + c + d
foo(a) #And a is defined

Note: if you want use an unknown number of arguments, you can use *args or **kwargs. See *args and **kwargs

TypeError: unsupported operand type(s) for [operand]: '???' and '???'

Some types cannot be operated together, depending on the operand.

Example

For example: + is used to concatenate and add, but you can't use any of them for both types. For instance, trying to
make a set by concatenating (+ing) 'set1' and 'tuple1' gives the error. Code:

set1, tuple1 = {1,2}, (3,4)
a = set1 + tuple1

Some types (eg: int and string) use both + but for different things:

b = 400 + 'foo'

Or they may not be even used for anything:

c = ["a","b"] - [1,2]

But you can for example add a float to an int:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 453

d = 1 + 1.0

TypeError: '???' object is not iterable/subscriptable:

For an object to be iterable it can take sequential indexes starting from zero until the indexes are no longer valid
and a IndexError is raised (More technically: it has to have an __iter__ method which returns an __iterator__, or
which defines a __getitem__ method that does what was previously mentioned).

Example

Here we are saying that bar is the zeroth item of 1. Nonsense:

foo = 1
bar = foo[0]

This is a more discrete version: In this example for tries to set x to amount[0], the first item in an iterable but it
can't because amount is an int:

amount = 10
for x in amount: print(x)

TypeError: '???' object is not callable

You are defining a variable and calling it later (like what you do with a function or method)

Example
foo = "notAFunction"
foo()

Section 90.4: Syntax Error on good code
The gross majority of the time a SyntaxError which points to an uninteresting line means there is an issue on the
line before it (in this example, it's a missing parenthesis):

def my_print():
    x = (1 + 1
    print(x)

Returns

  File "<input>", line 3
    print(x)
        ^
SyntaxError: invalid syntax

The most common reason for this issue is mismatched parentheses/brackets, as the example shows.

There is one major caveat for print statements in Python 3:

Python 3.x Version ≥ 3.0

 >>> print "hello world"
  File "<stdin>", line 1
    print "hello world"
                      ^

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 454

SyntaxError: invalid syntax

Because the print statement was replaced with the print() function, so you want:

print("hello world")  # Note this is valid for both Py2 & Py3

Section 90.5: IndentationErrors (or indentation SyntaxErrors)
In most other languages indentation is not compulsory, but in Python (and other languages: early versions of
FORTRAN, Makefiles, Whitespace (esoteric language), etc.) that is not the case, what can be confusing if you come
from another language, if you were copying code from an example to your own, or simply if you are new.

IndentationError/SyntaxError: unexpected indent

This exception is raised when the indentation level increases with no reason.

Example

There is no reason to increase the level here:

Python 2.x Version ≥ 2.0 Version ≤ 2.7

 print "This line is ok"
     print "This line isn't ok"

Python 3.x Version ≥ 3.0

 print("This line is ok")
     print("This line isn't ok")

Here there are two errors: the last one and that the indentation does not match any indentation level. However just
one is shown:

Python 2.x Version ≥ 2.0 Version ≤ 2.7

 print "This line is ok"
  print "This line isn't ok"

Python 3.x Version ≥ 3.0

 print("This line is ok")
  print("This line isn't ok")

IndentationError/SyntaxError: unindent does not match any outer indentation level

Appears you didn't unindent completely.

Example
Python 2.x Version ≥ 2.0 Version ≤ 2.7

def foo():
    print "This should be part of foo()"
   print "ERROR!"
print "This is not a part of foo()"

Python 3.x Version ≥ 3.0

 print("This line is ok")
  print("This line isn't ok")

IndentationError: expected an indented block

https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 455

After a colon (and then a new line) the indentation level has to increase. This error is raised when that didn't
happen.

Example
if ok:
doStuff()

Note: Use the keyword pass (that makes absolutely nothing) to just put an if, else, except, class, method or
definition but not say what will happen if called/condition is true (but do it later, or in the case of except: just do
nothing):

def foo():
    pass

IndentationError: inconsistent use of tabs and spaces in indentation
Example
def foo():
    if ok:
      return "Two != Four != Tab"
        return "i don't care i do whatever i want"

How to avoid this error

Don't use tabs. It is discouraged by PEP8, the style guide for Python.

Set your editor to use 4 spaces for indentation.1.
Make a search and replace to replace all tabs with 4 spaces.2.
Make sure your editor is set to display tabs as 8 spaces, so that you can realize easily that error and fix it.3.

See this question if you want to learn more.

http://stackoverflow.com/a/1017404/7237719
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 456

Chapter 91: urllib
Section 91.1: HTTP GET
Python 2.x Version ≤ 2.7
Python 2
import urllib
response = urllib.urlopen('http://stackoverflow.com/documentation/')

Using urllib.urlopen() will return a response object, which can be handled similar to a file.

print response.code
# Prints: 200

The response.code represents the http return value. 200 is OK, 404 is NotFound, etc.

print response.read()
'<!DOCTYPE html>\r\n<html>\r\n<head>\r\n\r\n<title>Documentation - Stack. etc'

response.read() and response.readlines() can be used to read the actual html file returned from the request.
These methods operate similarly to file.read*

Python 3.x Version ≥ 3.0
Python 3
import urllib.request

print(urllib.request.urlopen("http://stackoverflow.com/documentation/"))
# Prints: <http.client.HTTPResponse at 0x7f37a97e3b00>

response = urllib.request.urlopen("http://stackoverflow.com/documentation/")

print(response.code)
# Prints: 200
print(response.read())
# Prints: b'<!DOCTYPE html>\r\n<html>\r\n<head>\r\n\r\n<title>Documentation - Stack Overflow</title>

The module has been updated for Python 3.x, but use cases remain basically the same. urllib.request.urlopen
will return a similar file-like object.

Section 91.2: HTTP POST
To POST data pass the encoded query arguments as data to urlopen()

Python 2.x Version ≤ 2.7
Python 2
import urllib
query_parms = {'username':'stackoverflow', 'password':'me.me'}
encoded_parms = urllib.urlencode(query_parms)
response = urllib.urlopen("https://stackoverflow.com/users/login", encoded_parms)
response.code
# Output: 200
response.read()
# Output: '<!DOCTYPE html>\r\n<html>\r\n<head>\r\n\r\n<title>Log In - Stack Overflow'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 457

Python 3.x Version ≥ 3.0
Python 3
import urllib
query_parms = {'username':'stackoverflow', 'password':'me.me'}
encoded_parms = urllib.parse.urlencode(query_parms).encode('utf-8')
response = urllib.request.urlopen("https://stackoverflow.com/users/login", encoded_parms)
response.code
# Output: 200
response.read()
# Output: b'<!DOCTYPE html>\r\n<html>....etc'

Section 91.3: Decode received bytes according to content type
encoding
The received bytes have to be decoded with the correct character encoding to be interpreted as text:

Python 3.x Version ≥ 3.0

import urllib.request

response = urllib.request.urlopen("http://stackoverflow.com/")
data = response.read()

encoding = response.info().get_content_charset()
html = data.decode(encoding)

Python 2.x Version ≤ 2.7

import urllib2
response = urllib2.urlopen("http://stackoverflow.com/")
data = response.read()

encoding = response.info().getencoding()
html = data.decode(encoding)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 458

Chapter 92: Web scraping with Python
Web scraping is an automated, programmatic process through which data can be constantly 'scraped' off
webpages. Also known as screen scraping or web harvesting, web scraping can provide instant data from any
publicly accessible webpage. On some websites, web scraping may be illegal.

Section 92.1: Scraping using the Scrapy framework
First you have to set up a new Scrapy project. Enter a directory where you’d like to store your code and run:

scrapy startproject projectName

To scrape we need a spider. Spiders define how a certain site will be scraped. Here’s the code for a spider that
follows the links to the top voted questions on StackOverflow and scrapes some data from each page (source):

import scrapy

class StackOverflowSpider(scrapy.Spider):
    name = 'stackoverflow'  # each spider has a unique name
    start_urls = ['http://stackoverflow.com/questions?sort=votes']  # the parsing starts from a
specific set of urls

    def parse(self, response):  # for each request this generator yields, its response is sent to
parse_question
        for href in response.css('.question-summary h3 a::attr(href)'):  # do some scraping stuff
using css selectors to find question urls
            full_url = response.urljoin(href.extract())
            yield scrapy.Request(full_url, callback=self.parse_question)

    def parse_question(self, response):
        yield {
            'title': response.css('h1 a::text').extract_first(),
            'votes': response.css('.question .vote-count-post::text').extract_first(),
            'body': response.css('.question .post-text').extract_first(),
            'tags': response.css('.question .post-tag::text').extract(),
            'link': response.url,
        }

Save your spider classes in the projectName\spiders directory. In this case -
projectName\spiders\stackoverflow_spider.py.

Now you can use your spider. For example, try running (in the project's directory):

scrapy crawl stackoverflow

Section 92.2: Scraping using Selenium WebDriver
Some websites don’t like to be scraped. In these cases you may need to simulate a real user working with a
browser. Selenium launches and controls a web browser.

from selenium import webdriver

browser = webdriver.Firefox()  # launch Firefox browser

browser.get('http://stackoverflow.com/questions?sort=votes')  # load url

https://en.wikipedia.org/wiki/Web_scraping
http://doc.scrapy.org/en/latest/intro/overview.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 459

title = browser.find_element_by_css_selector('h1').text  # page title (first h1 element)

questions = browser.find_elements_by_css_selector('.question-summary')  # question list

for question in questions:  # iterate over questions
    question_title = question.find_element_by_css_selector('.summary h3 a').text
    question_excerpt = question.find_element_by_css_selector('.summary .excerpt').text
    question_vote = question.find_element_by_css_selector('.stats .vote .votes .vote-count-
post').text
   
    print "%s\n%s\n%s votes\n-----------\n" % (question_title, question_excerpt, question_vote)

Selenium can do much more. It can modify browser’s cookies, fill in forms, simulate mouse clicks, take screenshots
of web pages, and run custom JavaScript.

Section 92.3: Basic example of using requests and lxml to
scrape some data
# For Python 2 compatibility.
from __future__ import print_function

import lxml.html
import requests

def main():
    r = requests.get("https://httpbin.org")
    html_source = r.text
    root_element = lxml.html.fromstring(html_source)
    # Note root_element.xpath() gives a *list* of results.
    # XPath specifies a path to the element we want.
    page_title = root_element.xpath('/html/head/title/text()')[0]
    print(page_title)

if __name__ == '__main__':
    main()

Section 92.4: Maintaining web-scraping session with requests
It is a good idea to maintain a web-scraping session to persist the cookies and other parameters. Additionally, it can
result into a performance improvement because requests.Session reuses the underlying TCP connection to a host:

import requests

with requests.Session() as session:
    # all requests through session now have User-Agent header set
    session.headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36'}

    # set cookies
    session.get('http://httpbin.org/cookies/set?key=value')

    # get cookies
    response = session.get('http://httpbin.org/cookies')
    print(response.text)

http://docs.python-requests.org/en/master/user/advanced/#session-objects
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 460

Section 92.5: Scraping using BeautifulSoup4
from bs4 import BeautifulSoup
import requests

# Use the requests module to obtain a page
res = requests.get('https://www.codechef.com/problems/easy')

# Create a BeautifulSoup object
page = BeautifulSoup(res.text, 'lxml')   # the text field contains the source of the page

# Now use a CSS selector in order to get the table containing the list of problems
datatable_tags = page.select('table.dataTable')  # The problems are in the <table> tag,
                                                 # with class "dataTable"
# We extract the first tag from the list, since that's what we desire
datatable = datatable_tags[0]
# Now since we want problem names, they are contained in <b> tags, which are
# directly nested under <a> tags
prob_tags = datatable.select('a > b')
prob_names = [tag.getText().strip() for tag in prob_tags]

print prob_names

Section 92.6: Simple web content download with urllib.request
The standard library module urllib.request can be used to download web content:

from urllib.request import urlopen

response = urlopen('http://stackoverflow.com/questions?sort=votes')    
data = response.read()

# The received bytes should usually be decoded according the response's character set
encoding = response.info().get_content_charset()
html = data.decode(encoding)

A similar module is also available in Python 2.

Section 92.7: Modify Scrapy user agent
Sometimes the default Scrapy user agent ("Scrapy/VERSION (+http://scrapy.org)") is blocked by the host. To
change the default user agent open settings.py, uncomment and edit the following line to whatever you want.

#USER_AGENT = 'projectName (+http://www.yourdomain.com)'

For example

USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/51.0.2704.103 Safari/537.36'

Section 92.8: Scraping with curl
imports:

from subprocess import Popen, PIPE
from lxml import etree

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 461

from io import StringIO

Downloading:

user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/55.0.2883.95 Safari/537.36'
url = 'http://stackoverflow.com'
get = Popen(['curl', '-s', '-A', user_agent, url], stdout=PIPE)
result = get.stdout.read().decode('utf8')

-s: silent download

-A: user agent flag

Parsing:

tree = etree.parse(StringIO(result), etree.HTMLParser())
divs = tree.xpath('//div')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 462

Chapter 93: HTML Parsing
Section 93.1: Using CSS selectors in BeautifulSoup
BeautifulSoup has a limited support for CSS selectors, but covers most commonly used ones. Use SELECT() method
to find multiple elements and select_one() to find a single element.

Basic example:

from bs4 import BeautifulSoup

data = """
<ul>
    <li class="item">item1</li>
    <li class="item">item2</li>
    <li class="item">item3</li>
</ul>
"""

soup = BeautifulSoup(data, "html.parser")

for item in soup.select("li.item"):
    print(item.get_text())

Prints:

item1
item2
item3

Section 93.2: PyQuery
pyquery is a jquery-like library for python. It has very well support for css selectors.

from pyquery import PyQuery

html = """
<h1>Sales</h1>
<table id="table">
<tr>
    <td>Lorem</td>
    <td>46</td>
</tr>
<tr>
    <td>Ipsum</td>
    <td>12</td>
</tr>
<tr>
    <td>Dolor</td>
    <td>27</td>
</tr>
<tr>
    <td>Sit</td>
    <td>90</td>
</tr>
</table>
"""

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 463

doc = PyQuery(html)

title = doc('h1').text()

print title

table_data = []

rows = doc('#table > tr')
for row in rows:
    name = PyQuery(row).find('td').eq(0).text()
    value = PyQuery(row).find('td').eq(1).text()

    print "%s\t  %s" % (name, value)

Section 93.3: Locate a text after an element in BeautifulSoup
Imagine you have the following HTML:

<div>
    <label>Name:</label>
    John Smith
</div>

And you need to locate the text "John Smith" after the label element.

In this case, you can locate the label element by text and then use .next_sibling property:

from bs4 import BeautifulSoup

data = """
<div>
    <label>Name:</label>
    John Smith
</div>
"""

soup = BeautifulSoup(data, "html.parser")

label = soup.find("label", text="Name:")
print(label.next_sibling.strip())

Prints John Smith.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 464

Chapter 94: Manipulating XML
Section 94.1: Opening and reading using an ElementTree
Import the ElementTree object, open the relevant .xml file and get the root tag:

import xml.etree.ElementTree as ET
tree = ET.parse("yourXMLfile.xml")
root = tree.getroot()

There are a few ways to search through the tree. First is by iteration:

for child in root:
    print(child.tag, child.attrib)

Otherwise you can reference specific locations like a list:

print(root[0][1].text)

To search for specific tags by name, use the .find or .findall:

print(root.findall("myTag"))
print(root[0].find("myOtherTag"))

Section 94.2: Create and Build XML Documents
Import Element Tree module

import xml.etree.ElementTree as ET

Element() function is used to create XML elements

p=ET.Element('parent')

SubElement() function used to create sub-elements to a give element

c = ET.SubElement(p, 'child1')

dump() function is used to dump xml elements.

ET.dump(p)
# Output will be like this
#<parent><child1 /></parent>

If you want to save to a file create a xml tree with ElementTree() function and to save to a file use write() method

tree = ET.ElementTree(p)
tree.write("output.xml")

Comment() function is used to insert comments in xml file.

comment = ET.Comment('user comment')
p.append(comment) #this comment will be appended to parent element

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 465

Section 94.3: Modifying an XML File
Import Element Tree module and open xml file, get an xml element

import xml.etree.ElementTree as ET
tree = ET.parse('sample.xml')
root=tree.getroot()
element = root[0] #get first child of root element

Element object can be manipulated by changing its fields, adding and modifying attributes, adding and removing
children

element.set('attribute_name', 'attribute_value') #set the attribute to xml element
element.text="string_text"

If you want to remove an element use Element.remove() method

root.remove(element)

ElementTree.write() method used to output xml object to xml files.

tree.write('output.xml')

Section 94.4: Searching the XML with XPath
Starting with version 2.7 ElementTree has a better support for XPath queries. XPath is a syntax to enable you to
navigate through an xml like SQL is used to search through a database. Both find and findall functions support
XPath. The xml below will be used for this example

 <Catalog>
    <Books>
        <Book id="1" price="7.95">
            <Title>Do Androids Dream of Electric Sheep?</Title>
            <Author>Philip K. Dick</Author>
        </Book>
        <Book id="5" price="5.95">
            <Title>The Colour of Magic</Title>
            <Author>Terry Pratchett</Author>
        </Book>
        <Book id="7" price="6.95">
            <Title>The Eye of The World</Title>
            <Author>Robert Jordan</Author>
        </Book>
    </Books>
</Catalog>

Searching for all books:

import xml.etree.cElementTree as ET
tree = ET.parse('sample.xml')
tree.findall('Books/Book')

Searching for the book with title = 'The Colour of Magic':

tree.find("Books/Book[Title='The Colour of Magic']")
# always use '' in the right side of the comparison

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 466

Searching for the book with id = 5:

tree.find("Books/Book[@id='5']")
# searches with xml attributes must have '@' before the name

Search for the second book:

tree.find("Books/Book[2]")
# indexes starts at 1, not 0

Search for the last book:

tree.find("Books/Book[last()]")
# 'last' is the only xpath function allowed in ElementTree

Search for all authors:

tree.findall(".//Author")
#searches with // must use a relative path

Section 94.5: Opening and reading large XML files using
iterparse (incremental parsing)
Sometimes we don't want to load the entire XML file in order to get the information we need. In these instances,
being able to incrementally load the relevant sections and then delete them when we are finished is useful. With
the iterparse function you can edit the element tree that is stored while parsing the XML.

Import the ElementTree object:

import xml.etree.ElementTree as ET

Open the .xml file and iterate over all the elements:

for event, elem in ET.iterparse("yourXMLfile.xml"):
    ... do something ...

Alternatively, we can only look for specific events, such as start/end tags or namespaces. If this option is omitted (as
above), only "end" events are returned:

events=("start", "end", "start-ns", "end-ns")
for event, elem in ET.iterparse("yourXMLfile.xml", events=events):
    ... do something ...

Here is the complete example showing how to clear elements from the in-memory tree when we are finished with
them:

for event, elem in ET.iterparse("yourXMLfile.xml", events=("start","end")):        
    if elem.tag == "record_tag" and event == "end":
        print elem.text
        elem.clear()
    ... do something else ...

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 468

Chapter 95: Python Requests Post
Documentation for the Python Requests module in the context of the HTTP POST method and its corresponding
Requests function

Section 95.1: Simple Post
from requests import post

foo = post('http://httpbin.org/post', data = {'key':'value'})

Will perform a simple HTTP POST operation. Posted data can be inmost formats, however key value pairs are most
prevalent.

Headers

Headers can be viewed:

print(foo.headers)

An example response:

{'Content-Length': '439', 'X-Processed-Time': '0.000802993774414', 'X-Powered-By': 'Flask',
'Server': 'meinheld/0.6.1', 'Connection': 'keep-alive', 'Via': '1.1 vegur', 'Access-Control-Allow-
Credentials': 'true', 'Date': 'Sun, 21 May 2017 20:56:05 GMT', 'Access-Control-Allow-Origin': '*',
'Content-Type': 'application/json'}

Headers can also be prepared before post:

headers = {'Cache-Control':'max-age=0',
        'Upgrade-Insecure-Requests':'1',
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/54.0.2840.99 Safari/537.36',
        'Content-Type':'application/x-www-form-urlencoded',
        'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
        'Referer':'https://www.groupon.com/signup',
        'Accept-Encoding':'gzip, deflate, br',
        'Accept-Language':'es-ES,es;q=0.8'
        }

 foo = post('http://httpbin.org/post', headers=headers, data = {'key':'value'})

Encoding

Encoding can be set and viewed in much the same way:

 print(foo.encoding)

'utf-8'

foo.encoding = 'ISO-8859-1'

SSL Verification

Requests by default validates SSL certificates of domains. This can be overridden:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 469

foo = post('http://httpbin.org/post', data = {'key':'value'}, verify=False)

Redirection

Any redirection will be followed (e.g. http to https) this can also be changed:

foo = post('http://httpbin.org/post', data = {'key':'value'}, allow_redirects=False)

If the post operation has been redirected, this value can be accessed:

print(foo.url)

A full history of redirects can be viewed:

print(foo.history)

Section 95.2: Form Encoded Data
from requests import post

payload = {'key1' : 'value1',
           'key2' : 'value2'
           }

foo = post('http://httpbin.org/post', data=payload)

To pass form encoded data with the post operation, data must be structured as dictionary and supplied as the data
parameter.

If the data does not want to be form encoded, simply pass a string, or integer to the data parameter.

Supply the dictionary to the json parameter for Requests to format the data automatically:

from requests import post

payload = {'key1' : 'value1', 'key2' : 'value2'}

foo = post('http://httpbin.org/post', json=payload)

Section 95.3: File Upload
With the Requests module, it's only necessary to provide a file handle as opposed to the contents retrieved with
.read():

from requests import post

files = {'file' : open('data.txt', 'rb')}

foo = post('http://http.org/post', files=files)

Filename, content_type and headers can also be set:

files = {'file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel', {'Expires':
'0'})}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 470

foo = requests.post('http://httpbin.org/post', files=files)

Strings can also be sent as a file, as long they are supplied as the files parameter.

Multiple Files

Multiple files can be supplied in much the same way as one file:

multiple_files = [
    ('images', ('foo.png', open('foo.png', 'rb'), 'image/png')),
    ('images', ('bar.png', open('bar.png', 'rb'), 'image/png'))]

foo = post('http://httpbin.org/post', files=multiple_files)

Section 95.4: Responses
Response codes can be viewed from a post operation:

from requests import post

foo = post('http://httpbin.org/post', data={'data' : 'value'})
print(foo.status_code)

Returned Data

Accessing data that is returned:

foo = post('http://httpbin.org/post', data={'data' : 'value'})
print(foo.text)

Raw Responses

In the instances where you need to access the underlying urllib3 response.HTTPResponse object, this can be done
by the following:

foo = post('http://httpbin.org/post', data={'data' : 'value'})
res = foo.raw

print(res.read())

Section 95.5: Authentication
Simple HTTP Authentication

Simple HTTP Authentication can be achieved with the following:

from requests import post

foo = post('http://natas0.natas.labs.overthewire.org', auth=('natas0', 'natas0'))

This is technically short hand for the following:

from requests import post
from requests.auth import HTTPBasicAuth

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 471

foo = post('http://natas0.natas.labs.overthewire.org', auth=HTTPBasicAuth('natas0', 'natas0'))

HTTP Digest Authentication

HTTP Digest Authentication is done in a very similar way, Requests provides a different object for this:

from requests import post
from requests.auth import HTTPDigestAuth

foo = post('http://natas0.natas.labs.overthewire.org', auth=HTTPDigestAuth('natas0', 'natas0'))

Custom Authentication

In some cases the built in authentication mechanisms may not be enough, imagine this example:

A server is configured to accept authentication if the sender has the correct user-agent string, a certain header
value and supplies the correct credentials through HTTP Basic Authentication. To achieve this a custom
authentication class should be prepared, subclassing AuthBase, which is the base for Requests authentication
implementations:

from requests.auth import AuthBase
from requests.auth import _basic_auth_str
from requests._internal_utils import to_native_string

class CustomAuth(AuthBase):

    def __init__(self, secret_header, user_agent , username, password):
        # setup any auth-related data here
        self.secret_header =  secret_header
        self.user_agent = user_agent
        self.username = username
        self.password = password

    def __call__(self, r):
        # modify and return the request
        r.headers['X-Secret'] = self.secret_header
        r.headers['User-Agent'] = self.user_agent
        r.headers['Authorization'] = _basic_auth_str(self.username, self.password)
       
        return r

This can then be utilized with the following code:

foo = get('http://test.com/admin', auth=CustomAuth('SecretHeader', 'CustomUserAgent', 'user',
'password' ))

Section 95.6: Proxies
Each request POST operation can be configured to use network proxies

HTTP/S Proxies

from requests import post

proxies = {
  'http': 'http://192.168.0.128:3128',
  'https': 'http://192.168.0.127:1080',
   }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 472

foo = requests.post('http://httpbin.org/post', proxies=proxies)

HTTP Basic Authentication can be provided in this manner:

proxies = {'http': 'http://user:pass@192.168.0.128:312'}
foo = requests.post('http://httpbin.org/post', proxies=proxies)

SOCKS Proxies

The use of socks proxies requires 3rd party dependencies requests[socks], once installed socks proxies are used
in a very similar way to HTTPBasicAuth:

proxies = {
'http': 'socks5://user:pass@host:port',
'https': 'socks5://user:pass@host:port'
}

foo = requests.post('http://httpbin.org/post', proxies=proxies)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 473

Chapter 96: Distribution
Section 96.1: py2app
To use the py2app framework you must install it first. Do this by opening terminal and entering the following
command:

sudo easy_install -U py2app

You can also pip install the packages as:

pip install py2app

Then create the setup file for your python script:

py2applet --make-setup MyApplication.py

Edit the settings of the setup file to your liking, this is the default:

"""
This is a setup.py script generated by py2applet

Usage:
    python setup.py py2app
"""

from setuptools import setup

APP = ['test.py']
DATA_FILES = []
OPTIONS = {'argv_emulation': True}

setup(
    app=APP,
    data_files=DATA_FILES,
    options={'py2app': OPTIONS},
    setup_requires=['py2app'],
)

To add an icon file (this file must have a .icns extension), or include images in your application as reference, change
your options as shown:

DATA_FILES = ['myInsertedImage.jpg']
OPTIONS = {'argv_emulation': True, 'iconfile': 'myCoolIcon.icns'}

Finally enter this into terminal:

python setup.py py2app

The script should run and you will find your finished application in the dist folder.

Use the following options for more customization:

optimize (-O)         optimization level: -O1 for "python -O", -O2 for
                      "python -OO", and -O0 to disable [default: -O0]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 474

includes (-i)         comma-separated list of modules to include

packages (-p)         comma-separated list of packages to include

extension             Bundle extension [default:.app for app, .plugin for
                      plugin]

extra-scripts         comma-separated list of additional scripts to include
                      in an application or plugin.

Section 96.2: cx_Freeze
Install cx_Freeze from here

Unzip the folder and run these commands from that directory:

python setup.py build
sudo python setup.py install

Create a new directory for your python script and create a "setup.py" file in the same directory with the following
content:

application_title = "My Application" # Use your own application name
main_python_file = "my_script.py" # Your python script

import sys

from cx_Freeze import setup, Executable

base = None
if sys.platform == "win32":
    base = "Win32GUI"

includes = ["atexit","re"]

setup(
        name = application_title,
        version = "0.1",
        description = "Your Description",
        options = {"build_exe" : {"includes" : includes }},
        executables = [Executable(main_python_file, base = base)])

Now run your setup.py from terminal:

python setup.py bdist_mac

NOTE: On El Capitan this will need to be run as root with SIP mode disabled.

https://sourceforge.net/projects/cx-freeze/files/4.3.1/cx_Freeze-4.3.1.tar.gz/download?use_mirror=kent&download=
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 475

Chapter 97: Property Objects
Section 97.1: Using the @property decorator for read-write
properties
If you want to use @property to implement custom behavior for setting and getting, use this pattern:

class Cash(object):
    def __init__(self, value):
        self.value = value
    @property
    def formatted(self):
        return '${:.2f}'.format(self.value)
    @formatted.setter
    def formatted(self, new):
        self.value = float(new[1:])

To use this:

>>> wallet = Cash(2.50)
>>> print(wallet.formatted)
$2.50
>>> print(wallet.value)
2.5
>>> wallet.formatted = '$123.45'
>>> print(wallet.formatted)
$123.45
>>> print(wallet.value)
123.45

Section 97.2: Using the @property decorator
The @property decorator can be used to define methods in a class which act like attributes. One example where
this can be useful is when exposing information which may require an initial (expensive) lookup and simple retrieval
thereafter.

Given some module foobar.py:

class Foo(object):
    def __init__(self):
        self.__bar = None

    @property
    def bar(self):
        if self.__bar is None:
            self.__bar = some_expensive_lookup_operation()
        return self.__bar

Then

>>> from foobar import Foo
>>> foo = Foo()
>>> print(foo.bar)  # This will take some time since bar is None after initialization
42
>>> print(foo.bar)  # This is much faster since bar has a value now
42

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 476

Section 97.3: Overriding just a getter, setter or a deleter of a
property object
When you inherit from a class with a property, you can provide a new implementation for one or more of the
property getter, setter or deleter functions, by referencing the property object on the parent class:

class BaseClass(object):
    @property
    def foo(self):
        return some_calculated_value()

    @foo.setter
    def foo(self, value):
        do_something_with_value(value)

class DerivedClass(BaseClass):
    @BaseClass.foo.setter
    def foo(self, value):
        do_something_different_with_value(value)

You can also add a setter or deleter where there was not one on the base class before.

Section 97.4: Using properties without decorators
While using decorator syntax (with the @) is convenient, it also a bit concealing. You can use properties directly,
without decorators. The following Python 3.x example shows this:

class A:
    p = 1234
    def getX (self):
        return self._x

    def setX (self, value):
        self._x = value
           
    def getY (self):
        return self._y

    def setY (self, value):
        self._y = 1000 + value    # Weird but possible
       
    def getY2 (self):
        return self._y

    def setY2 (self, value):
        self._y = value
       
    def getT    (self):
        return self._t

    def setT (self, value):
        self._t = value
       
    def getU (self):
        return self._u + 10000

    def setU (self, value):
        self._u = value - 5000

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 477

           
    x, y, y2 = property (getX, setX), property (getY, setY), property (getY2, setY2)
    t = property (getT, setT)
    u = property (getU, setU)
   
A.q = 5678

class B:
    def getZ (self):
        return self.z_
   
    def setZ (self, value):
        self.z_ = value
       
    z = property (getZ, setZ)
   
class C:
    def __init__ (self):
        self.offset = 1234

    def getW (self):
        return self.w_ + self.offset
       
    def setW (self, value):
        self.w_ = value - self.offset
       
    w = property (getW, setW)
   
a1 = A ()
a2 = A ()

a1.y2 = 1000
a2.y2 = 2000

a1.x = 5
a1.y = 6

a2.x = 7
a2.y = 8

a1.t = 77
a1.u = 88
   
print (a1.x, a1.y, a1.y2)
print (a2.x, a2.y, a2.y2)
print (a1.p, a2.p, a1.q, a2.q)

print (a1.t, a1.u)

b = B ()
c = C ()

b.z = 100100
c.z = 200200
c.w = 300300

print (a1.x, b.z, c.z, c.w)

c.w = 400400
c.z = 500500
b.z = 600600

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 478

print (a1.x, b.z, c.z, c.w)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 479

Chapter 98: Overloading
Section 98.1: Operator overloading
Below are the operators that can be overloaded in classes, along with the method definitions that are required, and
an example of the operator in use within an expression.

N.B. The use of other as a variable name is not mandatory, but is considered the norm.

Operator Method Expression
+ Addition __add__(self, other) a1 + a2

- Subtraction __sub__(self, other) a1 - a2

* Multiplication __mul__(self, other) a1 * a2

@ Matrix Multiplication __matmul__(self, other) a1 @ a2 (Python 3.5)

/ Division __div__(self, other) a1 / a2 (Python 2 only)

/ Division __truediv__(self, other) a1 / a2 (Python 3)

// Floor Division __floordiv__(self, other) a1 // a2

% Modulo/Remainder __mod__(self, other) a1 % a2

** Power __pow__(self, other[, modulo]) a1 ** a2

<< Bitwise Left Shift __lshift__(self, other) a1 << a2

>> Bitwise Right Shift __rshift__(self, other) a1 >> a2

& Bitwise AND __and__(self, other) a1 & a2

^ Bitwise XOR __xor__(self, other) a1 ^ a2

| (Bitwise OR) __or__(self, other) a1 | a2

- Negation (Arithmetic) __neg__(self) -a1

+ Positive __pos__(self) +a1

~ Bitwise NOT __invert__(self) ~a1

< Less than __lt__(self, other) a1 < a2

<= Less than or Equal to __le__(self, other) a1 <= a2

== Equal to __eq__(self, other) a1 == a2

!= Not Equal to __ne__(self, other) a1 != a2

> Greater than __gt__(self, other) a1 > a2

>= Greater than or Equal to __ge__(self, other) a1 >= a2

[index] Index operator __getitem__(self, index) a1[index]

in In operator __contains__(self, other) a2 in a1

(*args, ...) Calling __call__(self, *args, **kwargs) a1(*args, **kwargs)

The optional parameter modulo for __pow__ is only used by the pow built-in function.

Each of the methods corresponding to a binary operator has a corresponding "right" method which start with __r,
for example __radd__:

class A:
    def __init__(self, a):
        self.a = a
    def __add__(self, other):
        return self.a + other
    def __radd__(self, other):
        print("radd")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 480

        return other + self.a

A(1) + 2  # Out:  3
2 + A(1)  # prints radd. Out: 3

as well as a corresponding inplace version, starting with __i:

class B:
    def __init__(self, b):
        self.b = b
    def __iadd__(self, other):
        self.b += other
        print("iadd")
        return self

b = B(2)
b.b       # Out: 2
b += 1    # prints iadd
b.b       # Out: 3

Since there's nothing special about these methods, many other parts of the language, parts of the standard library,
and even third-party modules add magic methods on their own, like methods to cast an object to a type or checking
properties of the object. For example, the builtin str() function calls the object's __str__ method, if it exists. Some
of these uses are listed below.

Function Method Expression
Casting to int __int__(self) int(a1)

Absolute function __abs__(self) abs(a1)

Casting to str __str__(self) str(a1)

Casting to unicode __unicode__(self) unicode(a1) (Python 2 only)

String representation __repr__(self) repr(a1)

Casting to bool __nonzero__(self) bool(a1)

String formatting __format__(self, formatstr) "Hi {:abc}".format(a1)

Hashing __hash__(self) hash(a1)

Length __len__(self) len(a1)

Reversed __reversed__(self) reversed(a1)

Floor __floor__(self) math.floor(a1)

Ceiling __ceil__(self) math.ceil(a1)

There are also the special methods __enter__ and __exit__ for context managers, and many more.

Section 98.2: Magic/Dunder Methods
Magic (also called dunder as an abbreviation for double-underscore) methods in Python serve a similar purpose to
operator overloading in other languages. They allow a class to define its behavior when it is used as an operand in
unary or binary operator expressions. They also serve as implementations called by some built-in functions.

Consider this implementation of two-dimensional vectors.

import math

class Vector(object):
    # instantiation
    def __init__(self, x, y):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 481

        self.x = x
        self.y = y

    # unary negation (-v)
    def __neg__(self):
        return Vector(-self.x, -self.y)

    # addition (v + u)
    def __add__(self, other):
        return Vector(self.x + other.x, self.y + other.y)

    # subtraction (v - u)
    def __sub__(self, other):
        return self + (-other)

    # equality (v == u)
    def __eq__(self, other):
        return self.x == other.x and self.y == other.y

    # abs(v)
    def __abs__(self):
        return math.hypot(self.x, self.y)

    # str(v)
    def __str__(self):
        return '<{0.x}, {0.y}>'.format(self)

    # repr(v)
    def __repr__(self):
        return 'Vector({0.x}, {0.y})'.format(self)

Now it is possible to naturally use instances of the Vector class in various expressions.

v = Vector(1, 4)
u = Vector(2, 0)

u + v           # Vector(3, 4)
print(u + v)    # "<3, 4>" (implicit string conversion)
u - v           # Vector(1, -4)
u == v          # False
u + v == v + u  # True
abs(u + v)      # 5.0

Section 98.3: Container and sequence types
It is possible to emulate container types, which support accessing values by key or index.

Consider this naive implementation of a sparse list, which stores only its non-zero elements to conserve memory.

class sparselist(object):
    def __init__(self, size):
        self.size = size
        self.data = {}
   
    # l[index]
    def __getitem__(self, index):
        if index < 0:
            index += self.size
        if index >= self.size:
            raise IndexError(index)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 482

        try:
            return self.data[index]
        except KeyError:
            return 0.0

    # l[index] = value
    def __setitem__(self, index, value):
        self.data[index] = value

    # del l[index]
    def __delitem__(self, index):
        if index in self.data:
            del self.data[index]

    # value in l
    def __contains__(self, value):
        return value == 0.0 or value in self.data.values()

    # len(l)
    def __len__(self):
        return self.size

    # for value in l: ...
    def __iter__(self):
        return (self[i] for i in range(self.size)) # use xrange for python2

Then, we can use a sparselist much like a regular list.

l = sparselist(10 ** 6)  # list with 1 million elements
0 in l                   # True
10 in l                  # False

l[12345] = 10            
10 in l                  # True
l[12345]                 # 10

for v in l:
    pass  # 0, 0, 0, ... 10, 0, 0 ... 0

Section 98.4: Callable types
class adder(object):
    def __init__(self, first):
        self.first = first

    # a(...)
    def __call__(self, second):
        return self.first + second

add2 = adder(2)
add2(1)  # 3
add2(2)  # 4

Section 98.5: Handling unimplemented behaviour
If your class doesn't implement a specific overloaded operator for the argument types provided, it should return
NotImplemented (note that this is a special constant, not the same as NotImplementedError). This will allow Python
to fall back to trying other methods to make the operation work:

https://docs.python.org/3/library/constants.html#NotImplemented
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 483

When NotImplemented is returned, the interpreter will then try the reflected operation on the other type,
or some other fallback, depending on the operator. If all attempted operations return NotImplemented,
the interpreter will raise an appropriate exception.

For example, given x + y, if x.__add__(y) returns unimplemented, y.__radd__(x) is attempted instead.

class NotAddable(object):

    def __init__(self, value):
        self.value = value

    def __add__(self, other):
        return NotImplemented

class Addable(NotAddable):

    def __add__(self, other):
        return Addable(self.value + other.value)

    __radd__ = __add__

As this is the reflected method we have to implement __add__ and __radd__ to get the expected behaviour in all
cases; fortunately, as they are both doing the same thing in this simple example, we can take a shortcut.

In use:

>>> x = NotAddable(1)
>>> y = Addable(2)
>>> x + x
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'NotAddable' and 'NotAddable'
>>> y + y
<so.Addable object at 0x1095974d0>
>>> z = x + y
>>> z
<so.Addable object at 0x109597510>
>>> z.value
3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 484

Chapter 99: Polymorphism
Section 99.1: Duck Typing
Polymorphism without inheritance in the form of duck typing as available in Python due to its dynamic typing
system. This means that as long as the classes contain the same methods the Python interpreter does not
distinguish between them, as the only checking of the calls occurs at run-time.

class Duck:
    def quack(self):
        print("Quaaaaaack!")
    def feathers(self):
        print("The duck has white and gray feathers.")

class Person:
    def quack(self):
        print("The person imitates a duck.")
    def feathers(self):
        print("The person takes a feather from the ground and shows it.")
    def name(self):
        print("John Smith")

def in_the_forest(obj):
    obj.quack()
    obj.feathers()

donald = Duck()
john = Person()
in_the_forest(donald)
in_the_forest(john)

The output is:

Quaaaaaack!
The duck has white and gray feathers.
The person imitates a duck.
The person takes a feather from the ground and shows it.

Section 99.2: Basic Polymorphism
Polymorphism is the ability to perform an action on an object regardless of its type. This is generally implemented
by creating a base class and having two or more subclasses that all implement methods with the same signature.
Any other function or method that manipulates these objects can call the same methods regardless of which type
of object it is operating on, without needing to do a type check first. In object-oriented terminology when class X
extend class Y , then Y is called super class or base class and X is called subclass or derived class.

class Shape:
    """
    This is a parent class that is intended to be inherited by other classes
    """

    def calculate_area(self):
        """
        This method is intended to be overridden in subclasses.
        If a subclass doesn't implement it but it is called, NotImplemented will be raised.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 485

        """
        raise NotImplemented

class Square(Shape):
    """
    This is a subclass of the Shape class, and represents a square
    """
    side_length = 2     # in this example, the sides are 2 units long

    def calculate_area(self):
        """
        This method overrides Shape.calculate_area(). When an object of type
        Square has its calculate_area() method called, this is the method that
        will be called, rather than the parent class' version.

        It performs the calculation necessary for this shape, a square, and
        returns the result.
        """
        return self.side_length * 2

class Triangle(Shape):
    """
    This is also a subclass of the Shape class, and it represents a triangle
    """
    base_length = 4
    height = 3

    def calculate_area(self):
        """
        This method also overrides Shape.calculate_area() and performs the area
        calculation for a triangle, returning the result.
        """

        return 0.5 * self.base_length * self.height

def get_area(input_obj):
    """
    This function accepts an input object, and will call that object's
    calculate_area() method. Note that the object type is not specified. It
    could be a Square, Triangle, or Shape object.
    """

    print(input_obj.calculate_area())

# Create one object of each class
shape_obj = Shape()
square_obj = Square()
triangle_obj = Triangle()

# Now pass each object, one at a time, to the get_area() function and see the
# result.
get_area(shape_obj)
get_area(square_obj)
get_area(triangle_obj)

We should see this output:

None
4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 486

6.0

What happens without polymorphism?
Without polymorphism, a type check may be required before performing an action on an object to determine the
correct method to call. The following counter example performs the same task as the previous code, but without
the use of polymorphism, the get_area() function has to do more work.

class Square:

    side_length = 2

    def calculate_square_area(self):
        return self.side_length ** 2

class Triangle:

    base_length = 4
    height = 3

    def calculate_triangle_area(self):
        return (0.5 * self.base_length) * self.height

def get_area(input_obj):

    # Notice the type checks that are now necessary here. These type checks
    # could get very complicated for a more complex example, resulting in
    # duplicate and difficult to maintain code.

    if type(input_obj).__name__ == "Square":
        area = input_obj.calculate_square_area()

    elif type(input_obj).__name__ == "Triangle":
        area = input_obj.calculate_triangle_area()

    print(area)

# Create one object of each class
square_obj = Square()
triangle_obj = Triangle()

# Now pass each object, one at a time, to the get_area() function and see the
# result.
get_area(square_obj)
get_area(triangle_obj)

We should see this output:

4
6.0

Important Note
Note that the classes used in the counter example are "new style" classes and implicitly inherit from the object class
if Python 3 is being used. Polymorphism will work in both Python 2.x and 3.x, but the polymorphism
counterexample code will raise an exception if run in a Python 2.x interpreter because type(input_obj).name will
return "instance" instead of the class name if they do not explicitly inherit from object, resulting in area never being
assigned to.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 488

Chapter 100: Method Overriding
Section 100.1: Basic method overriding
Here is an example of basic overriding in Python (for the sake of clarity and compatibility with both Python 2 and 3,
using new style class and print with ()):

class Parent(object):
    def introduce(self):
        print("Hello!")

    def print_name(self):
        print("Parent")
   
   
class Child(Parent):
    def print_name(self):
        print("Child")
   
   
p = Parent()
c = Child()

p.introduce()
p.print_name()

c.introduce()
c.print_name()

$ python basic_override.py
Hello!
Parent
Hello!
Child

When the Child class is created, it inherits the methods of the Parent class. This means that any methods that the
parent class has, the child class will also have. In the example, the introduce is defined for the Child class because
it is defined for Parent, despite not being defined explicitly in the class definition of Child.

In this example, the overriding occurs when Child defines its own print_name method. If this method was not
declared, then c.print_name() would have printed "Parent". However, Child has overridden the Parent's
definition of print_name, and so now upon calling c.print_name(), the word "Child" is printed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 489

Chapter 101: User-Defined Methods
Section 101.1: Creating user-defined method objects
User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object, an unbound user-defined method object, or a class method
object.

class A(object):
    # func: A user-defined function object
    #
    # Note that func is a function object when it's defined,
    # and an unbound method object when it's retrieved.
    def func(self):
        pass

    # classMethod: A class method
    @classmethod
    def classMethod(self):
        pass

class B(object):
    # unboundMeth: A unbound user-defined method object
    #
    # Parent.func is an unbound user-defined method object here,
    # because it's retrieved.
    unboundMeth = A.func

a = A()
b = B()

print A.func
# output: <unbound method A.func>
print a.func
# output: <bound method A.func of <__main__.A object at 0x10e9ab910>>
print B.unboundMeth
# output: <unbound method A.func>
print b.unboundMeth
# output: <unbound method A.func>
print A.classMethod
# output: <bound method type.classMethod of <class '__main__.A'>>
print a.classMethod
# output: <bound method type.classMethod of <class '__main__.A'>>

When the attribute is a user-defined method object, a new method object is only created if the class from which it is
being retrieved is the same as, or a derived class of, the class stored in the original method object; otherwise, the
original method object is used as it is.

# Parent: The class stored in the original method object
class Parent(object):
    # func: The underlying function of original method object
    def func(self):
        pass
    func2 = func

# Child: A derived class of Parent
class Child(Parent):
    func = Parent.func

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 490

# AnotherClass: A different class, neither subclasses nor subclassed
class AnotherClass(object):
    func = Parent.func
   
print Parent.func is Parent.func                # False, new object created
print Parent.func2 is Parent.func2              # False, new object created
print Child.func is Child.func                  # False, new object created
print AnotherClass.func is AnotherClass.func    # True, original object used

Section 101.2: Turtle example
The following is an example of using an user-defined function to be called multiple(∞) times in a script with ease.

import turtle, time, random #tell python we need 3 different modules
turtle.speed(0) #set draw speed to the fastest
turtle.colormode(255) #special colormode
turtle.pensize(4) #size of the lines that will be drawn
def triangle(size): #This is our own function, in the parenthesis is a variable we have defined that
will be used in THIS FUNCTION ONLY. This fucntion creates a right triangle
    turtle.forward(size) #to begin this function we go forward, the amount to go forward by is the
variable size
    turtle.right(90) #turn right by 90 degree
    turtle.forward(size) #go forward, again with variable
    turtle.right(135) #turn right again
    turtle.forward(size * 1.5) #close the triangle. thanks to the Pythagorean theorem we know that
this line must be 1.5 times longer than the other two(if they are equal)
while(1): #INFINITE LOOP
    turtle.setpos(random.randint(-200, 200), random.randint(-200, 200)) #set the draw point to a
random (x,y) position
    turtle.pencolor(random.randint(1, 255), random.randint(1, 255), random.randint(1, 255))
#randomize the RGB color
    triangle(random.randint(5, 55)) #use our function, because it has only one variable we can
simply put a value in the parenthesis. The value that will be sent will be random between 5 - 55, end
the end it really just changes ow big the triangle is.
    turtle.pencolor(random.randint(1, 255), random.randint(1, 255), random.randint(1, 255))
#randomize color again

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 491

Chapter 102: String representations of
class instances: __str__ and __repr__
methods
Section 102.1: Motivation
So you've just created your first class in Python, a neat little class that encapsulates a playing card:

class Card:
    def __init__(self, suit, pips):
        self.suit = suit
        self.pips = pips

Elsewhere in your code, you create a few instances of this class:

ace_of_spades = Card('Spades', 1)
four_of_clubs = Card('Clubs',  4)
six_of_hearts = Card('Hearts', 6)

You've even created a list of cards, in order to represent a "hand":

my_hand = [ace_of_spades, four_of_clubs, six_of_hearts]

Now, during debugging, you want to see what your hand looks like, so you do what comes naturally and write:

print(my_hand)

But what you get back is a bunch of gibberish:

[<__main__.Card instance at 0x0000000002533788>,
 <__main__.Card instance at 0x00000000025B95C8>,
 <__main__.Card instance at 0x00000000025FF508>]

Confused, you try just printing a single card:

print(ace_of_spades)

And again, you get this weird output:

<__main__.Card instance at 0x0000000002533788>

Have no fear. We're about to fix this.

First, however, it's important to understand what's going on here. When you wrote print(ace_of_spades) you told
Python you wanted it to print information about the Card instance your code is calling ace_of_spades. And to be
fair, it did.

That output is comprised of two important bits: the type of the object and the object's id. The second part alone
(the hexadecimal number) is enough to uniquely identify the object at the time of the print call.[1]

What really went on was that you asked Python to "put into words" the essence of that object and then display it to
you. A more explicit version of the same machinery might be:

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#id
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 492

string_of_card = str(ace_of_spades)
print(string_of_card)

In the first line, you try to turn your Card instance into a string, and in the second you display it.

The Problem

The issue you're encountering arises due to the fact that, while you told Python everything it needed to know about
the Card class for you to create cards, you didn't tell it how you wanted Card instances to be converted to strings.

And since it didn't know, when you (implicitly) wrote str(ace_of_spades), it gave you what you saw, a generic
representation of the Card instance.

The Solution (Part 1)

But we can tell Python how we want instances of our custom classes to be converted to strings. And the way we do
this is with the __str__ "dunder" (for double-underscore) or "magic" method.

Whenever you tell Python to create a string from a class instance, it will look for a __str__ method on the class, and
call it.

Consider the following, updated version of our Card class:

class Card:
    def __init__(self, suit, pips):
        self.suit = suit
        self.pips = pips

    def __str__(self):
        special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'}

        card_name = special_names.get(self.pips, str(self.pips))

        return "%s of %s" % (card_name, self.suit)

Here, we've now defined the __str__ method on our Card class which, after a simple dictionary lookup for face
cards, returns a string formatted however we decide.

(Note that "returns" is in bold here, to stress the importance of returning a string, and not simply printing it.
Printing it may seem to work, but then you'd have the card printed when you did something like
str(ace_of_spades), without even having a print function call in your main program. So to be clear, make sure that
__str__ returns a string.).

The __str__ method is a method, so the first argument will be self and it should neither accept, nor be passed
additional arguments.

Returning to our problem of displaying the card in a more user-friendly manner, if we again run:

ace_of_spades = Card('Spades', 1)
print(ace_of_spades)

We'll see that our output is much better:

Ace of Spades

So great, we're done, right?

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 493

Well just to cover our bases, let's double check that we've solved the first issue we encountered, printing the list of
Card instances, the hand.

So we re-check the following code:

my_hand = [ace_of_spades, four_of_clubs, six_of_hearts]
print(my_hand)

And, to our surprise, we get those funny hex codes again:

[<__main__.Card instance at 0x00000000026F95C8>,
 <__main__.Card instance at 0x000000000273F4C8>,
 <__main__.Card instance at 0x0000000002732E08>]

What's going on? We told Python how we wanted our Card instances to be displayed, why did it apparently seem to
forget?

The Solution (Part 2)

Well, the behind-the-scenes machinery is a bit different when Python wants to get the string representation of
items in a list. It turns out, Python doesn't care about __str__ for this purpose.

Instead, it looks for a different method, __repr__, and if that's not found, it falls back on the "hexadecimal thing".[2]

So you're saying I have to make two methods to do the same thing? One for when I want to print my card by itself and
another when it's in some sort of container?

No, but first let's look at what our class would be like if we were to implement both __str__ and __repr__ methods:

class Card:
    special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'}

    def __init__(self, suit, pips):
        self.suit = suit
        self.pips = pips

    def __str__(self):
        card_name = Card.special_names.get(self.pips, str(self.pips))
        return "%s of %s (S)" % (card_name, self.suit)

    def __repr__(self):
        card_name = Card.special_names.get(self.pips, str(self.pips))
        return "%s of %s (R)" % (card_name, self.suit)

Here, the implementation of the two methods __str__ and __repr__ are exactly the same, except that, to
differentiate between the two methods, (S) is added to strings returned by __str__ and (R) is added to strings
returned by __repr__.

Note that just like our __str__ method, __repr__ accepts no arguments and returns a string.

We can see now what method is responsible for each case:

ace_of_spades = Card('Spades', 1)
four_of_clubs = Card('Clubs',  4)
six_of_hearts = Card('Hearts', 6)

my_hand = [ace_of_spades, four_of_clubs, six_of_hearts]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 494

print(my_hand)           # [Ace of Spades (R), 4 of Clubs (R), 6 of Hearts (R)]

print(ace_of_spades)     # Ace of Spades (S)

As was covered, the __str__ method was called when we passed our Card instance to print and the __repr__
method was called when we passed a list of our instances to print.

At this point it's worth pointing out that just as we can explicitly create a string from a custom class instance using
str() as we did earlier, we can also explicitly create a string representation of our class with a built-in function
called repr().

For example:

str_card = str(four_of_clubs)
print(str_card)                     # 4 of Clubs (S)

repr_card = repr(four_of_clubs)
print(repr_card)                    # 4 of Clubs (R)

And additionally, if defined, we could call the methods directly (although it seems a bit unclear and unnecessary):

print(four_of_clubs.__str__())     # 4 of Clubs (S)

print(four_of_clubs.__repr__())    # 4 of Clubs (R)

About those duplicated functions...

Python developers realized, in the case you wanted identical strings to be returned from str() and repr() you
might have to functionally-duplicate methods -- something nobody likes.

So instead, there is a mechanism in place to eliminate the need for that. One I snuck you past up to this point. It
turns out that if a class implements the __repr__ method but not the __str__ method, and you pass an instance of
that class to str() (whether implicitly or explicitly), Python will fallback on your __repr__ implementation and use
that.

So, to be clear, consider the following version of the Card class:

class Card:
    special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'}

    def __init__(self, suit, pips):
        self.suit = suit
        self.pips = pips

    def __repr__(self):
        card_name = Card.special_names.get(self.pips, str(self.pips))
        return "%s of %s" % (card_name, self.suit)

Note this version only implements the __repr__ method. Nonetheless, calls to str() result in the user-friendly
version:

print(six_of_hearts)            # 6 of Hearts  (implicit conversion)
print(str(six_of_hearts))       # 6 of Hearts  (explicit conversion)

as do calls to repr():

print([six_of_hearts])          #[6 of Hearts] (implicit conversion)

https://docs.python.org/3/library/functions.html#func-str
https://docs.python.org/3/library/functions.html#func-str
https://docs.python.org/3/library/functions.html#func-str
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#repr
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 495

print(repr(six_of_hearts))      # 6 of Hearts  (explicit conversion)

Summary

In order for you to empower your class instances to "show themselves" in user-friendly ways, you'll want to
consider implementing at least your class's __repr__ method. If memory serves, during a talk Raymond Hettinger
said that ensuring classes implement __repr__ is one of the first things he looks for while doing Python code
reviews, and by now it should be clear why. The amount of information you could have added to debugging
statements, crash reports, or log files with a simple method is overwhelming when compared to the paltry, and
often less-than-helpful (type, id) information that is given by default.

If you want different representations for when, for example, inside a container, you'll want to implement both
__repr__ and __str__ methods. (More on how you might use these two methods differently below).

Section 102.2: Both methods implemented, eval-round-trip
style __repr__()
class Card:
    special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'}

    def __init__(self, suit, pips):
        self.suit = suit
        self.pips = pips

    # Called when instance is converted to a string via str()
    # Examples:
    #   print(card1)
    #   print(str(card1)
    def __str__(self):
        card_name = Card.special_names.get(self.pips, str(self.pips))
        return "%s of %s" % (card_name, self.suit)

    # Called when instance is converted to a string via repr()
    # Examples:
    #   print([card1, card2, card3])
    #   print(repr(card1))
    def __repr__(self):
        return "Card(%s, %d)" % (self.suit, self.pips)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 496

Chapter 103: Debugging
Section 103.1: Via IPython and ipdb
If IPython (or Jupyter) are installed, the debugger can be invoked using:

import ipdb
ipdb.set_trace()

When reached, the code will exit and print:

 /home/usr/ook.py(3)<module>()
      1 import ipdb
      2 ipdb.set_trace()
----> 3 print("Hello world!")

ipdb>

Clearly, this means that one has to edit the code. There is a simpler way:

from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode='Verbose',
                                     color_scheme='Linux',
                                     call_pdb=1)

This will cause the debugger to be called if there is an uncaught exception raised.

Section 103.2: The Python Debugger: Step-through Debugging
with _pdb_
The Python Standard Library includes an interactive debugging library called pdb. pdb has extensive capabilities, the
most commonly used being the ability to 'step-through' a program.

To immediately enter into step-through debugging use:

python -m pdb <my_file.py>

This will start the debugger at the first line of the program.

Usually you will want to target a specific section of the code for debugging. To do this we import the pdb library and
use set_trace() to interrupt the flow of this troubled example code.

import pdb

def divide(a, b):
    pdb.set_trace()
    return a/b
    # What's wrong with this? Hint: 2 != 3

print divide(1, 2)

Running this program will launch the interactive debugger.

python foo.py
> ~/scratch/foo.py(5)divide()

http://ipython.org/
http://jupyter.org/
https://docs.python.org/2/library/
https://docs.python.org/2/library/pdb.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 497

-> return a/b
(Pdb)

Often this command is used on one line so it can be commented out with a single # character

 import pdf; pdb.set_trace()

At the (Pdb) prompt commands can be entered. These commands can be debugger commands or python. To print
variables we can use p from the debugger, or python's print.

(Pdb) p a
1
(Pdb) print a
1

To see list of all local variables use

locals

build-in function

These are good debugger commands to know:

b  | : set breakpoint at line *n* or function named *f*.
# b 3
# b divide
b: show all breakpoints.
c: continue until the next breakpoint.
s: step through this line (will enter a function).
n: step over this line (jumps over a function).
r: continue until the current function returns.
l: list a window of code around this line.
p : print variable named *var*.
# p x
q: quit debugger.
bt: print the traceback of the current execution call stack
up: move your scope up the function call stack to the caller of the current function
down: Move your scope back down the function call stack one level
step: Run the program until the next line of execution in the program, then return control back to
the debugger
next: run the program until the next line of execution in the current function, then return
control back to the debugger
return: run the program until the current function returns, then return control back to the
debugger
continue: continue running the program until the next breakpoint (or set_trace si called again)

The debugger can also evaluate python interactively:

-> return a/b
(Pdb) p a+b
3
(Pdb) [ str(m) for m in [a,b]]
['1', '2']
(Pdb) [ d for d in xrange(5)]
[0, 1, 2, 3, 4]

Note:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 498

If any of your variable names coincide with the debugger commands, use an exclamation mark '!' before the var to
explicitly refer to the variable and not the debugger command. For example, often it might so happen that you use
the variable name 'c' for a counter, and you might want to print it while in the debugger. a simple 'c' command
would continue execution till the next breakpoint. Instead use '!c' to print the value of the variable as follows:

(Pdb) !c
4

Section 103.3: Remote debugger
Sometimes you need to debug python code which is executed by another process and in this cases rpdb comes in
handy.

rpdb is a wrapper around pdb that re-routes stdin and stdout to a socket handler. By default it opens the
debugger on port 4444

Usage:

# In the Python file you want to debug.
import rpdb
rpdb.set_trace()

And then you need run this in terminal to connect to this process.

# Call in a terminal to see the output
$ nc 127.0.0.1 4444

And you will get pdb promt

> /home/usr/ook.py(3)<module>()
-> print("Hello world!")
(Pdb)

https://github.com/tamentis/rpdb/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 499

Chapter 104: Reading and Writing CSV
Section 104.1: Using pandas
Write a CSV file from a dict or a DataFrame.

import pandas as pd

d = {'a': (1, 101), 'b': (2, 202), 'c': (3, 303)}
pd.DataFrame.from_dict(d, orient="index")
df.to_csv("data.csv")

Read a CSV file as a DataFrame and convert it to a dict:

df = pd.read_csv("data.csv")
d = df.to_dict()

Section 104.2: Writing a TSV file
Python
import csv

with open('/tmp/output.tsv', 'wt') as out_file:
    tsv_writer = csv.writer(out_file, delimiter='\t')
    tsv_writer.writerow(['name', 'field'])
    tsv_writer.writerow(['Dijkstra', 'Computer Science'])
    tsv_writer.writerow(['Shelah', 'Math'])
    tsv_writer.writerow(['Aumann', 'Economic Sciences'])

Output file
$ cat /tmp/output.tsv

name    field
Dijkstra    Computer Science
Shelah    Math
Aumann    Economic Sciences

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 501

Chapter 105: Writing to CSV from String or
List

Parameter Details
open ("/path/", "mode") Specify the path to your CSV file

open (path, "mode") Specify mode to open file in (read, write, etc.)

csv.writer(file, delimiter) Pass opened CSV file here

csv.writer(file, delimiter=' ') Specify delimiter character or pattern

Writing to a .csv file is not unlike writing to a regular file in most regards, and is fairly straightforward. I will, to the
best of my ability, cover the easiest, and most efficient approach to the problem.

Section 105.1: Basic Write Example
import csv

#------ We will write to CSV in this function ------------

def csv_writer(data, path):
   
    #Open CSV file whose path we passed.
    with open(path, "wb") as csv_file:
       
        writer = csv.writer(csv_file, delimiter=',')
        for line in data:
            writer.writerow(line)

#---- Define our list here, and call function ------------

if __name__ == "__main__":

    """
    data = our list that we want to write.
    Split it so we get a list of lists.
    """
    data = ["first_name,last_name,age".split(","),
            "John,Doe,22".split(","),
            "Jane,Doe,31".split(","),
            "Jack,Reacher,27".split(",")
            ]

    # Path to CSV file we want to write to.
    path = "output.csv"
    csv_writer(data, path)

Section 105.2: Appending a String as a newline in a CSV file
def append_to_csv(input_string):
    with open("fileName.csv", "a") as csv_file:
        csv_file.write(input_row + "\n")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 502

Chapter 106: Dynamic code execution with
`exec` and `eval`
Argument Details
expression The expression code as a string, or a code object
object The statement code as a string, or a code object

globals The dictionary to use for global variables. If locals is not specified, this is also used for locals. If
omitted, the globals() of calling scope are used.

locals
A mapping object that is used for local variables. If omitted, the one passed for globals is used
instead. If both are omitted, then the globals() and locals() of the calling scope are used for
globals and locals respectively.

Section 106.1: Executing code provided by untrusted user
using exec, eval, or ast.literal_eval
It is not possible to use eval or exec to execute code from untrusted user securely. Even ast.literal_eval is
prone to crashes in the parser. It is sometimes possible to guard against malicious code execution, but it doesn't
exclude the possibility of outright crashes in the parser or the tokenizer.

To evaluate code by an untrusted user you need to turn to some third-party module, or perhaps write your own
parser and your own virtual machine in Python.

Section 106.2: Evaluating a string containing a Python literal
with ast.literal_eval
If you have a string that contains Python literals, such as strings, floats etc, you can use ast.literal_eval to
evaluate its value instead of eval. This has the added feature of allowing only certain syntax.

>>> import ast
>>> code = """(1, 2, {'foo': 'bar'})"""
>>> object = ast.literal_eval(code)
>>> object
(1, 2, {'foo': 'bar'})
>>> type(object)
<class 'tuple'>

However, this is not secure for execution of code provided by untrusted user, and it is trivial to crash an
interpreter with carefully crafted input

>>> import ast
>>> ast.literal_eval('()' * 1000000)
[5]    21358 segmentation fault (core dumped)  python3

Here, the input is a string of () repeated one million times, which causes a crash in CPython parser. CPython
developers do not consider bugs in parser as security issues.

Section 106.3: Evaluating statements with exec
>>> code = """for i in range(5):\n    print('Hello world!')"""
>>> exec(code)
Hello world!
Hello world!
Hello world!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 503

Hello world!
Hello world!

Section 106.4: Evaluating an expression with eval
>>> expression = '5 + 3 * a'
>>> a = 5
>>> result = eval(expression)
>>> result
20

Section 106.5: Precompiling an expression to evaluate it
multiple times
compile built-in function can be used to precompile an expression to a code object; this code object can then be
passed to eval. This will speed up the repeated executions of the evaluated code. The 3rd parameter to compile
needs to be the string 'eval'.

>>> code = compile('a * b + c', '<string>', 'eval')
>>> code
<code object <module> at 0x7f0e51a58830, file "<string>", line 1>
>>> a, b, c = 1, 2, 3
>>> eval(code)
5

Section 106.6: Evaluating an expression with eval using
custom globals
>>> variables = {'a': 6, 'b': 7}
>>> eval('a * b', globals=variables)
42

As a plus, with this the code cannot accidentally refer to the names defined outside:

>>> eval('variables')
{'a': 6, 'b': 7}
>>> eval('variables', globals=variables)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<string>", line 1, in <module>
NameError: name 'variables' is not defined

Using defaultdict allows for example having undefined variables set to zero:

>>> from collections import defaultdict
>>> variables = defaultdict(int, {'a': 42})
>>> eval('a * c', globals=variables)  # note that 'c' is not explicitly defined
0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 504

Chapter 107: PyInstaller - Distributing
Python Code
Section 107.1: Installation and Setup
Pyinstaller is a normal python package. It can be installed using pip:

pip install pyinstaller

Installation in Windows
For Windows, pywin32 or pypiwin32 is a prerequisite. The latter is installed automatically when pyinstaller is
installed using pip.

Installation in Mac OS X
PyInstaller works with the default Python 2.7 provided with current Mac OS X. If later versions of Python are to be
used or if any major packages such as PyQT, Numpy, Matplotlib and the like are to be used, it is recommended to
install them using either MacPorts or Homebrew.

Installing from the archive
If pip is not available, download the compressed archive from PyPI.
To test the development version, download the compressed archive from the develop branch of PyInstaller
Downloads page.

Expand the archive and find the setup.py script. Execute python setup.py install with administrator privilege to
install or upgrade PyInstaller.

Verifying the installation
The command pyinstaller should exist on the system path for all platforms after a successful installation.
Verify it by typing pyinstaller --version in the command line. This will print the current version of pyinstaller.

Section 107.2: Using Pyinstaller
In the simplest use-case, just navigate to the directory your file is in, and type:

pyinstaller myfile.py

Pyinstaller analyzes the file and creates:

A myfile.spec file in the same directory as myfile.py
A build folder in the same directory as myfile.py
A dist folder in the same directory as myfile.py
Log files in the build folder

The bundled app can be found in the dist folder

Options
There are several options that can be used with pyinstaller. A full list of the options can be found here.

Once bundled your app can be run by opening 'dist\myfile\myfile.exe'.

http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pypiwin32/219
https://www.macports.org/
http://brew.sh/
https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases
https://github.com/pyinstaller/pyinstaller/releases
https://pythonhosted.org/PyInstaller/usage.html#options
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 505

Section 107.3: Bundling to One Folder
When PyInstaller is used without any options to bundle myscript.py , the default output is a single folder (named
myscript) containing an executable named myscript (myscript.exe in windows) along with all the necessary
dependencies.
The app can be distributed by compressing the folder into a zip file.

One Folder mode can be explicitly set using the option -D or --onedir

pyinstaller myscript.py -D

Advantages:

One of the major advantages of bundling to a single folder is that it is easier to debug problems. If any modules fail
to import, it can be verified by inspecting the folder.
Another advantage is felt during updates. If there are a few changes in the code but the dependencies used are
exactly the same, distributors can just ship the executable file (which is typically smaller than the entire folder).

Disadvantages

The only disadvantage of this method is that the users have to search for the executable among a large number of
files.
Also users can delete/modify other files which might lead to the app not being able to work correctly.

Section 107.4: Bundling to a Single File
pyinstaller myscript.py -F

The options to generate a single file are -F or --onefile. This bundles the program into a single myscript.exe file.

Single file executable are slower than the one-folder bundle. They are also harder to debug.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 506

Chapter 108: Data Visualization with
Python
Section 108.1: Seaborn
Seaborn is a wrapper around Matplotlib that makes creating common statistical plots easy. The list of supported
plots includes univariate and bivariate distribution plots, regression plots, and a number of methods for plotting
categorical variables. The full list of plots Seaborn provides is in their API reference.

Creating graphs in Seaborn is as simple as calling the appropriate graphing function. Here is an example of creating
a histogram, kernel density estimation, and rug plot for randomly generated data.

import numpy as np  # numpy used to create data from plotting
import seaborn as sns  # common form of importing seaborn

# Generate normally distributed data
data = np.random.randn(1000)

# Plot a histogram with both a rugplot and kde graph superimposed
sns.distplot(data, kde=True, rug=True)

The style of the plot can also be controlled using a declarative syntax.

# Using previously created imports and data.

# Use a dark background with no grid.
sns.set_style('dark')

https://stanford.edu/%7Emwaskom/software/seaborn/tutorial.html
https://stanford.edu/%7Emwaskom/software/seaborn/api.html
http://i.imgur.com/CyxeSfj.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 507

# Create the plot again
sns.distplot(data, kde=True, rug=True)

As an added bonus, normal matplotlib commands can still be applied to Seaborn plots. Here's an example of
adding axis titles to our previously created histogram.

# Using previously created data and style

# Access to matplotlib commands
import matplotlib.pyplot as plt

# Previously created plot.
sns.distplot(data, kde=True, rug=True)
# Set the axis labels.
plt.xlabel('This is my x-axis')
plt.ylabel('This is my y-axis')

http://i.imgur.com/JMjHv6C.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 508

Section 108.2: Matplotlib
Matplotlib is a mathematical plotting library for Python that provides a variety of different plotting functionality.

The matplotlib documentation can be found here, with the SO Docs being available here.

Matplotlib provides two distinct methods for plotting, though they are interchangeable for the most part:

Firstly, matplotlib provides the pyplot interface, direct and simple-to-use interface that allows plotting of
complex graphs in a MATLAB-like style.
Secondly, matplotlib allows the user to control the different aspects (axes, lines, ticks, etc) directly using an
object-based system. This is more difficult but allows complete control over the entire plot.

Below is an example of using the pyplot interface to plot some generated data:

import matplotlib.pyplot as plt

# Generate some data for plotting.
x = [0, 1, 2, 3, 4, 5, 6]
y = [i**2 for i in x]

# Plot the data x, y with some keyword arguments that control the plot style.
# Use two different plot commands to plot both points (scatter) and a line (plot).

plt.scatter(x, y, c='blue', marker='x', s=100) # Create blue markers of shape "x" and size 100
plt.plot(x, y, color='red', linewidth=2) # Create a red line with linewidth 2.

# Add some text to the axes and a title.
plt.xlabel('x data')

http://i.imgur.com/ei2fa17.png
http://matplotlib.org/index.html
http://matplotlib.org/contents.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 509

plt.ylabel('y data')
plt.title('An example plot')

# Generate the plot and show to the user.
plt.show()

Note that plt.show() is known to be problematic in some environments due to running matplotlib.pyplot in
interactive mode, and if so, the blocking behaviour can be overridden explicitly by passing in an optional argument,
plt.show(block=True), to alleviate the issue.

Section 108.3: Plotly
Plotly is a modern platform for plotting and data visualization. Useful for producing a variety of plots, especially for
data sciences, Plotly is available as a library for Python, R, JavaScript, Julia and, MATLAB. It can also be used as a
web application with these languages.

Users can install plotly library and use it offline after user authentication. The installation of this library and offline
authentication is given here. Also, the plots can be made in Jupyter Notebooks as well.

Usage of this library requires an account with username and password. This gives the workspace to save plots and
data on the cloud.

The free version of the library has some slightly limited features and designed for making 250 plots per day. The
paid version has all the features, unlimited plot downloads and more private data storage. For more details, one
can visit the main page here.

http://i.stack.imgur.com/MESUU.png
http://stackoverflow.com/questions/38238612/matplot-program-gives-unresponsive-window-when-run/38238681#38238681
https://plot.ly/
https://plot.ly/python/getting-started/
https://plot.ly/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 510

For documentation and examples, one can go here

A sample plot from the documentation examples:

import plotly.graph_objs as go
import plotly as ply

# Create random data with numpy
import numpy as np

N = 100
random_x = np.linspace(0, 1, N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-5

# Create traces
trace0 = go.Scatter(
    x = random_x,
y = random_y0,
mode = 'lines',
name = 'lines'
)
trace1 = go.Scatter(
    x = random_x,
    y = random_y1,
    mode = 'lines+markers',
    name = 'lines+markers'
)
trace2 = go.Scatter(
    x = random_x,
    y = random_y2,
    mode = 'markers',
    name = 'markers'
)
data = [trace0, trace1, trace2]

ply.offline.plot(data, filename='line-mode')

https://plot.ly/python/#fundamentals
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 511

Section 108.4: MayaVI
MayaVI is a 3D visualization tool for scientific data. It uses the Visualization Tool Kit or VTK under the hood. Using
the power of VTK, MayaVI is capable of producing a variety of 3-Dimensional plots and figures. It is available as a
separate software application and also as a library. Similar to Matplotlib, this library provides an object oriented
programming language interface to create plots without having to know about VTK.

MayaVI is available only in Python 2.7x series! It is hoped to be available in Python 3-x series soon!
(Although some success is noticed when using its dependencies in Python 3)

Documentation can be found here. Some gallery examples are found here

Here is a sample plot created using MayaVI from the documentation.

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Copyright (c) 2007, Enthought, Inc.
# License: BSD Style.

from numpy import sin, cos, mgrid, pi, sqrt
from mayavi import mlab

mlab.figure(fgcolor=(0, 0, 0), bgcolor=(1, 1, 1))
u, v = mgrid[- 0.035:pi:0.01, - 0.035:pi:0.01]

X = 2 / 3. * (cos(u) * cos(2 * v)
        + sqrt(2) * sin(u) * cos(v)) * cos(u) / (sqrt(2) -
                                                 sin(2 * u) * sin(3 * v))
Y = 2 / 3. * (cos(u) * sin(2 * v) -
        sqrt(2) * sin(u) * sin(v)) * cos(u) / (sqrt(2)
        - sin(2 * u) * sin(3 * v))

http://docs.enthought.com/mayavi/mayavi/
http://www.vtk.org/
http://www.vtk.org/
http://matplotlib.org/
http://docs.enthought.com/mayavi/mayavi/
http://docs.enthought.com/mayavi/mayavi/auto/examples.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 512

Z = -sqrt(2) * cos(u) * cos(u) / (sqrt(2) - sin(2 * u) * sin(3 * v))
S = sin(u)

mlab.mesh(X, Y, Z, scalars=S, colormap='YlGnBu', )

# Nice view from the front
mlab.view(.0, - 5.0, 4)
mlab.show()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 513

Chapter 109: The Interpreter (Command
Line Console)
Section 109.1: Getting general help
If the help function is called in the console without any arguments, Python presents an interactive help console,
where you can find out about Python modules, symbols, keywords and more.

>>> help()

Welcome to Python 3.4's help utility!

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/3.4/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules.  To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, symbols, or topics, type
"modules", "keywords", "symbols", or "topics".  Each module also comes
with a one-line summary of what it does; to list the modules whose name
or summary contain a given string such as "spam", type "modules spam".

Section 109.2: Referring to the last expression
To get the value of the last result from your last expression in the console, use an underscore _.

>>> 2 + 2
4
>>> _
4
>>> _ + 6
10

This magic underscore value is only updated when using a python expression that results in a value. Defining
functions or for loops does not change the value. If the expression raises an exception there will be no changes to
_.

>>> "Hello, {0}".format("World")
'Hello, World'
>>> _
'Hello, World'
>>> def wontchangethings():
...     pass
>>> _
'Hello, World'
>>> 27 / 0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> _
'Hello, World'

Remember, this magic variable is only available in the interactive python interpreter. Running scripts will not do
this.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 514

Section 109.3: Opening the Python console
The console for the primary version of Python can usually be opened by typing py into your windows console or
python on other platforms.

$ py
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:44:40) [MSC v.1600 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

If you have multiple versions, then by default their executables will be mapped to python2 or python3 respectively.

This of course depends on the Python executables being in your PATH.

Section 109.4: The PYTHONSTARTUP variable
You can set an environment variable called PYTHONSTARTUP for Python's console. Whenever you enter the Python
console, this file will be executed, allowing for you to add extra functionality to the console such as importing
commonly-used modules automatically.

If the PYTHONSTARTUP variable was set to the location of a file containing this:

print("Welcome!")

Then opening the Python console would result in this extra output:

$ py
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:44:40) [MSC v.1600 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
Welcome!
>>>

Section 109.5: Command line arguments
Python has a variety of command-line switches which can be passed to py. These can be found by performing py --
help, which gives this output on Python 3.4:

Python Launcher

usage: py [ launcher-arguments ] [ python-arguments ] script [ script-arguments ]

Launcher arguments:

-2 : Launch the latest Python 2.x version
-3 : Launch the latest Python 3.x version
-X.Y : Launch the specified Python version
-X.Y-32: Launch the specified 32bit Python version

The following help text is from Python:

usage: G:\\Python34\\python.exe [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-b : issue warnings about str(bytes_instance), str(bytearray_instance)
and comparing bytes/bytearray with str. (-bb: issue errors)
-B : don't write .py[co] files on import; also PYTHONDONTWRITEBYTECODE=x
-c cmd : program passed in as string (terminates option list)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 515

-d : debug output from parser; also PYTHONDEBUG=x
-E : ignore PYTHON* environment variables (such as PYTHONPATH)
-h : print this help message and exit (also --help)
-i : inspect interactively after running script; forces a prompt even
if stdin does not appear to be a terminal; also PYTHONINSPECT=x
-I : isolate Python from the user's environment (implies -E and -s)
-m mod : run library module as a script (terminates option list)
-O : optimize generated bytecode slightly; also PYTHONOPTIMIZE=x
-OO : remove doc-strings in addition to the -O optimizations
-q : don't print version and copyright messages on interactive startup
-s : don't add user site directory to sys.path; also PYTHONNOUSERSITE
-S : don't imply 'import site' on initialization
-u : unbuffered binary stdout and stderr, stdin always buffered;
also PYTHONUNBUFFERED=x
see man page for details on internal buffering relating to '-u'
-v : verbose (trace import statements); also PYTHONVERBOSE=x
can be supplied multiple times to increase verbosity
-V : print the Python version number and exit (also --version)
-W arg : warning control; arg is action:message:category:module:lineno
also PYTHONWARNINGS=arg
-x : skip first line of source, allowing use of non-Unix forms of #!cmd
-X opt : set implementation-specific option
file : program read from script file
- : program read from stdin (default; interactive mode if a tty)
arg ...: arguments passed to program in sys.argv[1:]

Other environment variables:
PYTHONSTARTUP: file executed on interactive startup (no default)
PYTHONPATH : ';'-separated list of directories prefixed to the
default module search path. The result is sys.path.
PYTHONHOME : alternate  directory (or ;).
The default module search path uses \\lib.
PYTHONCASEOK : ignore case in 'import' statements (Windows).
PYTHONIOENCODING: Encoding[:errors] used for stdin/stdout/stderr.
PYTHONFAULTHANDLER: dump the Python traceback on fatal errors.
PYTHONHASHSEED: if this variable is set to 'random', a random value is used
to seed the hashes of str, bytes and datetime objects. It can also be
set to an integer in the range [0,4294967295] to get hash values with a
predictable seed.

Section 109.6: Getting help about an object
The Python console adds a new function, help, which can be used to get information about a function or object.

For a function, help prints its signature (arguments) and its docstring, if the function has one.

>>> help(print)
Help on built-in function print in module builtins:

print(...)
    print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

    Prints the values to a stream, or to sys.stdout by default.
    Optional keyword arguments:
    file:  a file-like object (stream); defaults to the current sys.stdout.
    sep:   string inserted between values, default a space.
    end:   string appended after the last value, default a newline.
    flush: whether to forcibly flush the stream.

For an object, help lists the object's docstring and the different member functions which the object has.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 516

>>> x = 2
>>> help(x)
Help on int object:

class int(object)
 |  int(x=0) -> integer
 |  int(x, base=10) -> integer
 |
 |  Convert a number or string to an integer, or return 0 if no arguments
 |  are given.  If x is a number, return x.__int__().  For floating point
 |  numbers, this truncates towards zero.
 |
 |  If x is not a number or if base is given, then x must be a string,
 |  bytes, or bytearray instance representing an integer literal in the
 |  given base.  The literal can be preceded by '+' or '-' and be surrounded
 |  by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.
 |  Base 0 means to interpret the base from the string as an integer literal.
 |  >>> int('0b100', base=0)
 |  4
 |
 |  Methods defined here:
 |
 |  __abs__(self, /)
 |      abs(self)
 |
 |  __add__(self, value, /)
 |      Return self+value...

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 518

Chapter 110: *args and **kwargs
Section 110.1: Using **kwargs when writing functions
You can define a function that takes an arbitrary number of keyword (named) arguments by using the double star
** before a parameter name:

def print_kwargs(**kwargs):
    print(kwargs)

When calling the method, Python will construct a dictionary of all keyword arguments and make it available in the
function body:

print_kwargs(a="two", b=3)
# prints: "{a: "two", b=3}"

Note that the **kwargs parameter in the function definition must always be the last parameter, and it will only
match the arguments that were passed in after the previous ones.

def example(a, **kw):
    print kw

example(a=2, b=3, c=4) # => {'b': 3, 'c': 4}

Inside the function body, kwargs is manipulated in the same way as a dictionary; in order to access individual
elements in kwargs you just loop through them as you would with a normal dictionary:

def print_kwargs(**kwargs):
    for key in kwargs:
        print("key = {0}, value = {1}".format(key, kwargs[key]))

Now, calling print_kwargs(a="two", b=1) shows the following output:

print_kwargs(a = "two", b = 1)
key = a, value = "two"
key = b, value = 1

Section 110.2: Using *args when writing functions
You can use the star * when writing a function to collect all positional (ie. unnamed) arguments in a tuple:

def print_args(farg, *args):
   print("formal arg: %s" % farg)
   for arg in args:
       print("another positional arg: %s" % arg)

Calling method:

print_args(1, "two", 3)

In that call, farg will be assigned as always, and the two others will be fed into the args tuple, in the order they were
received.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 519

Section 110.3: Populating kwarg values with a dictionary
def foobar(foo=None, bar=None):
    return "{}{}".format(foo, bar)

values = {"foo": "foo", "bar": "bar"}

foobar(**values) # "foobar"

Section 110.4: Keyword-only and Keyword-required
arguments
Python 3 allows you to define function arguments which can only be assigned by keyword, even without default
values. This is done by using star * to consume additional positional parameters without setting the keyword
parameters. All arguments after the * are keyword-only (i.e. non-positional) arguments. Note that if keyword-only
arguments aren't given a default, they are still required when calling the function.

def print_args(arg1, *args, keyword_required, keyword_only=True):
    print("first positional arg: {}".format(arg1))
    for arg in args:
        print("another positional arg: {}".format(arg))
    print("keyword_required value: {}".format(keyword_required))
    print("keyword_only value: {}".format(keyword_only))
   
print(1, 2, 3, 4) # TypeError: print_args() missing 1 required keyword-only argument:
'keyword_required'
print(1, 2, 3, keyword_required=4)
# first positional arg: 1
# another positional arg: 2
# another positional arg: 3
# keyword_required value: 4
# keyword_only value: True

Section 110.5: Using **kwargs when calling functions
You can use a dictionary to assign values to the function's parameters; using parameters name as keys in the
dictionary and the value of these arguments bound to each key:

def test_func(arg1, arg2, arg3): # Usual function with three arguments
   print("arg1: %s" % arg1)
   print("arg2: %s" % arg2)
   print("arg3: %s" % arg3)

# Note that dictionaries are unordered, so we can switch arg2 and arg3. Only the names matter.
kwargs = {"arg3": 3, "arg2": "two"}

# Bind the first argument (ie. arg1) to 1, and use the kwargs dictionary to bind the others
test_var_args_call(1, **kwargs)

Section 110.6: **kwargs and default values
To use default values with **kwargs

def fun(**kwargs):
    print kwargs.get('value', 0)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 520

fun()
# print 0
fun(value=1)
# print 1

Section 110.7: Using *args when calling functions
The effect of using the * operator on an argument when calling a function is that of unpacking the list or a tuple
argument

def print_args(arg1, arg2):
    print(str(arg1) + str(arg2))

a = [1,2]
b = tuple([3,4])

print_args(*a)
# 12
print_args(*b)
# 34

Note that the length of the starred argument need to be equal to the number of the function's arguments.

A common python idiom is to use the unpacking operator * with the zip function to reverse its effects:

a = [1,3,5,7,9]
b = [2,4,6,8,10]

zipped = zip(a,b)
# [(1,2), (3,4), (5,6), (7,8), (9,10)]

zip(*zipped)
# (1,3,5,7,9), (2,4,6,8,10)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 521

Chapter 111: Garbage Collection
Section 111.1: Reuse of primitive objects
An interesting thing to note which may help optimize your applications is that primitives are actually also
refcounted under the hood. Let's take a look at numbers; for all integers between -5 and 256, Python always reuses
the same object:

>>> import sys
>>> sys.getrefcount(1)
797
>>> a = 1
>>> b = 1
>>> sys.getrefcount(1)
799

Note that the refcount increases, meaning that a and b reference the same underlying object when they refer to the
1 primitive. However, for larger numbers, Python actually doesn't reuse the underlying object:

>>> a = 999999999
>>> sys.getrefcount(999999999)
3
>>> b = 999999999
>>> sys.getrefcount(999999999)
3

Because the refcount for 999999999 does not change when assigning it to a and b we can infer that they refer to
two different underlying objects, even though they both are assigned the same primitive.

Section 111.2: Eects of the del command
Removing a variable name from the scope using del v, or removing an object from a collection using del v[item]
or del[i:j], or removing an attribute using del v.name, or any other way of removing references to an object, does
not trigger any destructor calls or any memory being freed in and of itself. Objects are only destructed when their
reference count reaches zero.

>>> import gc
>>> gc.disable()  # disable garbage collector
>>> class Track:
        def __init__(self):
            print("Initialized")
        def __del__(self):
            print("Destructed")
>>> def bar():
    return Track()
>>> t = bar()
Initialized
>>> another_t = t  # assign another reference
>>> print("...")
...
>>> del t          # not destructed yet - another_t still refers to it
>>> del another_t  # final reference gone, object is destructed
Destructed

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 522

Section 111.3: Reference Counting
The vast majority of Python memory management is handled with reference counting.

Every time an object is referenced (e.g. assigned to a variable), its reference count is automatically increased. When
it is dereferenced (e.g. variable goes out of scope), its reference count is automatically decreased.

When the reference count reaches zero, the object is immediately destroyed and the memory is immediately
freed. Thus for the majority of cases, the garbage collector is not even needed.

>>> import gc; gc.disable()  # disable garbage collector
>>> class Track:
        def __init__(self):
            print("Initialized")
        def __del__(self):
            print("Destructed")
>>> def foo():
        Track()
        # destructed immediately since no longer has any references
        print("---")
        t = Track()
        # variable is referenced, so it's not destructed yet
        print("---")
        # variable is destructed when function exits
>>> foo()
Initialized
Destructed
---
Initialized
---
Destructed

To demonstrate further the concept of references:

>>> def bar():
        return Track()
>>> t = bar()
Initialized
>>> another_t = t  # assign another reference
>>> print("...")
...
>>> t = None          # not destructed yet - another_t still refers to it
>>> another_t = None  # final reference gone, object is destructed
Destructed

Section 111.4: Garbage Collector for Reference Cycles
The only time the garbage collector is needed is if you have a reference cycle. The simples example of a reference
cycle is one in which A refers to B and B refers to A, while nothing else refers to either A or B. Neither A or B are
accessible from anywhere in the program, so they can safely be destructed, yet their reference counts are 1 and so
they cannot be freed by the reference counting algorithm alone.

>>> import gc; gc.disable()  # disable garbage collector
>>> class Track:
        def __init__(self):
            print("Initialized")
        def __del__(self):
            print("Destructed")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 523

>>> A = Track()
Initialized
>>> B = Track()
Initialized
>>> A.other = B
>>> B.other = A
>>> del A; del B  # objects are not destructed due to reference cycle
>>> gc.collect()  # trigger collection
Destructed
Destructed
4

A reference cycle can be arbitrary long. If A points to B points to C points to ... points to Z which points to A, then
neither A through Z will be collected, until the garbage collection phase:

>>> objs = [Track() for _ in range(10)]
Initialized
Initialized
Initialized
Initialized
Initialized
Initialized
Initialized
Initialized
Initialized
Initialized
>>> for i in range(len(objs)-1):
...     objs[i].other = objs[i + 1]
...
>>> objs[-1].other = objs[0]  # complete the cycle
>>> del objs                  # no one can refer to objs now - still not destructed
>>> gc.collect()
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
Destructed
20

Section 111.5: Forcefully deallocating objects
You can force deallocate objects even if their refcount isn't 0 in both Python 2 and 3.

Both versions use the ctypes module to do so.

WARNING: doing this will leave your Python environment unstable and prone to crashing without a traceback!
Using this method could also introduce security problems (quite unlikely) Only deallocate objects you're sure you'll
never reference again. Ever.

Python 3.x Version ≥ 3.0

import ctypes
deallocated = 12345
ctypes.pythonapi._Py_Dealloc(ctypes.py_object(deallocated))

Python 2.x Version ≥ 2.3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 524

import ctypes, sys
deallocated = 12345
(ctypes.c_char * sys.getsizeof(deallocated)).from_address(id(deallocated))[:4] = '\x00' * 4

After running, any reference to the now deallocated object will cause Python to either produce undefined behavior
or crash - without a traceback. There was probably a reason why the garbage collector didn't remove that object...

If you deallocate None, you get a special message - Fatal Python error: deallocating None before crashing.

Section 111.6: Viewing the refcount of an object
>>> import sys
>>> a = object()
>>> sys.getrefcount(a)
2
>>> b = a
>>> sys.getrefcount(a)
3
>>> del b
>>> sys.getrefcount(a)
2

Section 111.7: Do not wait for the garbage collection to clean
up
The fact that the garbage collection will clean up does not mean that you should wait for the garbage collection
cycle to clean up.

In particular you should not wait for garbage collection to close file handles, database connections and open
network connections.

for example:

In the following code, you assume that the file will be closed on the next garbage collection cycle, if f was the last
reference to the file.

>>> f = open("test.txt")
>>> del f

A more explicit way to clean up is to call f.close(). You can do it even more elegant, that is by using the with
statement, also known as the context manager :

>>> with open("test.txt") as f:
...     pass
...     # do something with f
>>> #now the f object still exists, but it is closed

The with statement allows you to indent your code under the open file. This makes it explicit and easier to see how
long a file is kept open. It also always closes a file, even if an exception is raised in the while block.

Section 111.8: Managing garbage collection
There are two approaches for influencing when a memory cleanup is performed. They are influencing how often
the automatic process is performed and the other is manually triggering a cleanup.

http://stackoverflow.com/documentation/python/928/context-managers-with-statement
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 525

The garbage collector can be manipulated by tuning the collection thresholds which affect the frequency at which
the collector runs. Python uses a generation based memory management system. New objects are saved in the
newest generation - generation0 and with each survived collection, objects are promoted to older generations.
After reaching the last generation - generation2, they are no longer promoted.

The thresholds can be changed using the following snippet:

import gc
gc.set_threshold(1000, 100, 10) # Values are just for demonstration purpose

The first argument represents the threshold for collecting generation0. Every time the number of allocations
exceeds the number of deallocations by 1000 the garbage collector will be called.

The older generations are not cleaned at each run to optimize the process. The second and third arguments are
optional and control how frequently the older generations are cleaned. If generation0 was processed 100 times
without cleaning generation1, then generation1 will be processed. Similarly, objects in generation2 will be
processed only when the ones in generation1 were cleaned 10 times without touching generation2.

One instance in which manually setting the thresholds is beneficial is when the program allocates a lot of small
objects without deallocating them which leads to the garbage collector running too often (each
generation0_threshold object allocations). Even though, the collector is pretty fast, when it runs on huge numbers
of objects it poses a performance issue. Anyway, there's no one size fits all strategy for choosing the thresholds and
it's use case dependable.

Manually triggering a collection can be done as in the following snippet:

import gc
gc.collect()

The garbage collection is automatically triggered based on the number of allocations and deallocations, not on the
consumed or available memory. Consequently, when working with big objects, the memory might get depleted
before the automated cleanup is triggered. This makes a good use case for manually calling the garbage collector.

Even though it's possible, it's not an encouraged practice. Avoiding memory leaks is the best option. Anyway, in big
projects detecting the memory leak can be a tough task and manually triggering a garbage collection can be used
as a quick solution until further debugging.

For long-running programs, the garbage collection can be triggered on a time basis or on an event basis. An
example for the first one is a web server that triggers a collection after a fixed number of requests. For the later, a
web server that triggers a garbage collection when a certain type of request is received.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 526

Chapter 112: Pickle data serialisation
Parameter Details
object The object which is to be stored

file The open file which will contain the object

protocol The protocol used for pickling the object (optional parameter)

buffer A bytes object that contains a serialized object

Section 112.1: Using Pickle to serialize and deserialize an object
The pickle module implements an algorithm for turning an arbitrary Python object into a series of bytes. This
process is also called serializing the object. The byte stream representing the object can then be transmitted or
stored, and later reconstructed to create a new object with the same characteristics.

For the simplest code, we use the dump() and load() functions.

To serialize the object
import pickle

# An arbitrary collection of objects supported by pickle.
data = {
    'a': [1, 2.0, 3, 4+6j],
    'b': ("character string", b"byte string"),
    'c': {None, True, False}
}

with open('data.pickle', 'wb') as f:
    # Pickle the 'data' dictionary using the highest protocol available.
    pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)

To deserialize the object
import pickle

with open('data.pickle', 'rb') as f:
    # The protocol version used is detected automatically, so we do not
    # have to specify it.
    data = pickle.load(f)

Using pickle and byte objects

It is also possible to serialize into and deserialize out of byte objects, using the dumps and loads function, which are
equivalent to dump and load.

serialized_data = pickle.dumps(data, pickle.HIGHEST_PROTOCOL)
# type(serialized_data) is bytes

deserialized_data = pickle.loads(serialized_data)
# deserialized_data == data

Section 112.2: Customize Pickled Data
Some data cannot be pickled. Other data should not be pickled for other reasons.

What will be pickled can be defined in __getstate__ method. This method must return something that is picklable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 527

On the opposite side is __setstate__: it will receive what __getstate__ created and has to initialize the object.

class A(object):
    def __init__(self, important_data):
        self.important_data = important_data
       
        # Add data which cannot be pickled:
        self.func = lambda: 7
       
        # Add data which should never be pickled, because it expires quickly:
        self.is_up_to_date = False
   
    def __getstate__(self):
        return [self.important_data] # only this is needed
   
    def __setstate__(self, state):
        self.important_data = state[0]
       
        self.func = lambda: 7  # just some hard-coded unpicklable function
       
        self.is_up_to_date = False  # even if it was before pickling

Now, this can be done:

>>> a1 = A('very important')
>>>
>>> s = pickle.dumps(a1)  # calls a1.__getstate__()
>>>
>>> a2 = pickle.loads(s)  # calls a1.__setstate__(['very important'])
>>> a2
<__main__.A object at 0x0000000002742470>
>>> a2.important_data
'very important'
>>> a2.func()
7

The implementation here pikles a list with one value: [self.important_data]. That was just an example,
__getstate__ could have returned anything that is picklable, as long as __setstate__ knows how to do the
opposite. A good alternative is a dictionary of all values: {'important_data': self.important_data}.

Constructor is not called! Note that in the previous example instance a2 was created in pickle.loads without
ever calling A.__init__, so A.__setstate__ had to initialize everything that __init__ would have initialized if it
were called.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 528

Chapter 113: Binary Data
Section 113.1: Format a list of values into a byte object
from struct import pack

print(pack('I3c', 123, b'a', b'b', b'c'))  # b'{\x00\x00\x00abc'

Section 113.2: Unpack a byte object according to a format
string
from struct import unpack

print(unpack('I3c', b'{\x00\x00\x00abc'))  # (123, b'a', b'b', b'c')

Section 113.3: Packing a structure
The module "struct" provides facility to pack python objects as contiguous chunk of bytes or dissemble a chunk of
bytes to python structures.

The pack function takes a format string and one or more arguments, and returns a binary string. This looks very
much like you are formatting a string except that the output is not a string but a chunk of bytes.

import struct
import sys
print "Native byteorder: ", sys.byteorder
# If no byteorder is specified, native byteorder is used
buffer = struct.pack("ihb", 3, 4, 5)
print "Byte chunk: ", repr(buffer)
print "Byte chunk unpacked: ", struct.unpack("ihb", buffer)
# Last element as unsigned short instead of unsigned char ( 2 Bytes)
buffer = struct.pack("ihh", 3, 4, 5)
print "Byte chunk: ", repr(buffer)

Output:

Native byteorder: little Byte chunk: '\x03\x00\x00\x00\x04\x00\x05' Byte chunk unpacked: (3, 4, 5) Byte
chunk: '\x03\x00\x00\x00\x04\x00\x05\x00'

You could use network byte order with data received from network or pack data to send it to network.

import struct
# If no byteorder is specified, native byteorder is used
buffer = struct.pack("hhh", 3, 4, 5)
print "Byte chunk native byte order: ", repr(buffer)
buffer = struct.pack("!hhh", 3, 4, 5)
print "Byte chunk network byte order: ", repr(buffer)

Output:

Byte chunk native byte order: '\x03\x00\x04\x00\x05\x00'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 529

Byte chunk network byte order: '\x00\x03\x00\x04\x00\x05'

You can optimize by avoiding the overhead of allocating a new buffer by providing a buffer that was created earlier.

import struct
from ctypes import create_string_buffer
bufferVar = create_string_buffer(8)
bufferVar2 = create_string_buffer(8)
# We use a buffer that has already been created
# provide format, buffer, offset and data
struct.pack_into("hhh", bufferVar, 0, 3, 4, 5)
print "Byte chunk: ", repr(bufferVar.raw)
struct.pack_into("hhh", bufferVar2, 2, 3, 4, 5)
print "Byte chunk: ", repr(bufferVar2.raw)

Output:

Byte chunk: '\x03\x00\x04\x00\x05\x00\x00\x00'

Byte chunk: '\x00\x00\x03\x00\x04\x00\x05\x00'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 530

Chapter 114: Idioms
Section 114.1: Dictionary key initializations
Prefer dict.get method if you are not sure if the key is present. It allows you to return a default value if key is not
found. The traditional method dict[key] would raise a KeyError exception.

Rather than doing

def add_student():
    try:
        students['count'] += 1
    except KeyError:
        students['count'] = 1

Do

def add_student():
        students['count'] = students.get('count', 0) + 1

Section 114.2: Switching variables
To switch the value of two variables you can use tuple unpacking.

x = True
y = False
x, y = y, x
x
# False
y
# True

Section 114.3: Use truth value testing
Python will implicitly convert any object to a Boolean value for testing, so use it wherever possible.

# Good examples, using implicit truth testing
if attr:
    # do something

if not attr:
    # do something

# Bad examples, using specific types
if attr == 1:
    # do something

if attr == True:
    # do something

if attr != '':
    # do something

# If you are looking to specifically check for None, use 'is' or 'is not'
if attr is None:
    # do something

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 531

This generally produces more readable code, and is usually much safer when dealing with unexpected types.

Click here for a list of what will be evaluated to False.

Section 114.4: Test for "__main__" to avoid unexpected code
execution
It is good practice to test the calling program's __name__ variable before executing your code.

import sys

def main():
    # Your code starts here

    # Don't forget to provide a return code
    return 0

if __name__ == "__main__":
    sys.exit(main())

Using this pattern ensures that your code is only executed when you expect it to be; for example, when you run
your file explicitly:

python my_program.py

The benefit, however, comes if you decide to import your file in another program (for example if you are writing it
as part of a library). You can then import your file, and the __main__ trap will ensure that no code is executed
unexpectedly:

# A new program file
import my_program        # main() is not run

# But you can run main() explicitly if you really want it to run:
my_program.main()

https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 533

Chapter 115: Data Serialization
Parameter Details

protocol Using pickle or cPickle, it is the method that objects are being Serialized/Unserialized. You probably
want to use pickle.HIGHEST_PROTOCOL here, which means the newest method.

Section 115.1: Serialization using JSON
JSON is a cross language, widely used method to serialize data

Supported data types : int, float, boolean, string, list and dict. See -> JSON Wiki for more

Here is an example demonstrating the basic usage of JSON:

import json

families = (['John'], ['Mark', 'David', {'name': 'Avraham'}])

# Dumping it into string
json_families = json.dumps(families)
# [["John"], ["Mark", "David", {"name": "Avraham"}]]

# Dumping it to file
with open('families.json', 'w') as json_file:
    json.dump(families, json_file)

# Loading it from string
json_families = json.loads(json_families)

# Loading it from file
with open('families.json', 'r') as json_file:
    json_families = json.load(json_file)

See JSON-Module for detailed information about JSON.

Section 115.2: Serialization using Pickle
Here is an example demonstrating the basic usage of pickle:

# Importing pickle
try:
    import cPickle as pickle  # Python 2
except ImportError:
    import pickle  # Python 3

# Creating Pythonic object:
class Family(object):
    def __init__(self, names):
        self.sons = names

    def __str__(self):
        return ' '.join(self.sons)

my_family = Family(['John', 'David'])

# Dumping to string
pickle_data = pickle.dumps(my_family, pickle.HIGHEST_PROTOCOL)

https://en.wikipedia.org/wiki/JSON
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 534

# Dumping to file
with open('family.p', 'w') as pickle_file:
    pickle.dump(families, pickle_file, pickle.HIGHEST_PROTOCOL)

# Loading from string
my_family = pickle.loads(pickle_data)

# Loading from file
with open('family.p', 'r') as pickle_file:
    my_family = pickle.load(pickle_file)

See Pickle for detailed information about Pickle.

WARNING: The official documentation for pickle makes it clear that there are no security guarantees. Don't load
any data you don't trust its origin.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 535

Chapter 116: Multiprocessing
Section 116.1: Running Two Simple Processes
A simple example of using multiple processes would be two processes (workers) that are executed separately. In
the following example, two processes are started:

countUp() counts 1 up, every second.
countDown() counts 1 down, every second.

import multiprocessing
import time
from random import randint

def countUp():
    i = 0
    while i <= 3:
        print('Up:\t{}'.format(i))
        time.sleep(randint(1, 3)) # sleep 1, 2 or 3 seconds
        i += 1

def countDown():
    i = 3
    while i >= 0:
        print('Down:\t{}'.format(i))
        time.sleep(randint(1, 3)) # sleep 1, 2 or 3 seconds
        i -= 1

if __name__ == '__main__':
    # Initiate the workers.
    workerUp = multiprocessing.Process(target=countUp)
    workerDown = multiprocessing.Process(target=countDown)
   
    # Start the workers.
    workerUp.start()
    workerDown.start()

    # Join the workers. This will block in the main (parent) process
    # until the workers are complete.
    workerUp.join()
    workerDown.join()

The output is as follows:

Up: 0
Down: 3
Up: 1
Up: 2
Down: 2
Up: 3
Down: 1
Down: 0

Section 116.2: Using Pool and Map
from multiprocessing import Pool

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 536

def cube(x):
    return x ** 3

if __name__ == "__main__":
    pool = Pool(5)
    result = pool.map(cube, [0, 1, 2, 3])

Pool is a class which manages multiple Workers (processes) behind the scenes and lets you, the programmer, use.

Pool(5) creates a new Pool with 5 processes, and pool.map works just like map but it uses multiple processes (the
amount defined when creating the pool).

Similar results can be achieved using map_async, apply and apply_async which can be found in the documentation.

https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/multiprocessing.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 537

Chapter 117: Multithreading
Threads allow Python programs to handle multiple functions at once as opposed to running a sequence of
commands individually. This topic explains the principles behind threading and demonstrates its usage.

Section 117.1: Basics of multithreading
Using the threading module, a new thread of execution may be started by creating a new threading.Thread and
assigning it a function to execute:

import threading

def foo():
  print "Hello threading!"

my_thread = threading.Thread(target=foo)

The target parameter references the function (or callable object) to be run. The thread will not begin execution
until start is called on the Thread object.

Starting a Thread

my_thread.start() # prints 'Hello threading!'

Now that my_thread has run and terminated, calling start again will produce a RuntimeError. If you'd like to run
your thread as a daemon, passing the daemon=True kwarg, or setting my_thread.daemon to True before calling
start(), causes your Thread to run silently in the background as a daemon.

Joining a Thread

In cases where you split up one big job into several small ones and want to run them concurrently, but need to wait
for all of them to finish before continuing, Thread.join() is the method you're looking for.

For example, let's say you want to download several pages of a website and compile them into a single page. You'd
do this:

import requests
from threading import Thread
from queue import Queue

q = Queue(maxsize=20)
def put_page_to_q(page_num):
    q.put(requests.get('http://some-website.com/page_%s.html' % page_num)

def compile(q):
    # magic function that needs all pages before being able to be executed
    if not q.full():
        raise ValueError
    else:
        print("Done compiling!")

threads = []
for page_num in range(20):
     t = Thread(target=requests.get, args=(page_num,))
     t.start()
     threads.append(t)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 538

# Next, join all threads to make sure all threads are done running before
# we continue. join() is a blocking call (unless specified otherwise using
# the kwarg blocking=False when calling join)
for t in threads:
    t.join()

# Call compile() now, since all threads have completed
compile(q)

A closer look at how join() works can be found here.

Create a Custom Thread Class

Using threading.Thread class we can subclass new custom Thread class. we must override run method in a
subclass.

from threading import Thread
import time

class Sleepy(Thread):

    def run(self):
        time.sleep(5)
        print("Hello form Thread")

if __name__ == "__main__":
    t = Sleepy()
    t.start()      # start method automatic call Thread class run method.
    # print 'The main program continues to run in foreground.'
    t.join()
    print("The main program continues to run in the foreground.")

Section 117.2: Communicating between threads
There are multiple threads in your code and you need to safely communicate between them.

You can use a Queue from the queue library.

from queue import Queue
from threading import Thread

# create a data producer
def producer(output_queue):
    while True:
        data = data_computation()
       
        output_queue.put(data)

# create a consumer
def consumer(input_queue):
    while True:
        # retrieve data (blocking)
        data = input_queue.get()

        # do something with the data

        # indicate data has been consumed
        input_queue.task_done()

https://stackoverflow.com/a/15086113/5413116
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 539

Creating producer and consumer threads with a shared queue

q = Queue()
t1 = Thread(target=consumer, args=(q,))
t2 = Thread(target=producer, args=(q,))
t1.start()
t2.start()

Section 117.3: Creating a worker pool
Using threading & queue:

from socket import socket, AF_INET, SOCK_STREAM
from threading import Thread
from queue import Queue
   
def echo_server(addr, nworkers):
    print('Echo server running at', addr)
    # Launch the client workers
    q = Queue()
    for n in range(nworkers):
        t = Thread(target=echo_client, args=(q,))
        t.daemon = True
        t.start()

    # Run the server
    sock = socket(AF_INET, SOCK_STREAM)
    sock.bind(addr)
    sock.listen(5)
    while True:
        client_sock, client_addr = sock.accept()
        q.put((client_sock, client_addr))

echo_server(('',15000), 128)

Using concurrent.futures.Threadpoolexecutor:

from socket import AF_INET, SOCK_STREAM, socket
from concurrent.futures import ThreadPoolExecutor

def echo_server(addr):
    print('Echo server running at', addr)
    pool = ThreadPoolExecutor(128)
    sock = socket(AF_INET, SOCK_STREAM)
    sock.bind(addr)
    sock.listen(5)
    while True:
        client_sock, client_addr = sock.accept()
        pool.submit(echo_client, client_sock, client_addr)

echo_server(('',15000))

Python Cookbook, 3rd edition, by David Beazley and Brian K. Jones (O’Reilly). Copyright 2013 David Beazley and Brian
Jones, 978-1-449-34037-7.

Section 117.4: Advanced use of multithreads
This section will contain some of the most advanced examples realized using Multithreading.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 540

Advanced printer (logger)

A thread that prints everything is received and modifies the output according to the terminal width. The nice part is
that also the "already written" output is modified when the width of the terminal changes.

#!/usr/bin/env python2

import threading
import Queue
import time
import sys
import subprocess
from backports.shutil_get_terminal_size import get_terminal_size

printq = Queue.Queue()
interrupt = False
lines = []

def main():

    ptt = threading.Thread(target=printer) # Turn the printer on
    ptt.daemon = True
    ptt.start()

    # Stupid example of stuff to print
    for i in xrange(1,100):
        printq.put(' '.join([str(x) for x in range(1,i)]))           # The actual way to send stuff
to the printer
        time.sleep(.5)

def split_line(line, cols):
    if len(line) > cols:
        new_line = ''
        ww = line.split()
        i = 0
        while len(new_line) <= (cols - len(ww[i]) - 1):
            new_line += ww[i] + ' '
            i += 1
            print len(new_line)
        if new_line == '':
            return (line, '')

        return (new_line, ' '.join(ww[i:]))
    else:
        return (line, '')

def printer():

    while True:
        cols, rows = get_terminal_size() # Get the terminal dimensions
        msg = '#' + '-' * (cols - 2) + '#\n' # Create the
        try:
            new_line = str(printq.get_nowait())
            if new_line != '!@#EXIT#@!': # A nice way to turn the printer
                                         # thread out gracefully
                lines.append(new_line)
                printq.task_done()
            else:
                printq.task_done()
                sys.exit()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 541

        except Queue.Empty:
            pass

        # Build the new message to show and split too long lines
        for line in lines:
            res = line          # The following is to split lines which are
                                # longer than cols.
            while len(res) !=0:
                toprint, res = split_line(res, cols)
                msg += '\n' + toprint

        # Clear the shell and print the new output
        subprocess.check_call('clear') # Keep the shell clean
        sys.stdout.write(msg)
        sys.stdout.flush()
        time.sleep(.5)

Section 117.5: Stoppable Thread with a while Loop
import threading
import time

class StoppableThread(threading.Thread):
    """Thread class with a stop() method. The thread itself has to check
    regularly for the stopped() condition."""

    def __init__(self):
        super(StoppableThread, self).__init__()
        self._stop_event = threading.Event()

    def stop(self):
        self._stop_event.set()

    def join(self, *args, **kwargs):
        self.stop()
        super(StoppableThread,self).join(*args, **kwargs)

    def run()
        while not self._stop_event.is_set():
            print("Still running!")
            time.sleep(2)
        print("stopped!"

Based on this Question.

https://stackoverflow.com/questions/323972/is-there-any-way-to-kill-a-thread-in-python
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 542

Chapter 118: Processes and Threads
Most programs are executed line by line, only running a single process at a time. Threads allow multiple processes
to flow independent of each other. Threading with multiple processors permits programs to run multiple processes
simultaneously. This topic documents the implementation and usage of threads in Python.

Section 118.1: Global Interpreter Lock
Python multithreading performance can often suffer due to the Global Interpreter Lock. In short, even though
you can have multiple threads in a Python program, only one bytecode instruction can execute in parallel at any
one time, regardless of the number of CPUs.

As such, multithreading in cases where operations are blocked by external events - like network access - can be
quite effective:

import threading
import time

def process():
    time.sleep(2)

start = time.time()
process()
print("One run took %.2fs" % (time.time() - start))

start = time.time()
threads = [threading.Thread(target=process) for _ in range(4)]
for t in threads:
    t.start()
for t in threads:
    t.join()
print("Four runs took %.2fs" % (time.time() - start))

# Out: One run took 2.00s
# Out: Four runs took 2.00s

Note that even though each process took 2 seconds to execute, the four processes together were able to effectively
run in parallel, taking 2 seconds total.

However, multithreading in cases where intensive computations are being done in Python code - such as a lot of
computation - does not result in much improvement, and can even be slower than running in parallel:

import threading
import time

def somefunc(i):
    return i * i

def otherfunc(m, i):
    return m + i

def process():
    for j in range(100):

https://en.wikipedia.org/wiki/Global_interpreter_lock
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 543

        result = 0
        for i in range(100000):
            result = otherfunc(result, somefunc(i))

start = time.time()
process()
print("One run took %.2fs" % (time.time() - start))

start = time.time()
threads = [threading.Thread(target=process) for _ in range(4)]
for t in threads:
    t.start()
for t in threads:
    t.join()
print("Four runs took %.2fs" % (time.time() - start))

# Out: One run took 2.05s
# Out: Four runs took 14.42s

In the latter case, multiprocessing can be effective as multiple processes can, of course, execute multiple
instructions simultaneously:

import multiprocessing
import time

def somefunc(i):
    return i * i

def otherfunc(m, i):
    return m + i

def process():
    for j in range(100):
        result = 0
        for i in range(100000):
            result = otherfunc(result, somefunc(i))

start = time.time()
process()
print("One run took %.2fs" % (time.time() - start))

start = time.time()
processes = [multiprocessing.Process(target=process) for _ in range(4)]
for p in processes:
    p.start()
for p in processes:
    p.join()
print("Four runs took %.2fs" % (time.time() - start))

# Out: One run took 2.07s
# Out: Four runs took 2.30s

Section 118.2: Running in Multiple Threads
Use threading.Thread to run a function in another thread.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 544

import threading
import os

def process():
    print("Pid is %s, thread id is %s" % (os.getpid(), threading.current_thread().name))

threads = [threading.Thread(target=process) for _ in range(4)]
for t in threads:
    t.start()
for t in threads:
    t.join()
   
# Out: Pid is 11240, thread id is Thread-1
# Out: Pid is 11240, thread id is Thread-2
# Out: Pid is 11240, thread id is Thread-3
# Out: Pid is 11240, thread id is Thread-4

Section 118.3: Running in Multiple Processes
Use multiprocessing.Process to run a function in another process. The interface is similar to threading.Thread:

import multiprocessing
import os

def process():
    print("Pid is %s" % (os.getpid(),))

processes = [multiprocessing.Process(target=process) for _ in range(4)]
for p in processes:
    p.start()
for p in processes:
    p.join()
   
# Out: Pid is 11206
# Out: Pid is 11207
# Out: Pid is 11208
# Out: Pid is 11209

Section 118.4: Sharing State Between Threads
As all threads are running in the same process, all threads have access to the same data.

However, concurrent access to shared data should be protected with a lock to avoid synchronization issues.

import threading

obj = {}
obj_lock = threading.Lock()

def objify(key, val):
    print("Obj has %d values" % len(obj))
    with obj_lock:
        obj[key] = val
    print("Obj now has %d values" % len(obj))

ts = [threading.Thread(target=objify, args=(str(n), n)) for n in range(4)]
for t in ts:
    t.start()
for t in ts:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 545

    t.join()
print("Obj final result:")
import pprint; pprint.pprint(obj)

# Out: Obj has 0 values
# Out:  Obj has 0 values
# Out: Obj now has 1 values
# Out: Obj now has 2 valuesObj has 2 values
# Out: Obj now has 3 values
# Out:
# Out:  Obj has 3 values
# Out: Obj now has 4 values
# Out: Obj final result:
# Out: {'0': 0, '1': 1, '2': 2, '3': 3}

Section 118.5: Sharing State Between Processes
Code running in different processes do not, by default, share the same data. However, the multiprocessing
module contains primitives to help share values across multiple processes.

import multiprocessing

plain_num = 0
shared_num = multiprocessing.Value('d', 0)
lock = multiprocessing.Lock()

def increment():
    global plain_num
    with lock:
        # ordinary variable modifications are not visible across processes
        plain_num += 1
        # multiprocessing.Value modifications are
        shared_num.value += 1

ps = [multiprocessing.Process(target=increment) for n in range(4)]
for p in ps:
    p.start()
for p in ps:
    p.join()

print("plain_num is %d, shared_num is %d" % (plain_num, shared_num.value))

# Out: plain_num is 0, shared_num is 4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 546

Chapter 119: Python concurrency
Section 119.1: The multiprocessing module
from __future__ import print_function
import multiprocessing

def countdown(count):
    while count > 0:
        print("Count value", count)
        count -= 1
    return

if __name__ == "__main__":
    p1 = multiprocessing.Process(target=countdown, args=(10,))
    p1.start()

    p2 = multiprocessing.Process(target=countdown, args=(20,))
    p2.start()

    p1.join()
    p2.join()

Here, each function is executed in a new process. Since a new instance of Python VM is running the code, there is
no GIL and you get parallelism running on multiple cores.

The Process.start method launches this new process and run the function passed in the target argument with
the arguments args. The Process.join method waits for the end of the execution of processes p1 and p2.

The new processes are launched differently depending on the version of python and the platform on which the
code is running e.g.:

Windows uses spawn to create the new process.
With unix systems and version earlier than 3.3, the processes are created using a fork.
Note that this method does not respect the POSIX usage of fork and thus leads to unexpected behaviors,
especially when interacting with other multiprocessing libraries.
With unix system and version 3.4+, you can choose to start the new processes with either fork, forkserver
or spawn using multiprocessing.set_start_method at the beginning of your program. forkserver and
spawn methods are slower than forking but avoid some unexpected behaviors.

POSIX fork usage:

After a fork in a multithreaded program, the child can safely call only async-signal-safe functions until
such time as it calls execve.
(see)

Using fork, a new process will be launched with the exact same state for all the current mutex but only the
MainThread will be launched. This is unsafe as it could lead to race conditions e.g.:

If you use a Lock in MainThread and pass it to another thread which is supposed to lock it at some point. If
the fork occurs simultaneously, the new process will start with a locked lock which will never be released as
the second thread does not exist in this new process.

http://man7.org/linux/man-pages/man2/fork.2.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 547

Actually, this kind of behavior should not occurred in pure python as multiprocessing handles it properly but if
you are interacting with other library, this kind of behavior can occurs, leading to crash of your system (for instance
with numpy/accelerated on macOS).

Section 119.2: The threading module
from __future__ import print_function
import threading
def counter(count):
    while count > 0:
        print("Count value", count)
        count -= 1
    return

t1 = threading.Thread(target=countdown,args=(10,))
t1.start()
t2 = threading.Thread(target=countdown,args=(20,))
t2.start()

In certain implementations of Python such as CPython, true parallelism is not achieved using threads because of
using what is known as the GIL, or Global Interpreter Lock.

Here is an excellent overview of Python concurrency:

Python concurrency by David Beazley (YouTube)

Section 119.3: Passing data between multiprocessing
processes
Because data is sensitive when dealt with between two threads (think concurrent read and concurrent write can
conflict with one another, causing race conditions), a set of unique objects were made in order to facilitate the
passing of data back and forth between threads. Any truly atomic operation can be used between threads, but it is
always safe to stick with Queue.

import multiprocessing
import queue
my_Queue=multiprocessing.Queue()
#Creates a queue with an undefined maximum size
#this can be dangerous as the queue becomes increasingly large
#it will take a long time to copy data to/from each read/write thread

Most people will suggest that when using queue, to always place the queue data in a try: except: block instead of
using empty. However, for applications where it does not matter if you skip a scan cycle (data can be placed in the
queue while it is flipping states from queue.Empty==True to queue.Empty==False) it is usually better to place read
and write access in what I call an Iftry block, because an 'if' statement is technically more performant than catching
the exception.

import multiprocessing
import queue
'''Import necessary Python standard libraries, multiprocessing for classes and queue for the queue
exceptions it provides'''
def Queue_Iftry_Get(get_queue, default=None, use_default=False, func=None, use_func=False):
    '''This global method for the Iftry block is provided for its reuse and
standard functionality, the if also saves on performance as opposed to catching
 the exception, which is expensive.
        It also allows the user to specify a function for the outgoing data to use,

https://www.youtube.com/watch?v=MCs5OvhV9S4
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 548

 and a default value to return if the function cannot return the value from the queue'''
        if get_queue.empty():
            if use_default:
                return default
        else:
            try:
                value = get_queue.get_nowait()
            except queue.Empty:
                if use_default:
                    return default
            else:
                if use_func:
                    return func(value)
                else:
                    return value
    def Queue_Iftry_Put(put_queue, value):
        '''This global method for the Iftry block is provided because of its reuse
and
standard functionality, the If also saves on performance as opposed to catching
 the exception, which is expensive.
        Return True if placing value in the queue was successful. Otherwise, false'''
        if put_queue.full():
            return False
        else:
            try:
                put_queue.put_nowait(value)
            except queue.Full:
                return False
            else:
                return True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 550

Chapter 120: Parallel computation
Section 120.1: Using the multiprocessing module to parallelise
tasks
import multiprocessing

def fib(n):
    """computing the Fibonacci in an inefficient way
    was chosen to slow down the CPU."""
    if n <= 2:
        return 1
    else:
        return fib(n-1)+fib(n-2)
p = multiprocessing.Pool()
print(p.map(fib,[38,37,36,35,34,33]))

# Out: [39088169, 24157817, 14930352, 9227465, 5702887, 3524578]

As the execution of each call to fib happens in parallel, the time of execution of the full example is 1.8× faster than
if done in a sequential way on a dual processor.

Python 2.2+

Section 120.2: Using a C-extension to parallelize tasks
The idea here is to move the computationally intensive jobs to C (using special macros), independent of Python, and
have the C code release the GIL while it's working.

#include "Python.h"
...
PyObject *pyfunc(PyObject *self, PyObject *args) {
    ...
    Py_BEGIN_ALLOW_THREADS
    // Threaded C code
    ...
    Py_END_ALLOW_THREADS
    ...
}

Section 120.3: Using Parent and Children scripts to execute
code in parallel
child.py

import time

def main():
    print "starting work"
    time.sleep(1)
    print "work work work work work"
    time.sleep(1)
    print "done working"

if __name__ == '__main__':
    main()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 551

parent.py

import os

def main():
    for i in range(5):
        os.system("python child.py &")

if __name__ == '__main__':
    main()

This is useful for parallel, independent HTTP request/response tasks or Database select/inserts. Command line
arguments can be given to the child.py script as well. Synchronization between scripts can be achieved by all
scripts regularly checking a separate server (like a Redis instance).

Section 120.4: Using PyPar module to parallelize
PyPar is a library that uses the message passing interface (MPI) to provide parallelism in Python. A simple example
in PyPar (as seen at https://github.com/daleroberts/pypar) looks like this:

import pypar as pp

ncpus = pp.size()
rank = pp.rank()
node = pp.get_processor_name()

print 'I am rank %d of %d on node %s' % (rank, ncpus, node)

if rank == 0:
  msh = 'P0'
  pp.send(msg, destination=1)
  msg = pp.receive(source=rank-1)
  print 'Processor 0 received message "%s" from rank %d' % (msg, rank-1)
else:
  source = rank-1
  destination = (rank+1) % ncpus
  msg = pp.receive(source)
  msg = msg + 'P' + str(rank)
  pypar.send(msg, destination)
pp.finalize()

https://github.com/daleroberts/pypar)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 552

Chapter 121: Sockets
Parameter Description

socket.AF_UNIX UNIX Socket

socket.AF_INET IPv4

socket.AF_INET6 IPv6

socket.SOCK_STREAM TCP

socket.SOCK_DGRAM UDP

Many programming languages use sockets to communicate across processes or between devices. This topic
explains proper usage the sockets module in Python to facilitate sending and receiving data over common
networking protocols.

Section 121.1: Raw Sockets on Linux
First you disable your network card's automatic checksumming:

sudo ethtool -K eth1 tx off

Then send your packet, using a SOCK_RAW socket:

#!/usr/bin/env python
from socket import socket, AF_PACKET, SOCK_RAW
s = socket(AF_PACKET, SOCK_RAW)
s.bind(("eth1", 0))

# We're putting together an ethernet frame here,
# but you could have anything you want instead
# Have a look at the 'struct' module for more
# flexible packing/unpacking of binary data
# and 'binascii' for 32 bit CRC
src_addr = "\x01\x02\x03\x04\x05\x06"
dst_addr = "\x01\x02\x03\x04\x05\x06"
payload = ("["*30)+"PAYLOAD"+("]"*30)
checksum = "\x1a\x2b\x3c\x4d"
ethertype = "\x08\x01"

s.send(dst_addr+src_addr+ethertype+payload+checksum)

Section 121.2: Sending data via UDP
UDP is a connectionless protocol. Messages to other processes or computers are sent without establishing any sort
of connection. There is no automatic confirmation if your message has been received. UDP is usually used in
latency sensitive applications or in applications sending network wide broadcasts.

The following code sends a message to a process listening on localhost port 6667 using UDP

Note that there is no need to "close" the socket after the send, because UDP is connectionless.

from socket import socket, AF_INET, SOCK_DGRAM
s = socket(AF_INET, SOCK_DGRAM)
msg = ("Hello you there!").encode('utf-8')  # socket.sendto() takes bytes as input, hence we must
encode the string first.
s.sendto(msg, ('localhost', 6667))

https://en.wikipedia.org/wiki/Connectionless_communication
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 553

Section 121.3: Receiving data via UDP
UDP is a connectionless protocol. This means that peers sending messages do not require establishing a
connection before sending messages. socket.recvfromthus returns a tuple (msg [the message the socket received],
addr [the address of the sender])

A UDP server using solely the socket module:

from socket import socket, AF_INET, SOCK_DGRAM
sock = socket(AF_INET, SOCK_DGRAM)
sock.bind(('localhost', 6667))

while True:
    msg, addr = sock.recvfrom(8192)  # This is the amount of bytes to read at maximum
    print("Got message from %s: %s" % (addr, msg))

Below is an alternative implementation using socketserver.UDPServer:

from socketserver import BaseRequestHandler, UDPServer

class MyHandler(BaseRequestHandler):
    def handle(self):
        print("Got connection from: %s" % self.client_address)
        msg, sock = self.request
        print("It said: %s" % msg)
        sock.sendto("Got your message!".encode(), self.client_address) # Send reply

serv = UDPServer(('localhost', 6667), MyHandler)
serv.serve_forever()

By default, sockets block. This means that execution of the script will wait until the socket receives data.

Section 121.4: Sending data via TCP
Sending data over the internet is made possible using multiple modules. The sockets module provides low-level
access to the underlying Operating System operations responsible for sending or receiving data from other
computers or processes.

The following code sends the byte string b'Hello' to a TCP server listening on port 6667 on the host localhost and
closes the connection when finished:

from socket import socket, AF_INET, SOCK_STREAM
s = socket(AF_INET, SOCK_STREAM)
s.connect(('localhost', 6667))  # The address of the TCP server listening
s.send(b'Hello')
s.close()

Socket output is blocking by default, that means that the program will wait in the connect and send calls until the
action is 'completed'. For connect that means the server actually accepting the connection. For send it only means
that the operating system has enough buffer space to queue the data to be send later.

Sockets should always be closed after use.

Section 121.5: Multi-threaded TCP Socket Server
When run with no arguments, this program starts a TCP socket server that listens for connections to 127.0.0.1 on

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 554

port 5000. The server handles each connection in a separate thread.

When run with the -c argument, this program connects to the server, reads the client list, and prints it out. The
client list is transferred as a JSON string. The client name may be specified by passing the -n argument. By passing
different names, the effect on the client list may be observed.

client_list.py

import argparse
import json
import socket
import threading

def handle_client(client_list, conn, address):
    name = conn.recv(1024)
    entry = dict(zip(['name', 'address', 'port'], [name, address[0], address[1]]))
    client_list[name] = entry
    conn.sendall(json.dumps(client_list))
    conn.shutdown(socket.SHUT_RDWR)
    conn.close()

def server(client_list):
    print "Starting server..."
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    s.bind(('127.0.0.1', 5000))
    s.listen(5)
    while True:
        (conn, address) = s.accept()
        t = threading.Thread(target=handle_client, args=(client_list, conn, address))
        t.daemon = True
        t.start()

def client(name):
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect(('127.0.0.1', 5000))
    s.send(name)
    data = s.recv(1024)
    result = json.loads(data)
    print json.dumps(result, indent=4)

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', dest='client', action='store_true')
    parser.add_argument('-n', dest='name', type=str, default='name')
    result = parser.parse_args()
    return result

def main():
    client_list = dict()
    args = parse_arguments()
    if args.client:
        client(args.name)
    else:
        try:
            server(client_list)
        except KeyboardInterrupt:
            print "Keyboard interrupt"

if __name__ == '__main__':

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 555

    main()

Server Output

$ python client_list.py
Starting server...

Client Output

$ python client_list.py -c -n name1
{
    "name1": {
        "address": "127.0.0.1",
        "port": 62210,
        "name": "name1"
    }
}

The receive buffers are limited to 1024 bytes. If the JSON string representation of the client list exceeds this size, it
will be truncated. This will cause the following exception to be raised:

ValueError: Unterminated string starting at: line 1 column 1023 (char 1022)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 556

Chapter 122: Websockets
Section 122.1: Simple Echo with aiohttp
aiohttp provides asynchronous websockets.

Python 3.x Version ≥ 3.5

import asyncio
from aiohttp import ClientSession

with ClientSession() as session:
    async def hello_world():

        websocket = await session.ws_connect("wss://echo.websocket.org")

        websocket.send_str("Hello, world!")

        print("Received:", (await websocket.receive()).data)

        await websocket.close()

    loop = asyncio.get_event_loop()
    loop.run_until_complete(hello_world())

Section 122.2: Wrapper Class with aiohttp
aiohttp.ClientSession may be used as a parent for a custom WebSocket class.

Python 3.x Version ≥ 3.5

import asyncio
from aiohttp import ClientSession

class EchoWebSocket(ClientSession):

    URL = "wss://echo.websocket.org"

    def __init__(self):
        super().__init__()
        self.websocket = None

    async def connect(self):
        """Connect to the WebSocket."""
        self.websocket = await self.ws_connect(self.URL)

    async def send(self, message):
        """Send a message to the WebSocket."""
        assert self.websocket is not None, "You must connect first!"
        self.websocket.send_str(message)
        print("Sent:", message)

    async def receive(self):
        """Receive one message from the WebSocket."""
        assert self.websocket is not None, "You must connect first!"
        return (await self.websocket.receive()).data

    async def read(self):
        """Read messages from the WebSocket."""
        assert self.websocket is not None, "You must connect first!"

http://aiohttp.readthedocs.io/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 557

        while self.websocket.receive():
            message = await self.receive()
            print("Received:", message)
            if message == "Echo 9!":
                break

async def send(websocket):
    for n in range(10):
        await websocket.send("Echo {}!".format(n))
        await asyncio.sleep(1)

loop = asyncio.get_event_loop()

with EchoWebSocket() as websocket:

    loop.run_until_complete(websocket.connect())

    tasks = (
        send(websocket),
        websocket.read()
    )

    loop.run_until_complete(asyncio.wait(tasks))

    loop.close()

Section 122.3: Using Autobahn as a Websocket Factory
The Autobahn package can be used for Python web socket server factories.

Python Autobahn package documentation

To install, typically one would simply use the terminal command

(For Linux):

sudo pip install autobahn

(For Windows):

python -m pip install autobahn

Then, a simple echo server can be created in a Python script:

from autobahn.asyncio.websocket import WebSocketServerProtocol
class MyServerProtocol(WebSocketServerProtocol):
    '''When creating server protocol, the
    user defined class inheriting the
    WebSocketServerProtocol needs to override
    the onMessage, onConnect, et-c events for
    user specified functionality, these events
    define your server's protocol, in essence'''
    def onMessage(self,payload,isBinary):
        '''The onMessage routine is called
        when the server receives a message.
        It has the required arguments payload
        and the bool isBinary. The payload is the
        actual contents of the "message" and isBinary
        is simply a flag to let the user know that

http://autobahn.ws/python/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 558

        the payload contains binary data. I typically
        elsewise assume that the payload is a string.
        In this example, the payload is returned to sender verbatim.'''
        self.sendMessage(payload,isBinary)
if__name__=='__main__':
    try:
        importasyncio
    except ImportError:
        '''Trollius = 0.3 was renamed'''
        import trollius as asyncio
    from autobahn.asyncio.websocketimportWebSocketServerFactory
    factory=WebSocketServerFactory()
    '''Initialize the websocket factory, and set the protocol to the
    above defined protocol(the class that inherits from
    autobahn.asyncio.websocket.WebSocketServerProtocol)'''
    factory.protocol=MyServerProtocol
    '''This above line can be thought of as "binding" the methods
    onConnect, onMessage, et-c that were described in the MyServerProtocol class
    to the server, setting the servers functionality, ie, protocol'''
    loop=asyncio.get_event_loop()
    coro=loop.create_server(factory,'127.0.0.1',9000)
    server=loop.run_until_complete(coro)
    '''Run the server in an infinite loop'''
    try:
        loop.run_forever()
    except KeyboardInterrupt:
        pass
    finally:
        server.close()
        loop.close()

In this example, a server is being created on the localhost (127.0.0.1) on port 9000. This is the listening IP and port.
This is important information, as using this, you could identify your computer's LAN address and port forward from
your modem, though whatever routers you have to the computer. Then, using google to investigate your WAN IP,
you could design your website to send WebSocket messages to your WAN IP, on port 9000 (in this example).

It is important that you port forward from your modem back, meaning that if you have routers daisy chained to the
modem, enter into the modem's configuration settings, port forward from the modem to the connected router, and
so forth until the final router your computer is connected to is having the information being received on modem
port 9000 (in this example) forwarded to it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 559

Chapter 123: Sockets And Message
Encryption/Decryption Between Client and
Server
Cryptography is used for security purposes. There are not so many examples of Encryption/Decryption in Python
using IDEA encryption MODE CTR. Aim of this documentation :

Extend and implement of the RSA Digital Signature scheme in station-to-station communication. Using Hashing for
integrity of message, that is SHA-1. Produce simple Key Transport protocol. Encrypt Key with IDEA encryption. Mode
of Block Cipher is Counter Mode

Section 123.1: Server side Implementation
import socket
import hashlib
import os
import time
import itertools
import threading
import sys
import Crypto.Cipher.AES as AES
from Crypto.PublicKey import RSA
from CryptoPlus.Cipher import IDEA

#server address and port number input from admin
host= raw_input("Server Address - > ")
port = int(input("Port - > "))
#boolean for checking server and port
check = False
done = False

def animate():
    for c in itertools.cycle(['....','.......','..........','............']):
        if done:
            break
        sys.stdout.write('\rCHECKING IP ADDRESS AND NOT USED PORT '+c)
        sys.stdout.flush()
        time.sleep(0.1)
    sys.stdout.write('\r -----SERVER STARTED. WAITING FOR CLIENT-----\n')
try:
    #setting up socket
    server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    server.bind((host,port))
    server.listen(5)
    check = True
except BaseException:
    print "-----Check Server Address or Port-----"
    check = False

if check is True:
    # server Quit
    shutdown = False
# printing "Server Started Message"
thread_load = threading.Thread(target=animate)
thread_load.start()

time.sleep(4)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 560

done = True
#binding client and address
client,address = server.accept()
print ("CLIENT IS CONNECTED. CLIENT'S ADDRESS ->",address)
print ("\n-----WAITING FOR PUBLIC KEY & PUBLIC KEY HASH-----\n")

#client's message(Public Key)
getpbk = client.recv(2048)

#conversion of string to KEY
server_public_key = RSA.importKey(getpbk)

#hashing the public key in server side for validating the hash from client
hash_object = hashlib.sha1(getpbk)
hex_digest = hash_object.hexdigest()

if getpbk != "":
    print (getpbk)
    client.send("YES")
    gethash = client.recv(1024)
    print ("\n-----HASH OF PUBLIC KEY----- \n"+gethash)
if hex_digest == gethash:
    # creating session key
    key_128 = os.urandom(16)
    #encrypt CTR MODE session key
    en = AES.new(key_128,AES.MODE_CTR,counter = lambda:key_128)
    encrypto = en.encrypt(key_128)
    #hashing sha1
    en_object = hashlib.sha1(encrypto)
    en_digest = en_object.hexdigest()

    print ("\n-----SESSION KEY-----\n"+en_digest)

    #encrypting session key and public key
    E = server_public_key.encrypt(encrypto,16)
    print ("\n-----ENCRYPTED PUBLIC KEY AND SESSION KEY-----\n"+str(E))
    print ("\n-----HANDSHAKE COMPLETE-----")
    client.send(str(E))
    while True:
        #message from client
        newmess = client.recv(1024)
        #decoding the message from HEXADECIMAL to decrypt the encrypted version of the message only
        decoded = newmess.decode("hex")
        #making en_digest(session_key) as the key
        key = en_digest[:16]
        print ("\nENCRYPTED MESSAGE FROM CLIENT -> "+newmess)
        #decrypting message from the client
        ideaDecrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda: key)
        dMsg = ideaDecrypt.decrypt(decoded)
        print ("\n**New Message**  "+time.ctime(time.time()) +" > "+dMsg+"\n")
        mess = raw_input("\nMessage To Client -> ")
        if mess != "":
            ideaEncrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda : key)
            eMsg = ideaEncrypt.encrypt(mess)
            eMsg = eMsg.encode("hex").upper()
            if eMsg != "":
                print ("ENCRYPTED MESSAGE TO CLIENT-> " + eMsg)
            client.send(eMsg)
    client.close()
else:
    print ("\n-----PUBLIC KEY HASH DOESNOT MATCH-----\n")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 561

Section 123.2: Client side Implementation
import time
import socket
import threading
import hashlib
import itertools
import sys
from Crypto import Random
from Crypto.PublicKey import RSA
from CryptoPlus.Cipher import IDEA

#animating loading
done = False
def animate():
    for c in itertools.cycle(['....','.......','..........','............']):
        if done:
            break
        sys.stdout.write('\rCONFIRMING CONNECTION TO SERVER '+c)
        sys.stdout.flush()
        time.sleep(0.1)

#public key and private key
random_generator = Random.new().read
key = RSA.generate(1024,random_generator)
public = key.publickey().exportKey()
private = key.exportKey()

#hashing the public key
hash_object = hashlib.sha1(public)
hex_digest = hash_object.hexdigest()

#Setting up socket
server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

#host and port input user
host = raw_input("Server Address To Be Connected -> ")
port = int(input("Port of The Server -> "))
#binding the address and port
server.connect((host, port))
# printing "Server Started Message"
thread_load = threading.Thread(target=animate)
thread_load.start()

time.sleep(4)
done = True

def send(t,name,key):
    mess = raw_input(name + " : ")
    key = key[:16]
    #merging the message and the name
    whole = name+" : "+mess
    ideaEncrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda : key)
    eMsg = ideaEncrypt.encrypt(whole)
    #converting the encrypted message to HEXADECIMAL to readable
    eMsg = eMsg.encode("hex").upper()
    if eMsg != "":
        print ("ENCRYPTED MESSAGE TO SERVER-> "+eMsg)
    server.send(eMsg)
def recv(t,key):
    newmess = server.recv(1024)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 562

    print ("\nENCRYPTED MESSAGE FROM SERVER-> " + newmess)
    key = key[:16]
    decoded = newmess.decode("hex")
    ideaDecrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda: key)
    dMsg = ideaDecrypt.decrypt(decoded)
    print ("\n**New Message From Server**  " + time.ctime(time.time()) + " : " + dMsg + "\n")

while True:
    server.send(public)
    confirm = server.recv(1024)
    if confirm == "YES":
        server.send(hex_digest)

    #connected msg
    msg = server.recv(1024)
    en = eval(msg)
    decrypt = key.decrypt(en)
    # hashing sha1
    en_object = hashlib.sha1(decrypt)
    en_digest = en_object.hexdigest()

    print ("\n-----ENCRYPTED PUBLIC KEY AND SESSION KEY FROM SERVER-----")
    print (msg)
    print ("\n-----DECRYPTED SESSION KEY-----")
    print (en_digest)
    print ("\n-----HANDSHAKE COMPLETE-----\n")
    alais = raw_input("\nYour Name -> ")

    while True:
        thread_send = threading.Thread(target=send,args=("------Sending Message------
",alais,en_digest))
        thread_recv = threading.Thread(target=recv,args=("------Receiving Message------
",en_digest))
        thread_send.start()
        thread_recv.start()

        thread_send.join()
        thread_recv.join()
        time.sleep(0.5)
    time.sleep(60)
    server.close()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 563

Chapter 124: Python Networking
Section 124.1: Creating a Simple Http Server
To share files or to host simple websites(http and javascript) in your local network, you can use Python's builtin
SimpleHTTPServer module. Python should be in your Path variable. Go to the folder where your files are and type:

For python 2:

$ python -m SimpleHTTPServer <portnumber>

For python 3:

$ python3 -m http.server <portnumber>

If port number is not given 8000 is the default port. So the output will be:

Serving HTTP on 0.0.0.0 port 8000 ...

You can access to your files through any device connected to the local network by typing
http://hostipaddress:8000/.

hostipaddress is your local IP address which probably starts with 192.168.x.x.

To finish the module simply press ctrl+c.

Section 124.2: Creating a TCP server
You can create a TCP server using the socketserver library. Here's a simple echo server.

Server side

from sockerserver import BaseRequestHandler, TCPServer

class EchoHandler(BaseRequestHandler):
    def handle(self):
        print('connection from:', self.client_address)
        while True:
            msg = self.request.recv(8192)
            if not msg:
                break
            self.request.send(msg)

if __name__ == '__main__':
    server = TCPServer(('', 5000), EchoHandler)
    server.serve_forever()

Client side

from socket import socket, AF_INET, SOCK_STREAM
sock = socket(AF_INET, SOCK_STREAM)
sock.connect(('localhost', 5000))
sock.send(b'Monty Python')
sock.recv(8192)  # returns b'Monty Python'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 564

socketserver makes it relatively easy to create simple TCP servers. However, you should be aware that, by default,
the servers are single threaded and can only serve one client at a time. If you want to handle multiple clients, either
instantiate a ThreadingTCPServer instead.

from socketserver import ThreadingTCPServer
...
if __name__ == '__main__':
    server = ThreadingTCPServer(('', 5000), EchoHandler)
    server.serve_forever()

Section 124.3: Creating a UDP Server
A UDP server is easily created using the socketserver library.

a simple time server:

import time
from socketserver import BaseRequestHandler, UDPServer

class CtimeHandler(BaseRequestHandler):
    def handle(self):
    print('connection from: ', self.client_address)
    # Get message and client socket
    msg, sock = self.request
    resp = time.ctime()
    sock.sendto(resp.encode('ascii'), self.client_address)

if __name__ == '__main__':
    server = UDPServer(('', 5000), CtimeHandler)
    server.serve_forever()

Testing:

>>> from socket import socket, AF_INET, SOCK_DGRAM
>>> sock = socket(AF_INET, SOCK_DGRAM)
>>> sick.sendto(b'', ('localhost', 5000))
0
>>> sock.recvfrom(8192)
(b'Wed Aug 15 20:35:08 2012', ('127.0.0.1', 5000))

Section 124.4: Start Simple HttpServer in a thread and open
the browser
Useful if your program is outputting web pages along the way.

from http.server import HTTPServer, CGIHTTPRequestHandler
import webbrowser
import threading

def start_server(path, port=8000):
    '''Start a simple webserver serving path on port'''
    os.chdir(path)
    httpd = HTTPServer(('', port), CGIHTTPRequestHandler)
    httpd.serve_forever()

# Start the server in a new thread
port = 8000
daemon = threading.Thread(name='daemon_server',

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 565

                          target=start_server,
                          args=('.', port)
daemon.setDaemon(True) # Set as a daemon so it will be killed once the main thread is dead.
daemon.start()

# Open the web browser
webbrowser.open('http://localhost:{}'.format(port))

Section 124.5: The simplest Python socket client-server
example
Server side:

import socket

serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
serversocket.bind(('localhost', 8089))
serversocket.listen(5) # become a server socket, maximum 5 connections

while True:
    connection, address = serversocket.accept()
    buf = connection.recv(64)
    if len(buf) > 0:
        print(buf)
    break

Client Side:

import socket

clientsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
clientsocket.connect(('localhost', 8089))
clientsocket.send('hello')

First run the SocketServer.py, and make sure the server is ready to listen/receive sth Then the client send info to the
server; After the server received sth, it terminates

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 567

Chapter 125: Python HTTP Server
Section 125.1: Running a simple HTTP server
Python 2.x Version ≥ 2.3

python -m SimpleHTTPServer 9000

Python 3.x Version ≥ 3.0

python -m http.server 9000

Running this command serves the files of the current directory at port 9000.

If no argument is provided as port number then server will run on default port 8000.

The -m flag will search sys.path for the corresponding .py file to run as a module.

If you want to only serve on localhost you'll need to write a custom Python program such as:

import sys
import BaseHTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler

HandlerClass = SimpleHTTPRequestHandler
ServerClass  = BaseHTTPServer.HTTPServer
Protocol     = "HTTP/1.0"

if sys.argv[1:]:
   port = int(sys.argv[1])
else:
   port = 8000
server_address = ('127.0.0.1', port)

HandlerClass.protocol_version = Protocol
httpd = ServerClass(server_address, HandlerClass)

sa = httpd.socket.getsockname()
print "Serving HTTP on", sa[0], "port", sa[1], "..."
httpd.serve_forever()

Section 125.2: Serving files
Assuming you have the following directory of files:

You can setup a web server to serve these files as follows:

Python 2.x Version ≥ 2.3

import SimpleHTTPServer
import SocketServer

http://i.stack.imgur.com/61fLG.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 568

PORT = 8000

handler = SimpleHTTPServer.SimpleHTTPRequestHandler
httpd = SocketServer.TCPServer(("localhost", PORT), handler)
print "Serving files at port {}".format(PORT)
httpd.serve_forever()

Python 3.x Version ≥ 3.0

import http.server
import socketserver

PORT = 8000

handler = http.server.SimpleHTTPRequestHandler
httpd = socketserver.TCPServer(("", PORT), handler)
print("serving at port", PORT)
httpd.serve_forever()

The SocketServer module provides the classes and functionalities to setup a network server.

SocketServer's TCPServer class sets up a server using the TCP protocol. The constructor accepts a tuple
representing the address of the server (i.e. the IP address and port) and the class that handles the server requests.

The SimpleHTTPRequestHandler class of the SimpleHTTPServer module allows the files at the current directory to
be served.

Save the script at the same directory and run it.

Run the HTTP Server :

Python 2.x Version ≥ 2.3

python -m SimpleHTTPServer 8000

Python 3.x Version ≥ 3.0

python -m http.server 8000

The '-m' flag will search 'sys.path' for the corresponding '.py' file to run as a module.

Open localhost:8000 in the browser, it will give you the following:

Section 125.3: Basic handling of GET, POST, PUT using
BaseHTTPRequestHandler
# from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer # python2

http://i.stack.imgur.com/FfhnV.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 569

from http.server import BaseHTTPRequestHandler, HTTPServer # python3
class HandleRequests(BaseHTTPRequestHandler):
    def _set_headers(self):
        self.send_response(200)
        self.send_header('Content-type', 'text/html')
        self.end_headers()

    def do_GET(self):
        self._set_headers()
        self.wfile.write("received get request")
       
    def do_POST(self):
        '''Reads post request body'''
        self._set_headers()
        content_len = int(self.headers.getheader('content-length', 0))
        post_body = self.rfile.read(content_len)
        self.wfile.write("received post request:<br>{}".format(post_body))

    def do_PUT(self):
        self.do_POST()

host = ''
port = 80
HTTPServer((host, port), HandleRequests).serve_forever()

Example output using curl:

$ curl http://localhost/
received get request%                                                                              
                                                                                                   
   

$ curl -X POST http://localhost/
received post request:<br>%                                                                        
                                                                                                   
   

$ curl -X PUT http://localhost/
received post request:<br>%                                                                        
                                                                                                   
   

$ echo 'hello world' | curl --data-binary @- http://localhost/
received post request:<br>hello world

Section 125.4: Programmatic API of SimpleHTTPServer
What happens when we execute python -m SimpleHTTPServer 9000?

To answer this question we should understand the construct of SimpleHTTPServer
(https://hg.python.org/cpython/file/2.7/Lib/SimpleHTTPServer.py) and
BaseHTTPServer(https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py).

Firstly, Python invokes the SimpleHTTPServer module with 9000 as an argument. Now observing the
SimpleHTTPServer code,

def test(HandlerClass = SimpleHTTPRequestHandler,
         ServerClass = BaseHTTPServer.HTTPServer):
    BaseHTTPServer.test(HandlerClass, ServerClass)

https://hg.python.org/cpython/file/2.7/Lib/SimpleHTTPServer.py)
https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 570

if __name__ == '__main__':
    test()

The test function is invoked following request handlers and ServerClass. Now BaseHTTPServer.test is invoked

def test(HandlerClass = BaseHTTPRequestHandler,
         ServerClass = HTTPServer, protocol="HTTP/1.0"):
"""Test the HTTP request handler class.

This runs an HTTP server on port 8000 (or the first command line
argument).

"""

if sys.argv[1:]:
    port = int(sys.argv[1])
else:
    port = 8000
server_address = ('', port)

HandlerClass.protocol_version = protocol
httpd = ServerClass(server_address, HandlerClass)

sa = httpd.socket.getsockname()
print "Serving HTTP on", sa[0], "port", sa[1], "..."
httpd.serve_forever()

Hence here the port number, which the user passed as argument is parsed and is bound to the host address.
Further basic steps of socket programming with given port and protocol is carried out. Finally socket server is
initiated.

This is a basic overview of inheritance from SocketServer class to other classes:

 +------------+
| BaseServer |
+------------+
|
v
+-----------+ +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+ +------------------+
|
v
+-----------+ +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+ +--------------------+

The links https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py and
https://hg.python.org/cpython/file/2.7/Lib/SocketServer.py are useful for finding further information.

https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py
https://hg.python.org/cpython/file/2.7/Lib/SocketServer.py
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 571

Chapter 126: Flask
Flask is a Python micro web framework used to run major websites including Pinterest, Twilio, and LinkedIn. This
topic explains and demonstrates the variety of features Flask offers for both front and back end web development.

Section 126.1: Files and Templates
Instead of typing our HTML markup into the return statements, we can use the render_template() function:

from flask import Flask
from flask import render_template
app = Flask(__name__)

@app.route("/about")
def about():
    return render_template("about-us.html")

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=80, debug=True)

This will use our template file about-us.html. To ensure our application can find this file we must organize our
directory in the following format:

- application.py
/templates
    - about-us.html
    - login-form.html
/static
    /styles
        - about-style.css
        - login-style.css
    /scripts
        - about-script.js
        - login-script.js

Most importantly, references to these files in the HTML must look like this:

<link rel="stylesheet" type="text/css", href="{{url_for('static', filename='styles/about-
style.css')}}">

which will direct the application to look for about-style.css in the styles folder under the static folder. The same
format of path applies to all references to images, styles, scripts, or files.

Section 126.2: The basics
The following example is an example of a basic server:

# Imports the Flask class
from flask import Flask
# Creates an app and checks if it's the main or imported
app = Flask(__name__)

# Specifies what URL triggers hello_world()
@app.route('/')
# The function run on the index route
def hello_world():
    # Returns the text to be displayed

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 572

    return "Hello World!"

# If this script isn't an import
if __name__ == "__main__":
    # Run the app until stopped
    app.run()

Running this script (with all the right dependencies installed) should start up a local server. The host is 127.0.0.1
commonly known as localhost. This server by default runs on port 5000. To access your webserver, open a web
browser and enter the URL localhost:5000 or 127.0.0.1:5000 (no difference). Currently, only your computer can
access the webserver.

app.run() has three parameters, host, port, and debug. The host is by default 127.0.0.1, but setting this to
0.0.0.0 will make your web server accessible from any device on your network using your private IP address in the
URL. the port is by default 5000 but if the parameter is set to port 80, users will not need to specify a port number
as browsers use port 80 by default. As for the debug option, during the development process (never in production)
it helps to set this parameter to True, as your server will restart when changes made to your Flask project.

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=80, debug=True)

Section 126.3: Routing URLs
With Flask, URL routing is traditionally done using decorators. These decorators can be used for static routing, as
well as routing URLs with parameters. For the following example, imagine this Flask script is running the website
www.example.com.

@app.route("/")
def index():
    return "You went to www.example.com"

@app.route("/about")
def about():
    return "You went to www.example.com/about"

@app.route("/users/guido-van-rossum")
    return "You went to www.example.com/guido-van-rossum"

With that last route, you can see that given a URL with /users/ and the profile name, we could return a profile. Since
it would be horribly inefficient and messy to include a @app.route() for every user, Flask offers to take parameters
from the URL:

@app.route("/users/<username>")
def profile(username):
    return "Welcome to the profile of " + username

cities = ["OMAHA", "MELBOURNE", "NEPAL", "STUTTGART", "LIMA", "CAIRO", "SHANGHAI"]

@app.route("/stores/locations/<city>")
def storefronts(city):
    if city in cities:
        return "Yes! We are located in " + city
    else:
        return "No. We are not located in " + city

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 573

Section 126.4: HTTP Methods
The two most common HTTP methods are GET and POST. Flask can run different code from the same URL
dependent on the HTTP method used. For example, in a web service with accounts, it is most convenient to route
the sign in page and the sign in process through the same URL. A GET request, the same that is made when you
open a URL in your browser should show the login form, while a POST request (carrying login data) should be
processed separately. A route is also created to handle the DELETE and PUT HTTP method.

@app.route("/login", methods=["GET"])
def login_form():
    return "This is the login form"
@app.route("/login", methods=["POST"])
def login_auth():
    return "Processing your data"
@app.route("/login", methods=["DELETE", "PUT"])
def deny():
    return "This method is not allowed"

To simplify the code a bit, we can import the request package from flask.

from flask import request

@app.route("/login", methods=["GET", "POST", "DELETE", "PUT"])
def login():
    if request.method == "DELETE" or request.method == "PUT":
        return "This method is not allowed"
    elif request.method == "GET":
        return "This is the login forum"
    elif request.method == "POST":
        return "Processing your data"

To retrieve data from the POST request, we must use the request package:

from flask import request
@app.route("/login", methods=["GET", "POST", "DELETE", "PUT"])
def login():
    if request.method == "DELETE" or request.method == "PUT":
        return "This method is not allowed"
    elif request.method == "GET":
        return "This is the login forum"
    elif request.method == "POST":
        return "Username was " + request.form["username"] + " and password was " +
request.form["password"]

Section 126.5: Jinja Templating
Similar to Meteor.js, Flask integrates well with front end templating services. Flask uses by default Jinja Templating.
Templates allow small snippets of code to be used in the HTML file such as conditionals or loops.

When we render a template, any parameters beyond the template file name are passed into the HTML templating
service. The following route will pass the username and joined date (from a function somewhere else) into the
HTML.

@app.route("/users/<username>)
def profile(username):
    joinedDate = get_joined_date(username) # This function's code is irrelevant
    awards = get_awards(username) # This function's code is irrelevant

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 574

    # The joinDate is a string and awards is an array of strings
    return render_template("profile.html", username=username, joinDate=joinDate, awards=awards)

When this template is rendered, it can use the variables passed to it from the render_template() function. Here
are the contents of profile.html:

<!DOCTYPE html>
<html>
    <head>
        # if username
            <title>Profile of {{ username }}</title>
        # else
            <title>No User Found</title>
        # endif
    <head>
    <body>
        {% if username %}
            <h1>{{ username }} joined on the date {{ date }}</h1>
            {% if len(awards) > 0 %}
                <h3>{{ username }} has the following awards:</h3>
                <ul>
                {% for award in awards %}
                    <li>{{award}}</li>
                {% endfor %}
                </ul>
            {% else %}
                <h3>{{ username }} has no awards</h3>
            {% endif %}
        {% else %}
            <h1>No user was found under that username</h1>
        {% endif %}
        {# This is a comment and doesn't affect the output #}
    </body>
</html>

The following delimiters are used for different interpretations:

{% ... %} denotes a statement
{{ ... }} denotes an expression where a template is outputted
{# ... #} denotes a comment (not included in template output)
{# ... ## implies the rest of the line should be interpreted as a statement

Section 126.6: The Request Object
The request object provides information on the request that was made to the route. To utilize this object, it must
be imported from the flask module:

from flask import request

URL Parameters

In previous examples request.method and request.form were used, however we can also use the request.args
property to retrieve a dictionary of the keys/values in the URL parameters.

@app.route("/api/users/<username>")
def user_api(username):
    try:
        token = request.args.get("key")
        if key == "pA55w0Rd":

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 575

            if isUser(username): # The code of this method is irrelevant
                joined = joinDate(username) # The code of this method is irrelevant
                return "User " + username + " joined on " + joined
            else:
                return "User not found"
        else:
            return "Incorrect key"
    # If there is no key parameter
    except KeyError:
        return "No key provided"

To correctly authenticate in this context, the following URL would be needed (replacing the username with any
username:

www.example.com/api/users/guido-van-rossum?key=pa55w0Rd

File Uploads

If a file upload was part of the submitted form in a POST request, the files can be handled using the request object:

@app.route("/upload", methods=["POST"])
def upload_file():
    f = request.files["wordlist-upload"]
    f.save("/var/www/uploads/" + f.filename) # Store with the original filename

Cookies

The request may also include cookies in a dictionary similar to the URL parameters.

@app.route("/home")
def home():
    try:
        username = request.cookies.get("username")
        return "Your stored username is " + username
    except KeyError:
        return "No username cookies was found")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 576

Chapter 127: Introduction to RabbitMQ
using AMQPStorm
Section 127.1: How to consume messages from RabbitMQ
Start with importing the library.

from amqpstorm import Connection

When consuming messages, we first need to define a function to handle the incoming messages. This can be any
callable function, and has to take a message object, or a message tuple (depending on the to_tuple parameter
defined in start_consuming).

Besides processing the data from the incoming message, we will also have to Acknowledge or Reject the message.
This is important, as we need to let RabbitMQ know that we properly received and processed the message.

def on_message(message):
    """This function is called on message received.

    :param message: Delivered message.
    :return:
    """
    print("Message:", message.body)

    # Acknowledge that we handled the message without any issues.
    message.ack()

    # Reject the message.
    # message.reject()

    # Reject the message, and put it back in the queue.
    # message.reject(requeue=True)

Next we need to set up the connection to the RabbitMQ server.

connection = Connection('127.0.0.1', 'guest', 'guest')

After that we need to set up a channel. Each connection can have multiple channels, and in general when
performing multi-threaded tasks, it's recommended (but not required) to have one per thread.

channel = connection.channel()

Once we have our channel set up, we need to let RabbitMQ know that we want to start consuming messages. In this
case we will use our previously defined on_message function to handle all our consumed messages.

The queue we will be listening to on the RabbitMQ server is going to be simple_queue, and we are also telling
RabbitMQ that we will be acknowledging all incoming messages once we are done with them.

channel.basic.consume(callback=on_message, queue='simple_queue', no_ack=False)

Finally we need to start the IO loop to start processing messages delivered by the RabbitMQ server.

channel.start_consuming(to_tuple=False)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 577

Section 127.2: How to publish messages to RabbitMQ
Start with importing the library.

from amqpstorm import Connection
from amqpstorm import Message

Next we need to open a connection to the RabbitMQ server.

connection = Connection('127.0.0.1', 'guest', 'guest')

After that we need to set up a channel. Each connection can have multiple channels, and in general when
performing multi-threaded tasks, it's recommended (but not required) to have one per thread.

channel = connection.channel()

Once we have our channel set up, we can start to prepare our message.

# Message Properties.
properties = {
    'content_type': 'text/plain',
    'headers': {'key': 'value'}
}

# Create the message.
message = Message.create(channel=channel, body='Hello World!', properties=properties)

Now we can publish the message by simply calling publish and providing a routing_key. In this case we are going
to send the message to a queue called simple_queue.

message.publish(routing_key='simple_queue')

Section 127.3: How to create a delayed queue in RabbitMQ
First we need to set up two basic channels, one for the main queue, and one for the delay queue. In my example at
the end, I include a couple of additional flags that are not required, but makes the code more reliable; such as
confirm delivery, delivery_mode and durable. You can find more information on these in the RabbitMQ manual.

After we have set up the channels we add a binding to the main channel that we can use to send messages from
the delay channel to our main queue.

channel.queue.bind(exchange='amq.direct', routing_key='hello', queue='hello')

Next we need to configure our delay channel to forward messages to the main queue once they have expired.

delay_channel.queue.declare(queue='hello_delay', durable=True, arguments={
    'x-message-ttl': 5000,
    'x-dead-letter-exchange': 'amq.direct',
    'x-dead-letter-routing-key': 'hello'
})

x-message-ttl (Message - Time To Live)

This is normally used to automatically remove old messages in the queue after a specific duration, but by

http://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/ttl.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 578

adding two optional arguments we can change this behaviour, and instead have this parameter determine in
milliseconds how long messages will stay in the delay queue.

x-dead-letter-routing-key

This variable allows us to transfer the message to a different queue once they have expired, instead of the
default behaviour of removing it completely.

x-dead-letter-exchange

This variable determines which Exchange used to transfer the message from hello_delay to hello queue.

Publishing to the delay queue

When we are done setting up all the basic Pika parameters you simply send a message to the delay queue using
basic publish.

delay_channel.basic.publish(exchange='',
                            routing_key='hello_delay',
                            body='test',
                            properties={'delivery_mod': 2})

Once you have executed the script you should see the following queues created in your RabbitMQ management
module.

Example.

from amqpstorm import Connection

connection = Connection('127.0.0.1', 'guest', 'guest')

# Create normal 'Hello World' type channel.
channel = connection.channel()
channel.confirm_deliveries()
channel.queue.declare(queue='hello', durable=True)

# We need to bind this channel to an exchange, that will be used to transfer
# messages from our delay queue.
channel.queue.bind(exchange='amq.direct', routing_key='hello', queue='hello')

# Create our delay channel.
delay_channel = connection.channel()
delay_channel.confirm_deliveries()

# This is where we declare the delay, and routing for our delay channel.
delay_channel.queue.declare(queue='hello_delay', durable=True, arguments={
    'x-message-ttl': 5000, # Delay until the message is transferred in milliseconds.
    'x-dead-letter-exchange': 'amq.direct', # Exchange used to transfer the message from A to B.
    'x-dead-letter-routing-key': 'hello' # Name of the queue we want the message transferred to.

http://www.rabbitmq.com/dlx.html
http://www.rabbitmq.com/dlx.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 579

})

delay_channel.basic.publish(exchange='',
                            routing_key='hello_delay',
                            body='test',
                            properties={'delivery_mode': 2})

print("[x] Sent")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 580

Chapter 128: Descriptor
Section 128.1: Simple descriptor
There are two different types of descriptors. Data descriptors are defined as objects that define both a __get__()
and a __set__() method, whereas non-data descriptors only define a __get__() method. This distinction is
important when considering overrides and the namespace of an instance's dictionary. If a data descriptor and an
entry in an instance's dictionary share the same name, the data descriptor will take precedence. However, if instead
a non-data descriptor and an entry in an instance's dictionary share the same name, the instance dictionary's entry
will take precedence.

To make a read-only data descriptor, define both get() and set() with the set() raising an AttributeError when called.
Defining the set() method with an exception raising placeholder is enough to make it a data descriptor.

descr.__get__(self, obj, type=None) --> value
descr.__set__(self, obj, value) --> None
descr.__delete__(self, obj) --> None

An implemented example:

class DescPrinter(object):
    """A data descriptor that logs activity."""
    _val = 7
   
    def __get__(self, obj, objtype=None):
        print('Getting ...')
        return self._val

    def __set__(self, obj, val):
        print('Setting', val)
        self._val = val
   
    def __delete__(self, obj):
        print('Deleting ...')
        del self._val

class Foo():
    x = DescPrinter()      

i = Foo()
i.x
# Getting ...
# 7

i.x = 100
# Setting 100
i.x
# Getting ...
# 100

del i.x
# Deleting ...
i.x
# Getting ...
# 7

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 581

Section 128.2: Two-way conversions
Descriptor objects can allow related object attributes to react to changes automatically.

Suppose we want to model an oscillator with a given frequency (in Hertz) and period (in seconds). When we update
the frequency we want the period to update, and when we update the period we want the frequency to update:

 >>> oscillator = Oscillator(freq=100.0)  # Set frequency to 100.0 Hz
>>> oscillator.period  # Period is 1 / frequency, i.e. 0.01 seconds
0.01
>>> oscillator.period = 0.02  # Set period to 0.02 seconds
>>> oscillator.freq # The frequency is automatically adjusted
50.0
>>> oscillator.freq = 200.0  # Set the frequency to 200.0 Hz
>>> oscillator.period  # The period is automatically adjusted
0.005

We pick one of the values (frequency, in Hertz) as the "anchor," i.e. the one that can be set with no conversion, and
write a descriptor class for it:

class Hertz(object):
    def __get__(self, instance, owner):
        return self.value

    def __set__(self, instance, value):
        self.value = float(value)

The "other" value (period, in seconds) is defined in terms of the anchor. We write a descriptor class that does our
conversions:

class Second(object):
    def __get__(self, instance, owner):
        # When reading period, convert from frequency
        return 1 / instance.freq
   
    def __set__(self, instance, value):
        # When setting period, update the frequency
        instance.freq = 1 / float(value)

Now we can write the Oscillator class:

class Oscillator(object):
    period = Second()  # Set the other value as a class attribute

    def __init__(self, freq):
        self.freq = Hertz()  # Set the anchor value as an instance attribute
        self.freq = freq  # Assign the passed value - self.period will be adjusted

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 582

Chapter 129: tempfile
NamedTemporaryFile
param description
mode mode to open file, default=w+b

delete To delete file on closure, default=True

suffix filename suffix, default=''

prefix filename prefix, default='tmp'

dir dirname to place tempfile, default=None

buffsize default=-1, (operating system default used)

Section 129.1: Create (and write to a) known, persistent
temporary file
You can create temporary files which has a visible name on the file system which can be accessed via the name
property. The file can, on unix systems, be configured to delete on closure (set by delete param, default is True) or
can be reopened later.

The following will create and open a named temporary file and write 'Hello World!' to that file. The filepath of the
temporary file can be accessed via name, in this example it is saved to the variable path and printed for the user.
The file is then re-opened after closing the file and the contents of the tempfile are read and printed for the user.

import tempfile

with tempfile.NamedTemporaryFile(delete=False) as t:
    t.write('Hello World!')
    path = t.name
    print path

with open(path) as t:
    print t.read()

Output:

/tmp/tmp6pireJ
Hello World!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 584

Chapter 130: Input, Subset and Output
External Data Files using Pandas
This section shows basic code for reading, sub-setting and writing external data files using pandas.

Section 130.1: Basic Code to Import, Subset and Write External
Data Files Using Pandas
# Print the working directory
import os
print os.getcwd()
# C:\Python27\Scripts

# Set the working directory
os.chdir('C:/Users/general1/Documents/simple Python files')
print os.getcwd()
# C:\Users\general1\Documents\simple Python files

# load pandas
import pandas as pd

# read a csv data file named 'small_dataset.csv' containing 4 lines and 3 variables
my_data = pd.read_csv("small_dataset.csv")
my_data
#     x   y   z
# 0   1   2   3
# 1   4   5   6
# 2   7   8   9
# 3  10  11  12

my_data.shape       # number of rows and columns in data set
# (4, 3)

my_data.shape[0]    # number of rows in data set
# 4

my_data.shape[1]    # number of columns in data set
# 3

# Python uses 0-based indexing.  The first row or column in a data set is located
# at position 0.  In R the first row or column in a data set is located
# at position 1.

# Select the first two rows
my_data[0:2]
#    x   y   z
#0   1   2   3
#1   4   5   6

# Select the second and third rows
my_data[1:3]
#    x  y  z
# 1  4  5  6
# 2  7  8  9

# Select the third row
my_data[2:3]
#    x   y   z
#2   7   8   9

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 585

# Select the first two elements of the first column
my_data.iloc[0:2, 0:1]
#    x
# 0  1
# 1  4

# Select the first element of the variables y and z
my_data.loc[0, ['y', 'z']]
# y    2
# z    3

# Select the first three elements of the variables y and z
my_data.loc[0:2, ['y', 'z']]
#    y  z
# 0  2  3
# 1  5  6
# 2  8  9

# Write the first three elements of the variables y and z
# to an external file.  Here index = 0 means do not write row names.

my_data2 = my_data.loc[0:2, ['y', 'z']]

my_data2.to_csv('my.output.csv', index = 0)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 586

Chapter 131: Unzipping Files
To extract or uncompress a tarball, ZIP, or gzip file, Python's tarfile, zipfile, and gzip modules are provided
respectively. Python's tarfile module provides the TarFile.extractall(path=".", members=None) function for
extracting from a tarball file. Python's zipfile module provides the ZipFile.extractall([path[, members[,
pwd]]]) function for extracting or unzipping ZIP compressed files. Finally, Python's gzip module provides the
GzipFile class for decompressing.

Section 131.1: Using Python ZipFile.extractall() to decompress
a ZIP file
file_unzip = 'filename.zip'
unzip = zipfile.ZipFile(file_unzip, 'r')
unzip.extractall()
unzip.close()

Section 131.2: Using Python TarFile.extractall() to decompress
a tarball
file_untar = 'filename.tar.gz'
untar = tarfile.TarFile(file_untar)
untar.extractall()
untar.close()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 587

Chapter 132: Working with ZIP archives
Section 132.1: Examining Zipfile Contents
There are a few ways to inspect the contents of a zipfile. You can use the printdir to just get a variety of
information sent to stdout

with zipfile.ZipFile(filename) as zip:
    zip.printdir()

    # Out:
    # File Name                                             Modified             Size
    # pyexpat.pyd                                    2016-06-25 22:13:34       157336
    # python.exe                                     2016-06-25 22:13:34        39576
    # python3.dll                                    2016-06-25 22:13:34        51864
    # python35.dll                                   2016-06-25 22:13:34      3127960
    # etc.

We can also get a list of filenames with the namelist method. Here, we simply print the list:

with zipfile.ZipFile(filename) as zip:
    print(zip.namelist())

# Out: ['pyexpat.pyd', 'python.exe', 'python3.dll', 'python35.dll', ... etc. ...]

Instead of namelist, we can call the infolist method, which returns a list of ZipInfo objects, which contain
additional information about each file, for instance a timestamp and file size:

with zipfile.ZipFile(filename) as zip:
    info = zip.infolist()
    print(zip[0].filename)
    print(zip[0].date_time)
    print(info[0].file_size)

# Out: pyexpat.pyd
# Out: (2016, 6, 25, 22, 13, 34)
# Out: 157336

Section 132.2: Opening Zip Files
To start, import the zipfile module, and set the filename.

import zipfile
filename = 'zipfile.zip'

Working with zip archives is very similar to working with files, you create the object by opening the zipfile, which lets
you work on it before closing the file up again.

zip = zipfile.ZipFile(filename)
print(zip)
# <zipfile.ZipFile object at 0x0000000002E51A90>
zip.close()

In Python 2.7 and in Python 3 versions higher than 3.2, we can use the with context manager. We open the file in
"read" mode, and then print a list of filenames:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 588

with zipfile.ZipFile(filename, 'r') as z:
    print(zip)
    # <zipfile.ZipFile object at 0x0000000002E51A90>

Section 132.3: Extracting zip file contents to a directory
Extract all file contents of a zip file

import zipfile
with zipfile.ZipFile('zipfile.zip','r') as zfile:
    zfile.extractall('path')

If you want extract single files use extract method, it takes name list and path as input parameter

import zipfile
f=open('zipfile.zip','rb')
zfile=zipfile.ZipFile(f)
for cont in zfile.namelist():
    zfile.extract(cont,path)

Section 132.4: Creating new archives
To create new archive open zipfile with write mode.

import zipfile
new_arch=zipfile.ZipFile("filename.zip",mode="w")

To add files to this archive use write() method.

new_arch.write('filename.txt','filename_in_archive.txt') #first parameter is filename and second
parameter is filename in archive by default filename will be taken if not provided
new_arch.close()

If you want to write string of bytes into the archive you can use writestr() method.

str_bytes="string buffer"
new_arch.writestr('filename_string_in_archive.txt',str_bytes)
new_arch.close()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 589

Chapter 133: Getting start with GZip
This module provides a simple interface to compress and decompress files just like the GNU programs gzip and
gunzip would.

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class which is modeled after Python’s File Object. The GzipFile class reads
and writes gzip-format files, automatically compressing or decompressing the data so that it looks like an ordinary
file object.

Section 133.1: Read and write GNU zip files
import gzip
import os

outfilename = 'example.txt.gz'
output = gzip.open(outfilename, 'wb')
try:
    output.write('Contents of the example file go here.\n')
finally:
    output.close()

print outfilename, 'contains', os.stat(outfilename).st_size, 'bytes of compressed data'
os.system('file -b --mime %s' % outfilename)

Save it as 1gzip_write.py1.Run it through terminal.

$ python gzip_write.py

application/x-gzip; charset=binary
example.txt.gz contains 68 bytes of compressed data

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 590

Chapter 134: Stack
A stack is a container of objects that are inserted and removed according to the last-in first-out (LIFO) principle. In
the pushdown stacks only two operations are allowed: push the item into the stack, and pop the item out of
the stack. A stack is a limited access data structure - elements can be added and removed from the stack only
at the top. Here is a structural definition of a Stack: a stack is either empty or it consists of a top and the rest which
is a Stack.

Section 134.1: Creating a Stack class with a List Object
Using a list object you can create a fully functional generic Stack with helper methods such as peeking and
checking if the stack is Empty. Check out the official python docs for using list as Stack here.

#define a stack class
class Stack:
    def __init__(self):
        self.items = []
   
    #method to check the stack is empty or not
    def isEmpty(self):
        return self.items == []
   
    #method for pushing an item
    def push(self, item):
        self.items.append(item)

    #method for popping an item
    def pop(self):
        return self.items.pop()
   
    #check what item is on top of the stack without removing it
    def peek(self):
        return self.items[-1]

    #method to get the size
    def size(self):
        return len(self.items)

    #to view the entire stack
    def fullStack(self):
        return self.items

An example run:

stack = Stack()
print('Current stack:', stack.fullStack())
print('Stack empty?:', stack.isEmpty())
print('Pushing integer 1')
stack.push(1)
print('Pushing string "Told you, I am generic stack!"')
stack.push('Told you, I am generic stack!')
print('Pushing integer 3')
stack.push(3)
print('Current stack:', stack.fullStack())
print('Popped item:', stack.pop())
print('Current stack:', stack.fullStack())
print('Stack empty?:', stack.isEmpty())

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-stacks
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 591

Output:

Current stack: []
Stack empty?: True
Pushing integer 1
Pushing string "Told you, I am generic stack!"
Pushing integer 3
Current stack: [1, 'Told you, I am generic stack!', 3]
Popped item: 3
Current stack: [1, 'Told you, I am generic stack!']
Stack empty?: False

Section 134.2: Parsing Parentheses
Stacks are often used for parsing. A simple parsing task is to check whether a string of parentheses are matching.

For example, the string ([]) is matching, because the outer and inner brackets form pairs. ()<>) is not matching,
because the last ) has no partner. ([)] is also not matching, because pairs must be either entirely inside or outside
other pairs.

def checkParenth(str):
    stack = Stack()
    pushChars, popChars = "<({[", ">)}]"
    for c in str:
        if c in pushChars:
            stack.push(c)
        elif c in popChars:
            if stack.isEmpty():
                return False
            else:
                stackTop = stack.pop()
                # Checks to see whether the opening bracket matches the closing one
                balancingBracket = pushChars[popChars.index(c)]
                if stackTop != balancingBracket:
                    return False
        else:
            return False

    return not stack.isEmpty()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 593

Chapter 135: Working around the Global
Interpreter Lock (GIL)
Section 135.1: Multiprocessing.Pool
The simple answer, when asking how to use threads in Python is: "Don't. Use processes, instead." The
multiprocessing module lets you create processes with similar syntax to creating threads, but I prefer using their
convenient Pool object.

Using the code that David Beazley first used to show the dangers of threads against the GIL, we'll rewrite it using
multiprocessing.Pool:

David Beazley's code that showed GIL threading problems
from threading import Thread
import time
def countdown(n):
    while n > 0:
        n -= 1

COUNT = 10000000

t1 = Thread(target=countdown,args=(COUNT/2,))
t2 = Thread(target=countdown,args=(COUNT/2,))
start = time.time()
t1.start();t2.start()
t1.join();t2.join()
end = time.time()
print end-start

Re-written using multiprocessing.Pool:

import multiprocessing
import time
def countdown(n):
    while n > 0:
        n -= 1

COUNT = 10000000

start = time.time()
with multiprocessing.Pool as pool:
    pool.map(countdown, [COUNT/2, COUNT/2])

    pool.close()
    pool.join()

end = time.time()
print(end-start)

Instead of creating threads, this creates new processes. Since each process is its own interpreter, there are no GIL
collisions. multiprocessing.Pool will open as many processes as there are cores on the machine, though in the
example above, it would only need two. In a real-world scenario, you want to design your list to have at least as
much length as there are processors on your machine. The Pool will run the function you tell it to run with each
argument, up to the number of processes it creates. When the function finishes, any remaining functions in the list
will be run on that process.

I've found that, even using the with statement, if you don't close and join the pool, the processes continue to exist.

http://www.dabeaz.com/GIL/gilvis/measure2.py
https://docs.python.org/3/library/multiprocessing.html#using-a-pool-of-workers
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 594

To clean up resources, I always close and join my pools.

Section 135.2: Cython nogil:
Cython is an alternative python interpreter. It uses the GIL, but lets you disable it. See their documentation

As an example, using the code that David Beazley first used to show the dangers of threads against the GIL, we'll
rewrite it using nogil:

David Beazley's code that showed GIL threading problems
from threading import Thread
import time
def countdown(n):
    while n > 0:
        n -= 1

COUNT = 10000000

t1 = Thread(target=countdown,args=(COUNT/2,))
t2 = Thread(target=countdown,args=(COUNT/2,))
start = time.time()
t1.start();t2.start()
t1.join();t2.join()
end = time.time()
print end-start

Re-written using nogil (ONLY WORKS IN CYTHON):
from threading import Thread
import time
def countdown(n):
    while n > 0:
        n -= 1

COUNT = 10000000

with nogil:
    t1 = Thread(target=countdown,args=(COUNT/2,))
    t2 = Thread(target=countdown,args=(COUNT/2,))
    start = time.time()
    t1.start();t2.start()
    t1.join();t2.join()
   
end = time.time()
print end-start

It's that simple, as long as you're using cython. Note that the documentation says you must make sure not to
change any python objects:

Code in the body of the statement must not manipulate Python objects in any way, and must not call
anything that manipulates Python objects without first re-acquiring the GIL. Cython currently does not
check this.

http://docs.cython.org/en/latest/src/userguide/external_C_code.html?highlight=nogil.html#acquiring-and-releasing-the-gil
http://www.dabeaz.com/GIL/gilvis/measure2.py
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 595

Chapter 136: Deployment
Section 136.1: Uploading a Conda Package
Before starting you must have:

Anaconda installed on your system Account on Binstar If you are not using Anaconda 1.6+ install the binstar
command line client:

$ conda install binstar
$ conda update binstar

If you are not using Anaconda the Binstar is also available on pypi:

$ pip install binstar

Now we can login:

$ binstar login

Test your login with the whoami command:

$ binstar whoami

We are going to be uploading a package with a simple ‘hello world’ function. To follow along start by getting my
demonstration package repo from Github:

$ git clone https://github.com/<NAME>/<Package>

This a small directory that looks like this:

package/
        setup.py
        test_package/
           __init__.py
           hello.py
           bld.bat
           build.sh
           meta.yaml

Setup.py is the standard python build file and hello.py has our single hello_world() function.

The bld.bat, build.sh, and meta.yaml are scripts and metadata for the Conda package. You can read the Conda
build page for more info on those three files and their purpose.

Now we create the package by running:

$ conda build test_package/

That is all it takes to create a Conda package.

The final step is uploading to binstar by copying and pasting the last line of the print out after running the conda
build test_package/ command. On my system the command is:

https://docs.continuum.io/anaconda/install
https://conda.anaconda.org/binstar
http://conda.pydata.org/docs/building/build.html
http://conda.pydata.org/docs/building/build.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 596

$ binstar upload /home/xavier/anaconda/conda-bld/linux-64/test_package-0.1.0-py27_0.tar.bz2

Since it is your first time creating a package and release you will be prompted to fill out some text fields which could
alternatively be done through the web app.

You will see a done printed out to confirm you have successfully uploaded your Conda package to Binstar.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 597

Chapter 137: Logging
Section 137.1: Introduction to Python Logging
This module defines functions and classes which implement a flexible event logging system for applications and
libraries.

The key benefit of having the logging API provided by a standard library module is that all Python modules can
participate in logging, so your application log can include your own messages integrated with messages from third-
party modules.

So, let's start:

Example Configuration Directly in Code

import logging

logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter(
        '%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

logger.debug('this is a %s test', 'debug')

Output example:

2016-07-26 18:53:55,332 root DEBUG this is a debug test

Example Configuration via an INI File

Assuming the file is named logging_config.ini. More details for the file format are in the logging configuration
section of the logging tutorial.

[loggers]
keys=root

[handlers]
keys=stream_handler

[formatters]
keys=formatter

[logger_root]
level=DEBUG
handlers=stream_handler

[handler_stream_handler]
class=StreamHandler
level=DEBUG
formatter=formatter
args=(sys.stderr,)

[formatter_formatter]

https://docs.python.org/3/howto/logging.html#configuring-logging
https://docs.python.org/3/howto/logging.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 598

format=%(asctime)s %(name)-12s %(levelname)-8s %(message)s

Then use logging.config.fileConfig() in the code:

import logging
from logging.config import fileConfig

fileConfig('logging_config.ini')
logger = logging.getLogger()
logger.debug('often makes a very good meal of %s', 'visiting tourists')

Example Configuration via a Dictionary

As of Python 2.7, you can use a dictionary with configuration details. PEP 391 contains a list of the mandatory and
optional elements in the configuration dictionary.

import logging
from logging.config import dictConfig

logging_config = dict(
    version = 1,
    formatters = {
        'f': {'format':
              '%(asctime)s %(name)-12s %(levelname)-8s %(message)s'}
        },
    handlers = {
        'h': {'class': 'logging.StreamHandler',
              'formatter': 'f',
              'level': logging.DEBUG}
        },
    root = {
        'handlers': ['h'],
        'level': logging.DEBUG,
        },
)

dictConfig(logging_config)

logger = logging.getLogger()
logger.debug('often makes a very good meal of %s', 'visiting tourists')

Section 137.2: Logging exceptions
If you want to log exceptions you can and should make use of the logging.exception(msg) method:

>>> import logging
>>> logging.basicConfig()
>>> try:
...     raise Exception('foo')
... except:
...     logging.exception('bar')
...
ERROR:root:bar
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
Exception: foo

Do not pass the exception as argument:

https://www.python.org/dev/peps/pep-0391/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 599

As logging.exception(msg) expects a msg arg, it is a common pitfall to pass the exception into the logging call like
this:

>>> try:
...     raise Exception('foo')
... except Exception as e:
...     logging.exception(e)
...
ERROR:root:foo
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
Exception: foo

While it might look as if this is the right thing to do at first, it is actually problematic due to the reason how
exceptions and various encoding work together in the logging module:

>>> try:
...     raise Exception(u'föö')
... except Exception as e:
...     logging.exception(e)
...
Traceback (most recent call last):
  File "/.../python2.7/logging/__init__.py", line 861, in emit
    msg = self.format(record)
  File "/.../python2.7/logging/__init__.py", line 734, in format
    return fmt.format(record)
  File "/.../python2.7/logging/__init__.py", line 469, in format
    s = self._fmt % record.__dict__
UnicodeEncodeError: 'ascii' codec can't encode characters in position 1-2: ordinal not in
range(128)
Logged from file <stdin>, line 4

Trying to log an exception that contains unicode chars, this way will fail miserably. It will hide the stacktrace of the
original exception by overriding it with a new one that is raised during formatting of your logging.exception(e)
call.

Obviously, in your own code, you might be aware of the encoding in exceptions. However, 3rd party libs might
handle this in a different way.

Correct Usage:

If instead of the exception you just pass a message and let python do its magic, it will work:

>>> try:
...     raise Exception(u'föö')
... except Exception as e:
...     logging.exception('bar')
...
ERROR:root:bar
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
Exception: f\xf6\xf6

As you can see we don't actually use e in that case, the call to logging.exception(...) magically formats the most
recent exception.

Logging exceptions with non ERROR log levels

http://stackoverflow.com/questions/31137568/properly-logging-unicode-utf-8-exceptions-in-python-2
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 600

If you want to log an exception with another log level than ERROR, you can use the exc_info argument of the
default loggers:

logging.debug('exception occurred', exc_info=1)
logging.info('exception occurred', exc_info=1)
logging.warning('exception occurred', exc_info=1)

Accessing the exception's message

Be aware that libraries out there might throw exceptions with messages as any of unicode or (utf-8 if you're lucky)
byte-strings. If you really need to access an exception's text, the only reliable way, that will always work, is to use
repr(e) or the %r string formatting:

>>> try:
...     raise Exception(u'föö')
... except Exception as e:
...     logging.exception('received this exception: %r' % e)
...
ERROR:root:received this exception: Exception(u'f\xf6\xf6',)
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
Exception: f\xf6\xf6

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 601

Chapter 138: Web Server Gateway
Interface (WSGI)

Parameter Details
start_response A function used to process the start

Section 138.1: Server Object (Method)
Our server object is given an 'application' parameter which can be any callable application object (see other
examples). It writes first the headers, then the body of data returned by our application to the system standard
output.

import os, sys    

def run(application):
    environ['wsgi.input']        = sys.stdin
    environ['wsgi.errors']       = sys.stderr

    headers_set = []
    headers_sent = []

    def write (data):
        """
        Writes header data from 'start_response()' as well as body data from 'response'
        to system standard output.
        """
        if not headers_set:
            raise AssertionError("write() before start_response()")

        elif not headers_sent:
            status, response_headers = headers_sent[:] = headers_set
            sys.stdout.write('Status: %s\r\n' % status)
            for header in response_headers:
                sys.stdout.write('%s: %s\r\n' % header)
            sys.stdout.write('\r\n')

        sys.stdout.write(data)
        sys.stdout.flush()

    def start_response(status, response_headers):
        """ Sets headers for the response returned by this server."""
        if headers_set:
            raise AssertionError("Headers already set!")

        headers_set[:] = [status, response_headers]
        return write

    # This is the most important piece of the 'server object'
    # Our result will be generated by the 'application' given to this method as a parameter
    result = application(environ, start_response)
    try:
        for data in result:
            if data:
                write(data)          # Body isn't empty send its data to 'write()'
        if not headers_sent:
            write('')                # Body is empty, send empty string to 'write()'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 602

Chapter 139: Python Server Sent Events
Server Sent Events (SSE) is a unidirectional connection between a server and a client (usually a web browser) that
allows the server to "push" information to the client. It is much like websockets and long polling. The main
difference between SSE and websockets is that SSE is unidirectional, only the server can send info to the client,
where as with websockets, both can send info to each other. SSE is typically considered to be much simpler to
use/implement than websockets.

Section 139.1: Flask SSE
@route("/stream")
def stream():
    def event_stream():
        while True:
            if message_to_send:
                yield "data:
                    {}\n\n".format(message_to_send)"
   
    return Response(event_stream(), mimetype="text/event-stream")

Section 139.2: Asyncio SSE
This example uses the asyncio SSE library: https://github.com/brutasse/asyncio-sse

import asyncio
import sse

class Handler(sse.Handler):
    @asyncio.coroutine
    def handle_request(self):
        yield from asyncio.sleep(2)
        self.send('foo')
        yield from asyncio.sleep(2)
        self.send('bar', event='wakeup')

start_server = sse.serve(Handler, 'localhost', 8888)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

https://github.com/brutasse/asyncio-sse
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 604

Chapter 140: Alternatives to switch
statement from other languages
Section 140.1: Use what the language oers: the if/else
construct
Well, if you want a switch/case construct, the most straightforward way to go is to use the good old if/else
construct:

def switch(value):
    if value == 1:
        return "one"
    if value == 2:
        return "two"
    if value == 42:
        return "the answer to the question about life, the universe and everything"
    raise Exception("No case found!")

it might look redundant, and not always pretty, but that's by far the most efficient way to go, and it does the job:

>>> switch(1)
one
>>> switch(2)
two
>>> switch(3)
…
Exception: No case found!
>>> switch(42)
the answer to the question about life the universe and everything

Section 140.2: Use a dict of functions
Another straightforward way to go is to create a dictionary of functions:

switch = {
    1: lambda: 'one',
    2: lambda: 'two',
    42: lambda: 'the answer of life the universe and everything',
}

then you add a default function:

def default_case():
    raise Exception('No case found!')

and you use the dictionary's get method to get the function given the value to check and run it. If value does not
exists in dictionary, then default_case is run.

>>> switch.get(1, default_case)()
one
>>> switch.get(2, default_case)()
two
>>> switch.get(3, default_case)()
…
Exception: No case found!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 605

>>> switch.get(42, default_case)()
the answer of life the universe and everything

you can also make some syntactic sugar so the switch looks nicer:

def run_switch(value):
    return switch.get(value, default_case)()

>>> run_switch(1)
one

Section 140.3: Use class introspection
You can use a class to mimic the switch/case structure. The following is using introspection of a class (using the
getattr() function that resolves a string into a bound method on an instance) to resolve the "case" part.

Then that introspecting method is aliased to the __call__ method to overload the () operator.

class SwitchBase:
    def switch(self, case):
        m = getattr(self, 'case_{}'.format(case), None)
        if not m:
            return self.default
        return m

    __call__ = switch

Then to make it look nicer, we subclass the SwitchBase class (but it could be done in one class), and there we define
all the case as methods:

class CustomSwitcher:
    def case_1(self):
        return 'one'

    def case_2(self):
        return 'two'

    def case_42(self):
        return 'the answer of life, the universe and everything!'

    def default(self):
        raise Exception('Not a case!')

so then we can finally use it:

>>> switch = CustomSwitcher()
>>> print(switch(1))
one
>>> print(switch(2))
two
>>> print(switch(3))
…
Exception: Not a case!
>>> print(switch(42))
the answer of life, the universe and everything!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 606

Section 140.4: Using a context manager
Another way, which is very readable and elegant, but far less efficient than an if/else structure, is to build a class
such as follows, that will read and store the value to compare with, expose itself within the context as a callable that
will return true if it matches the stored value:

class Switch:
    def __init__(self, value):
        self._val = value
    def __enter__(self):
        return self
    def __exit__(self, type, value, traceback):
        return False # Allows traceback to occur
    def __call__(self, cond, *mconds):
        return self._val in (cond,)+mconds

then defining the cases is almost a match to the real switch/case construct (exposed within a function below, to
make it easier to show off):

def run_switch(value):
    with Switch(value) as case:
        if case(1):
            return 'one'
        if case(2):
            return 'two'
        if case(3):
            return 'the answer to the question about life, the universe and everything'
        # default
        raise Exception('Not a case!')

So the execution would be:

>>> run_switch(1)
one
>>> run_switch(2)
two
>>> run_switch(3)
…
Exception: Not a case!
>>> run_switch(42)
the answer to the question about life, the universe and everything

Nota Bene:

This solution is being offered as the switch module available on pypi.

https://pypi.python.org/pypi/switch/1.0.3
https://pypi.python.org/pypi/switch/1.0.3
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 607

Chapter 141: List destructuring (aka
packing and unpacking)
Section 141.1: Destructuring assignment
In assignments, you can split an Iterable into values using the "unpacking" syntax:

Destructuring as values
a, b = (1, 2)
print(a)
# Prints: 1
print(b)
# Prints: 2

If you try to unpack more than the length of the iterable, you'll get an error:

a, b, c = [1]
# Raises: ValueError: not enough values to unpack (expected 3, got 1)

Python 3.x Version > 3.0
Destructuring as a list

You can unpack a list of unknown length using the following syntax:

head, *tail = [1, 2, 3, 4, 5]

Here, we extract the first value as a scalar, and the other values as a list:

print(head)
# Prints: 1
print(tail)
# Prints: [2, 3, 4, 5]

Which is equivalent to:

l = [1, 2, 3, 4, 5]
head = l[0]
tail = l[1:]

It also works with multiple elements or elements form the end of the list:

a, b, *other, z = [1, 2, 3, 4, 5]
print(a, b, z, other)
# Prints: 1 2 5 [3, 4]

Ignoring values in destructuring assignments

If you're only interested in a given value, you can use _ to indicate you aren’t interested. Note: this will still set _, just
most people don’t use it as a variable.

a, _ = [1, 2]
print(a)
# Prints: 1
a, _, c = (1, 2, 3)
print(a)
# Prints: 1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 608

print(c)
# Prints: 3

Python 3.x Version > 3.0
Ignoring lists in destructuring assignments

Finally, you can ignore many values using the *_ syntax in the assignment:

a, *_ = [1, 2, 3, 4, 5]
print(a)
# Prints: 1

which is not really interesting, as you could using indexing on the list instead. Where it gets nice is to keep first and
last values in one assignment:

 a, *_, b = [1, 2, 3, 4, 5]
 print(a, b)
 # Prints: 1 5

or extract several values at once:

 a, _, b, _, c, *_ = [1, 2, 3, 4, 5, 6]
 print(a, b, c)
 # Prints: 1 3 5

Section 141.2: Packing function arguments
In functions, you can define a number of mandatory arguments:

def fun1(arg1, arg2, arg3):
    return (arg1,arg2,arg3)

which will make the function callable only when the three arguments are given:

fun1(1, 2, 3)

and you can define the arguments as optional, by using default values:

def fun2(arg1='a', arg2='b', arg3='c'):
    return (arg1,arg2,arg3)

so you can call the function in many different ways, like:

fun2(1)              → (1,b,c)
fun2(1, 2)           → (1,2,c)
fun2(arg2=2, arg3=3) → (a,2,3)
...

But you can also use the destructuring syntax to pack arguments up, so you can assign variables using a list or a
dict.

Packing a list of arguments

Consider you have a list of values

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 609

l = [1,2,3]

You can call the function with the list of values as an argument using the * syntax:

fun1(*l)
# Returns: (1,2,3)
fun1(*['w', 't', 'f'])
# Returns: ('w','t','f')

But if you do not provide a list which length matches the number of arguments:

fun1(*['oops'])
# Raises: TypeError: fun1() missing 2 required positional arguments: 'arg2' and 'arg3'

Packing keyword arguments

Now, you can also pack arguments using a dictionary. You can use the ** operator to tell Python to unpack the dict
as parameter values:

d = {
  'arg1': 1,
  'arg2': 2,
  'arg3': 3
}
fun1(**d)
# Returns: (1, 2, 3)

when the function only has positional arguments (the ones without default values) you need the dictionary to be
contain of all the expected parameters, and have no extra parameter, or you'll get an error:

fun1(**{'arg1':1, 'arg2':2})
# Raises: TypeError: fun1() missing 1 required positional argument: 'arg3'
fun1(**{'arg1':1, 'arg2':2, 'arg3':3, 'arg4':4})
# Raises: TypeError: fun1() got an unexpected keyword argument 'arg4'

For functions that have optional arguments, you can pack the arguments as a dictionary the same way:

fun2(**d)
# Returns: (1, 2, 3)

But there you can omit values, as they will be replaced with the defaults:

fun2(**{'arg2': 2})
# Returns: ('a', 2, 'c')

And the same as before, you cannot give extra values that are not existing parameters:

fun2(**{'arg1':1, 'arg2':2, 'arg3':3, 'arg4':4})
# Raises: TypeError: fun2() got an unexpected keyword argument 'arg4'

In real world usage, functions can have both positional and optional arguments, and it works the same:

def fun3(arg1, arg2='b', arg3='c')
    return (arg1, arg2, arg3)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 610

you can call the function with just an iterable:

fun3(*[1])
# Returns: (1, 'b', 'c')
fun3(*[1,2,3])
# Returns: (1, 2, 3)

or with just a dictionary:

fun3(**{'arg1':1})
# Returns: (1, 'b', 'c')
fun3(**{'arg1':1, 'arg2':2, 'arg3':3})
# Returns: (1, 2, 3)

or you can use both in the same call:

fun3(*[1,2], **{'arg3':3})
# Returns: (1,2,3)

Beware though that you cannot provide multiple values for the same argument:

fun3(*[1,2], **{'arg2':42, 'arg3':3})
# Raises: TypeError: fun3() got multiple values for argument 'arg2'

Section 141.3: Unpacking function arguments
When you want to create a function that can accept any number of arguments, and not enforce the position or the
name of the argument at "compile" time, it's possible and here's how:

def fun1(*args, **kwargs):
    print(args, kwargs)

The *args and **kwargs parameters are special parameters that are set to a tuple and a dict, respectively:

fun1(1,2,3)
# Prints: (1, 2, 3) {}
fun1(a=1, b=2, c=3)
# Prints: () {'a': 1, 'b': 2, 'c': 3}
fun1('x', 'y', 'z', a=1, b=2, c=3)
# Prints: ('x', 'y', 'z') {'a': 1, 'b': 2, 'c': 3}

If you look at enough Python code, you'll quickly discover that it is widely being used when passing arguments over
to another function. For example if you want to extend the string class:

class MyString(str):
    def __init__(self, *args, **kwarg):
        print('Constructing MyString')
        super(MyString, self).__init__(*args, **kwarg)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 611

Chapter 142: Accessing Python source
code and bytecode
Section 142.1: Display the bytecode of a function
The Python interpreter compiles code to bytecode before executing it on the Python's virtual machine (see also
What is python bytecode?.

Here's how to view the bytecode of a Python function

import dis

def fib(n):
    if n <= 2: return 1
    return fib(n-1) + fib(n-2)

# Display the disassembled bytecode of the function.
dis.dis(fib)

The function dis.dis in the dis module will return a decompiled bytecode of the function passed to it.

Section 142.2: Display the source code of an object
Objects that are not built-in

To print the source code of a Python object use inspect. Note that this won't work for built-in objects nor for
objects defined interactively. For these you will need other methods explained later.

Here's how to print the source code of the method randint from the random module:

import random
import inspect

print(inspect.getsource(random.randint))
# Output:
#    def randint(self, a, b):
#        """Return random integer in range [a, b], including both end points.
#        """
#
#        return self.randrange(a, b+1)

To just print the documentation string

print(inspect.getdoc(random.randint))
# Output:
# Return random integer in range [a, b], including both end points.

Print full path of the file where the method random.randint is defined:

print(inspect.getfile(random.randint))
# c:\Python35\lib\random.py
print(random.randint.__code__.co_filename) # equivalent to the above
# c:\Python35\lib\random.py

Objects defined interactively

https://docs.python.org/2/library/dis.html#dis.dis
https://docs.python.org/2/library/dis.html#dis.dis
https://docs.python.org/2/library/dis.html#dis.dis
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 612

If an object is defined interactively inspect cannot provide the source code but you can use
dill.source.getsource instead

# define a new function in the interactive shell
def add(a, b):
   return a + b
print(add.__code__.co_filename) # Output: <stdin>

import dill
print dill.source.getsource(add)
# def add(a, b):
      return a + b

Built-in objects

The source code for Python's built-in functions is written in c and can only be accessed by looking at the Python's
source code (hosted on Mercurial or downloadable from https://www.python.org/downloads/source/).

print(inspect.getsource(sorted)) # raises a TypeError
type(sorted) # <class 'builtin_function_or_method'>

Section 142.3: Exploring the code object of a function
CPython allows access to the code object for a function object.

The __code__object contains the raw bytecode (co_code) of the function as well as other information such as
constants and variable names.

def fib(n):
    if n <= 2: return 1
    return fib(n-1) + fib(n-2)
dir(fib.__code__)

def fib(n):
    if n <= 2: return 1
    return fib(n-1) + fib(n-2)
dir(fib.__code__)

https://hg.python.org/
https://www.python.org/downloads/source/)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 613

Chapter 143: Mixins
Section 143.1: Mixin
A Mixin is a set of properties and methods that can be used in different classes, which don't come from a base
class. In Object Oriented Programming languages, you typically use inheritance to give objects of different classes
the same functionality; if a set of objects have some ability, you put that ability in a base class that both objects
inherit from.

For instance, say you have the classes Car, Boat, and Plane. Objects from all of these classes have the
ability to travel, so they get the function travel. In this scenario, they all travel the same basic way, too;
by getting a route, and moving along it. To implement this function, you could derive all of the classes
from Vehicle, and put the function in that shared class:

class Vehicle(object):
   """A generic vehicle class."""

   def __init__(self, position):
       self.position = position

   def travel(self, destination):
       route = calculate_route(from=self.position, to=destination)
       self.move_along(route)

class Car(Vehicle):
   ...

class Boat(Vehicle):
   ...

class Plane(Vehicle):
   ...

With this code, you can call travel on a car (car.travel("Montana")), boat (boat.travel("Hawaii")),
and plane (plane.travel("France"))

However, what if you have functionality that's not available to a base class? Say, for instance, you want to give Car a
radio and the ability to use it to play a song on a radio station, with play_song_on_station, but you also have a
Clock that can use a radio too. Car and Clock could share a base class (Machine). However, not all machines can
play songs; Boat and Plane can't (at least in this example). So how do you accomplish without duplicating code? You
can use a mixin. In Python, giving a class a mixin is as simple as adding it to the list of subclasses, like this

class Foo(main_super, mixin): ...

Foo will inherit all of the properties and methods of main_super, but also those of mixin as well.

So, to give the classes Car and clock the ability to use a radio, you could override Car from the last
example and write this:

class RadioUserMixin(object):
   def __init__(self):
       self.radio = Radio()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 614

   def play_song_on_station(self, station):
       self.radio.set_station(station)
       self.radio.play_song()

class Car(Vehicle, RadioUserMixin):
   ...

class Clock(Vehicle, RadioUserMixin):
   ...

Now you can call car.play_song_on_station(98.7) and clock.play_song_on_station(101.3), but not
something like boat.play_song_on_station(100.5)

The important thing with mixins is that they allow you to add functionality to much different objects, that don't
share a "main" subclass with this functionality but still share the code for it nonetheless. Without mixins, doing
something like the above example would be much harder, and/or might require some repetition.

Section 143.2: Overriding Methods in Mixins
Mixins are a sort of class that is used to "mix in" extra properties and methods into a class. This is usually fine
because many times the mixin classes don't override each other's, or the base class' methods. But if you do
override methods or properties in your mixins this can lead to unexpected results because in Python the class
hierarchy is defined right to left.

For instance, take the following classes

class Mixin1(object):
    def test(self):
        print "Mixin1"

class Mixin2(object):
    def test(self):
        print "Mixin2"

class BaseClass(object):
    def test(self):
        print "Base"

class MyClass(BaseClass, Mixin1, Mixin2):
    pass

In this case the Mixin2 class is the base class, extended by Mixin1 and finally by BaseClass. Thus, if we execute the
following code snippet:

>>> x = MyClass()
>>> x.test()
Base

We see the result returned is from the Base class. This can lead to unexpected errors in the logic of your code and
needs to be accounted for and kept in mind

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 615

Chapter 144: Attribute Access
Section 144.1: Basic Attribute Access using the Dot Notation
Let's take a sample class.

class Book:
    def __init__(self, title, author):
        self.title = title
        self.author = author

book1 = Book(title="Right Ho, Jeeves", author="P.G. Wodehouse")

In Python you can access the attribute title of the class using the dot notation.

>>> book1.title
'P.G. Wodehouse'

If an attribute doesn't exist, Python throws an error:

>>> book1.series
Traceback  (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Book' object has no attribute 'series'

Section 144.2: Setters, Getters & Properties
For the sake of data encapsulation, sometimes you want to have an attribute which value comes from other
attributes or, in general, which value shall be computed at the moment. The standard way to deal with this situation
is to create a method, called getter or a setter.

class Book:
    def __init__(self, title, author):
        self.title = title
        self.author = author

In the example above, it's easy to see what happens if we create a new Book that contains a title and a author. If all
books we're to add to our Library have authors and titles, then we can skip the getters and setters and use the dot
notation. However, suppose we have some books that do not have an author and we want to set the author to
"Unknown". Or if they have multiple authors and we plan to return a list of authors.

In this case we can create a getter and a setter for the author attribute.

class P:
    def __init__(self,title,author):
        self.title = title
        self.setAuthor(author)

    def get_author(self):
        return self.author

    def set_author(self, author):
        if not author:
            self.author = "Unknown"
        else:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 616

            self.author = author

This scheme is not recommended.

One reason is that there is a catch: Let's assume we have designed our class with the public attribute and no
methods. People have already used it a lot and they have written code like this:

>>> book = Book(title="Ancient Manuscript", author="Some Guy")
>>> book.author = ""  #Cos Some Guy didn't write this one!

Now we have a problem. Because author is not an attribute! Python offers a solution to this problem called
properties. A method to get properties is decorated with the @property before it's header. The method that we
want to function as a setter is decorated with @attributeName.setter before it.

Keeping this in mind, we now have our new updated class.

class Book:
    def __init__(self, title, author):
        self.title = title
        self.author = author

    @property
    def author(self):
        return self.__author

    @author.setter
    def author(self, author):
        if not author:
            self.author = "Unknown"
        else:
            self.author = author

Note, normally Python doesn't allow you to have multiple methods with the same name and different number of
parameters. However, in this case Python allows this because of the decorators used.

If we test the code:

>>> book = Book(title="Ancient Manuscript", author="Some Guy")
>>> book.author = ""  #Cos Some Guy didn't write this one!
>>> book.author
Unknown

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 618

Chapter 145: ArcPy
Section 145.1: createDissolvedGDB to create a file gdb on the
workspace
def createDissolvedGDB(workspace, gdbName):
    gdb_name = workspace + "/" + gdbName + ".gdb"

    if(arcpy.Exists(gdb_name):
        arcpy.Delete_management(gdb_name)
        arcpy.CreateFileGDB_management(workspace, gdbName, "")
    else:
        arcpy.CreateFileGDB_management(workspace, gdbName, "")

    return gdb_name

Section 145.2: Printing one field's value for all rows of feature
class in file geodatabase using Search Cursor
To print a test field (TestField) from a test feature class (TestFC) in a test file geodatabase (Test.gdb) located in a
temporary folder (C:\Temp):

with arcpy.da.SearchCursor(r"C:\Temp\Test.gdb\TestFC",["TestField"]) as cursor:
    for row in cursor:
        print row[0]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 619

Chapter 146: Abstract Base Classes (abc)
Section 146.1: Setting the ABCMeta metaclass
Abstract classes are classes that are meant to be inherited but avoid implementing specific methods, leaving
behind only method signatures that subclasses must implement.

Abstract classes are useful for defining and enforcing class abstractions at a high level, similar to the concept of
interfaces in typed languages, without the need for method implementation.

One conceptual approach to defining an abstract class is to stub out the class methods, and then raise a
NotImplementedError if accessed. This prevents children classes from accessing parent methods without
overriding them first. Like so:

class Fruit:
   
    def check_ripeness(self):
        raise NotImplementedError("check_ripeness method not implemented!")

class Apple(Fruit):
    pass

a = Apple()
a.check_ripeness() # raises NotImplementedError

Creating an abstract class in this way prevents improper usage of methods that are not overridden, and certainly
encourages methods to be defined in child classes, but it does not enforce their definition. With the abc module we
can prevent child classes from being instantiated when they fail to override abstract class methods of their parents
and ancestors:

from abc import ABCMeta

class AbstractClass(object):
    # the metaclass attribute must always be set as a class variable
    __metaclass__ = ABCMeta

   # the abstractmethod decorator registers this method as undefined
   @abstractmethod
   def virtual_method_subclasses_must_define(self):
       # Can be left completely blank, or a base implementation can be provided
       # Note that ordinarily a blank interpretation implicitly returns `None`,
       # but by registering, this behaviour is no longer enforced.

It is now possible to simply subclass and override:

class Subclass(AbstractClass):
    def virtual_method_subclasses_must_define(self):
        return

Section 146.2: Why/How to use ABCMeta and
@abstractmethod
Abstract base classes (ABCs) enforce what derived classes implement particular methods from the base class.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 620

To understand how this works and why we should use it, let's take a look at an example that Van Rossum would
enjoy. Let's say we have a Base class "MontyPython" with two methods (joke & punchline) that must be
implemented by all derived classes.

class MontyPython:
    def joke(self):
        raise NotImplementedError()

    def punchline(self):
        raise NotImplementedError()

class ArgumentClinic(MontyPython):
    def joke(self):
        return "Hahahahahah"

When we instantiate an object and call it's two methods, we'll get an error (as expected) with the punchline()
method.

 >>> sketch = ArgumentClinic()
 >>> sketch.punchline()
NotImplementedError

However, this still allows us to instantiate an object of the ArgumentClinic class without getting an error. In fact we
don't get an error until we look for the punchline().

This is avoided by using the Abstract Base Class (ABC) module. Let's see how this works with the same example:

from abc import ABCMeta, abstractmethod

class MontyPython(metaclass=ABCMeta):
    @abstractmethod
    def joke(self):
        pass

@abstractmethod
def punchline(self):
    pass

class ArgumentClinic(MontyPython):
    def joke(self):
        return "Hahahahahah"

This time when we try to instantiate an object from the incomplete class, we immediately get a TypeError!

>>> c = ArgumentClinic()
TypeError:
"Can't instantiate abstract class ArgumentClinic with abstract methods punchline"

In this case, it's easy to complete the class to avoid any TypeErrors:

class ArgumentClinic(MontyPython):
    def joke(self):
        return "Hahahahahah"

    def punchline(self):
        return "Send in the constable!"

This time when you instantiate an object it works!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 621

Chapter 147: Plugin and Extension Classes
Section 147.1: Mixins
In Object oriented programming language, a mixin is a class that contains methods for use by other classes without
having to be the parent class of those other classes. How those other classes gain access to the mixin's methods
depends on the language.

It provides a mechanism for multiple inheritance by allowing multiple classes to use the common functionality, but
without the complex semantics of multiple inheritance. Mixins are useful when a programmer wants to share
functionality between different classes. Instead of repeating the same code over and over again, the common
functionality can simply be grouped into a mixin and then inherited into each class that requires it.

When we use more than one mixins, Order of mixins are important. here is a simple example:

class Mixin1(object):
    def test(self):
        print "Mixin1"

class Mixin2(object):
    def test(self):
        print "Mixin2"

class MyClass(Mixin1, Mixin2):
    pass

In this example we call MyClass and test method,

>>> obj = MyClass()
>>> obj.test()
Mixin1

Result must be Mixin1 because Order is left to right. This could be show unexpected results when super classes add
with it. So reverse order is more good just like this:

class MyClass(Mixin2, Mixin1):
    pass

Result will be:

>>> obj = MyClass()
>>> obj.test()
Mixin2

Mixins can be used to define custom plugins.

Python 3.x Version ≥ 3.0

class Base(object):
    def test(self):
        print("Base.")

class PluginA(object):
    def test(self):
        super().test()
        print("Plugin A.")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 622

class PluginB(object):
    def test(self):
        super().test()
        print("Plugin B.")

plugins = PluginA, PluginB

class PluginSystemA(PluginA, Base):
    pass

class PluginSystemB(PluginB, Base):
    pass

PluginSystemA().test()
# Base.
# Plugin A.

 PluginSystemB().test()
# Base.
# Plugin B.

Section 147.2: Plugins with Customized Classes
In Python 3.6, PEP 487 added the __init_subclass__ special method, which simplifies and extends class
customization without using metaclasses. Consequently, this feature allows for creating simple plugins. Here we
demonstrate this feature by modifying a prior example:

Python 3.x Version ≥ 3.6

class Base:
    plugins = []

    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.plugins.append(cls)
   
    def test(self):
        print("Base.")

class PluginA(Base):
    def test(self):
        super().test()
        print("Plugin A.")
   

class PluginB(Base):
    def test(self):
        super().test()
        print("Plugin B.")

Results:

PluginA().test()
# Base.
# Plugin A.

PluginB().test()
# Base.
# Plugin B.

Base.plugins

https://www.python.org/dev/peps/pep-0487/
https://docs.python.org/3/whatsnew/3.6.html#pep-487-simpler-customization-of-class-creation
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 623

# [__main__.PluginA, __main__.PluginB]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 624

Chapter 148: Immutable datatypes(int,
float, str, tuple and frozensets)
Section 148.1: Individual characters of strings are not
assignable
foo = "bar"
foo[0] = "c" # Error

Immutable variable value can not be changed once they are created.

Section 148.2: Tuple's individual members aren't assignable
foo = ("bar", 1, "Hello!",)
foo[1] = 2 # ERROR!!

Second line would return an error since tuple members once created aren't assignable. Because of tuple's
immutability.

Section 148.3: Frozenset's are immutable and not assignable
foo = frozenset(["bar", 1, "Hello!"])
foo[2] = 7 # ERROR
foo.add(3) # ERROR

Second line would return an error since frozenset members once created aren't assignable. Third line would return
error as frozensets do not support functions that can manipulate members.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 625

Chapter 149: Incompatibilities moving
from Python 2 to Python 3
Unlike most languages, Python supports two major versions. Since 2008 when Python 3 was released, many have
made the transition, while many have not. In order to understand both, this section covers the important
differences between Python 2 and Python 3.

Section 149.1: Integer Division
The standard division symbol (/) operates differently in Python 3 and Python 2 when applied to integers.

When dividing an integer by another integer in Python 3, the division operation x / y represents a true division
(uses __truediv__ method) and produces a floating point result. Meanwhile, the same operation in Python 2
represents a classic division that rounds the result down toward negative infinity (also known as taking the floor).

For example:

Code Python 2 output Python 3 output
3 / 2 1 1.5
2 / 3 0 0.6666666666666666
-3 / 2 -2 -1.5

The rounding-towards-zero behavior was deprecated in Python 2.2, but remains in Python 2.7 for the sake of
backward compatibility and was removed in Python 3.

Note: To get a float result in Python 2 (without floor rounding) we can specify one of the operands with the decimal
point. The above example of 2/3 which gives 0 in Python 2 shall be used as 2 / 3.0 or 2.0 / 3 or 2.0/3.0 to get
0.6666666666666666

Code Python 2 output Python 3 output
3.0 / 2.0 1.5 1.5
2 / 3.0 0.6666666666666666 0.6666666666666666
-3.0 / 2 -1.5 -1.5

There is also the floor division operator (//), which works the same way in both versions: it rounds down to the
nearest integer. (although a float is returned when used with floats) In both versions the // operator maps to
__floordiv__.

Code Python 2 output Python 3 output
3 // 2 1 1
2 // 3 0 0
-3 // 2 -2 -2
3.0 // 2.0 1.0 1.0
2.0 // 3 0.0 0.0
-3 // 2.0 -2.0 -2.0

One can explicitly enforce true division or floor division using native functions in the operator module:

from operator import truediv, floordiv
assert truediv(10, 8) == 1.25            # equivalent to `/` in Python 3
assert floordiv(10, 8) == 1              # equivalent to `//`

https://docs.python.org/2.2/whatsnew/node7.html
https://docs.python.org/3/library/operator.html#operator.__truediv__
https://docs.python.org/2.2/whatsnew/node7.html
https://www.python.org/download/releases/2.2/
http://python-reference.readthedocs.io/en/latest/docs/operators/floor_division.html
https://docs.python.org/3/library/operator.html#operator.__floordiv__
https://docs.python.org/3/library/operator.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 626

While clear and explicit, using operator functions for every division can be tedious. Changing the behavior of the /
operator will often be preferred. A common practice is to eliminate typical division behavior by adding from
__future__ import division as the first statement in each module:

# needs to be the first statement in a module
from __future__ import division

Code Python 2 output Python 3 output
3 / 2 1.5 1.5
2 / 3 0.6666666666666666 0.6666666666666666
-3 / 2 -1.5 -1.5

from __future__ import division guarantees that the / operator represents true division and only within the
modules that contain the __future__ import, so there are no compelling reasons for not enabling it in all new
modules.

Note: Some other programming languages use rounding toward zero (truncation) rather than rounding down toward
negative infinity as Python does (i.e. in those languages -3 / 2 == -1). This behavior may create confusion when
porting or comparing code.

Note on float operands: As an alternative to from __future__ import division, one could use the usual division
symbol / and ensure that at least one of the operands is a float: 3 / 2.0 == 1.5. However, this can be considered
bad practice. It is just too easy to write average = sum(items) / len(items) and forget to cast one of the
arguments to float. Moreover, such cases may frequently evade notice during testing, e.g., if you test on an array
containing floats but receive an array of ints in production. Additionally, if the same code is used in Python 3,
programs that expect 3 / 2 == 1 to be True will not work correctly.

See PEP 238 for more detailed rationale why the division operator was changed in Python 3 and why old-style
division should be avoided.

See the Simple Math topic for more about division.

Section 149.2: Unpacking Iterables
Python 3.x Version ≥ 3.0

In Python 3, you can unpack an iterable without knowing the exact number of items in it, and even have a variable
hold the end of the iterable. For that, you provide a variable that may collect a list of values. This is done by placing
an asterisk before the name. For example, unpacking a list:

first, second, *tail, last = [1, 2, 3, 4, 5]
print(first)
# Out: 1
print(second)
# Out: 2
print(tail)
# Out: [3, 4]
print(last)
# Out: 5

Note: When using the *variable syntax, the variable will always be a list, even if the original type wasn't a list. It
may contain zero or more elements depending on the number of elements in the original list.

first, second, *tail, last = [1, 2, 3, 4]
print(tail)

https://www.python.org/dev/peps/pep-0238/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 627

# Out: [3]

first, second, *tail, last = [1, 2, 3]
print(tail)
# Out: []
print(last)
# Out: 3

Similarly, unpacking a str:

begin, *tail = "Hello"
print(begin)
# Out: 'H'
print(tail)
# Out: ['e', 'l', 'l', 'o']

Example of unpacking a date; _ is used in this example as a throwaway variable (we are interested only in year
value):

person = ('John', 'Doe', (10, 16, 2016))
*_, (*_, year_of_birth) = person
print(year_of_birth)
# Out: 2016

It is worth mentioning that, since * eats up a variable number of items, you cannot have two *s for the same iterable
in an assignment - it wouldn't know how many elements go into the first unpacking, and how many in the second:

*head, *tail = [1, 2]
# Out: SyntaxError: two starred expressions in assignment

Python 3.x Version ≥ 3.5

So far we have discussed unpacking in assignments. * and ** were extended in Python 3.5. It's now possible to
have several unpacking operations in one expression:

{*range(4), 4, *(5, 6, 7)}
# Out: {0, 1, 2, 3, 4, 5, 6, 7}

Python 2.x Version ≥ 2.0

It is also possible to unpack an iterable into function arguments:

iterable = [1, 2, 3, 4, 5]
print(iterable)
# Out: [1, 2, 3, 4, 5]
print(*iterable)
# Out: 1 2 3 4 5

Python 3.x Version ≥ 3.5

Unpacking a dictionary uses two adjacent stars ** (PEP 448):

tail = {'y': 2, 'z': 3}
{'x': 1, **tail}
 # Out: {'x': 1, 'y': 2, 'z': 3}

This allows for both overriding old values and merging dictionaries.

dict1 = {'x': 1, 'y': 1}

https://docs.python.org/3/whatsnew/3.5.html#pep-448-additional-unpacking-generalizations
https://www.python.org/dev/peps/pep-0448/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 628

dict2 = {'y': 2, 'z': 3}
{**dict1, **dict2}
# Out: {'x': 1, 'y': 2, 'z': 3}

Python 3.x Version ≥ 3.0

Python 3 removed tuple unpacking in functions. Hence the following doesn't work in Python 3

# Works in Python 2, but syntax error in Python 3:
map(lambda (x, y): x + y, zip(range(5), range(5)))
# Same is true for non-lambdas:
def example((x, y)):
    pass

# Works in both Python 2 and Python 3:
map(lambda x: x[0] + x[1], zip(range(5), range(5)))
# And non-lambdas, too:
def working_example(x_y):
    x, y = x_y
    pass

See PEP 3113 for detailed rationale.

Section 149.3: Strings: Bytes versus Unicode
Python 2.x Version ≤ 2.7

In Python 2 there are two variants of string: those made of bytes with type (str) and those made of text with type
(unicode).

In Python 2, an object of type str is always a byte sequence, but is commonly used for both text and binary data.

A string literal is interpreted as a byte string.

s = 'Cafe'    # type(s) == str

There are two exceptions: You can define a Unicode (text) literal explicitly by prefixing the literal with u:

s = u'Café'   # type(s) == unicode
b = 'Lorem ipsum'  # type(b) == str

Alternatively, you can specify that a whole module's string literals should create Unicode (text) literals:

from __future__ import unicode_literals

s = 'Café'   # type(s) == unicode
b = 'Lorem ipsum'  # type(b) == unicode

In order to check whether your variable is a string (either Unicode or a byte string), you can use:

isinstance(s, basestring)

Python 3.x Version ≥ 3.0

In Python 3, the str type is a Unicode text type.

s = 'Cafe'           # type(s) == str

https://www.python.org/dev/peps/pep-3113/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 629

s = 'Café'           # type(s) == str (note the accented trailing e)

Additionally, Python 3 added a bytes object, suitable for binary "blobs" or writing to encoding-independent files. To
create a bytes object, you can prefix b to a string literal or call the string's encode method:

# Or, if you really need a byte string:
s = b'Cafe'          # type(s) == bytes
s = 'Café'.encode()  # type(s) == bytes

To test whether a value is a string, use:

isinstance(s, str)

Python 3.x Version ≥ 3.3

It is also possible to prefix string literals with a u prefix to ease compatibility between Python 2 and Python 3 code
bases. Since, in Python 3, all strings are Unicode by default, prepending a string literal with u has no effect:

u'Cafe' == 'Cafe'

Python 2’s raw Unicode string prefix ur is not supported, however:

>>> ur'Café'
  File "<stdin>", line 1
    ur'Café'
           ^
SyntaxError: invalid syntax

Note that you must encode a Python 3 text (str) object to convert it into a bytes representation of that text. The
default encoding of this method is UTF-8.

You can use decode to ask a bytes object for what Unicode text it represents:

>>> b.decode()
'Café'

Python 2.x Version ≥ 2.6

While the bytes type exists in both Python 2 and 3, the unicode type only exists in Python 2. To use Python 3's
implicit Unicode strings in Python 2, add the following to the top of your code file:

from __future__ import unicode_literals
print(repr("hi"))
# u'hi'

Python 3.x Version ≥ 3.0

Another important difference is that indexing bytes in Python 3 results in an int output like so:

b"abc"[0] == 97

Whilst slicing in a size of one results in a length 1 bytes object:

b"abc"[0:1] == b"a"

In addition, Python 3 fixes some unusual behavior with unicode, i.e. reversing byte strings in Python 2. For example,
the following issue is resolved:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 630

# -*- coding: utf8 -*-
print("Hi, my name is Łukasz Langa.")
print(u"Hi, my name is Łukasz Langa."[::-1])
print("Hi, my name is Łukasz Langa."[::-1])

# Output in Python 2
# Hi, my name is Łukasz Langa.
# .agnaL zsakuŁ si eman ym ,iH
# .agnaL zsaku�� si eman ym ,iH

# Output in Python 3
# Hi, my name is Łukasz Langa.
# .agnaL zsakuŁ si eman ym ,iH
# .agnaL zsakuŁ si eman ym ,iH

Section 149.4: Print statement vs. Print function
In Python 2, print is a statement:

Python 2.x Version ≤ 2.7

print "Hello World"
print                         # print a newline
print "No newline",           # add trailing comma to remove newline
print >>sys.stderr, "Error"   # print to stderr
print("hello")                # print "hello", since ("hello") == "hello"
print()                       # print an empty tuple "()"
print 1, 2, 3                 # print space-separated arguments: "1 2 3"
print(1, 2, 3)                # print tuple "(1, 2, 3)"

In Python 3, print() is a function, with keyword arguments for common uses:

Python 3.x Version ≥ 3.0

print "Hello World"              # SyntaxError
print("Hello World")
print()                          # print a newline (must use parentheses)
print("No newline", end="")      # end specifies what to append (defaults to newline)
print("Error", file=sys.stderr)  # file specifies the output buffer
print("Comma", "separated", "output", sep=",")  # sep specifies the separator
print("A", "B", "C", sep="")     # null string for sep: prints as ABC
print("Flush this", flush=True)  # flush the output buffer, added in Python 3.3
print(1, 2, 3)                   # print space-separated arguments: "1 2 3"
print((1, 2, 3))                 # print tuple "(1, 2, 3)"

The print function has the following parameters:

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

sep is what separates the objects you pass to print. For example:

print('foo', 'bar', sep='~') # out: foo~bar
print('foo', 'bar', sep='.') # out: foo.bar

end is what the end of the print statement is followed by. For example:

print('foo', 'bar', end='!') # out: foo bar!

https://docs.python.org/2/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 631

Printing again following a non-newline ending print statement will print to the same line:

print('foo', end='~')
print('bar')
# out: foo~bar

Note: For future compatibility, print function is also available in Python 2.6 onwards; however it cannot be used
unless parsing of the print statement is disabled with

from __future__ import print_function

This function has exactly same format as Python 3's, except that it lacks the flush parameter.

See PEP 3105 for rationale.

Section 149.5: Dierences between range and xrange
functions
In Python 2, range function returns a list while xrange creates a special xrange object, which is an immutable
sequence, which unlike other built-in sequence types, doesn't support slicing and has neither index nor count
methods:

Python 2.x Version ≥ 2.3

print(range(1, 10))
# Out: [1, 2, 3, 4, 5, 6, 7, 8, 9]

print(isinstance(range(1, 10), list))
# Out: True

print(xrange(1, 10))
# Out: xrange(1, 10)

print(isinstance(xrange(1, 10), xrange))
# Out: True

In Python 3, xrange was expanded to the range sequence, which thus now creates a range object. There is no
xrange type:

Python 3.x Version ≥ 3.0

print(range(1, 10))
# Out: range(1, 10)

print(isinstance(range(1, 10), range))
# Out: True

# print(xrange(1, 10))
# The output will be:
#Traceback (most recent call last):
#  File "<stdin>", line 1, in <module>
#NameError: name 'xrange' is not defined

Additionally, since Python 3.2, range also supports slicing, index and count:

print(range(1, 10)[3:7])
# Out: range(3, 7)
print(range(1, 10).count(5))
# Out: 1

https://docs.python.org/2/library/functions.html#print
https://www.python.org/dev/peps/pep-3105/
https://docs.python.org/2/library/functions.html#range
https://docs.python.org/2/library/functions.html#xrange
https://docs.python.org/3/library/functions.html#func-range
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 632

print(range(1, 10).index(7))
# Out: 6

The advantage of using a special sequence type instead of a list is that the interpreter does not have to allocate
memory for a list and populate it:

Python 2.x Version ≥ 2.3

# range(10000000000000000)
# The output would be:
# Traceback (most recent call last):
#  File "<stdin>", line 1, in <module>
# MemoryError

print(xrange(100000000000000000))
# Out: xrange(100000000000000000)

Since the latter behaviour is generally desired, the former was removed in Python 3. If you still want to have a list in
Python 3, you can simply use the list() constructor on a range object:

Python 3.x Version ≥ 3.0

print(list(range(1, 10)))
# Out: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Compatibility

In order to maintain compatibility between both Python 2.x and Python 3.x versions, you can use the builtins
module from the external package future to achieve both forward-compatibility and backward-compatibility:

Python 2.x Version ≥ 2.0

#forward-compatible
from builtins import range

for i in range(10**8):
    pass

Python 3.x Version ≥ 3.0

#backward-compatible
from past.builtins import xrange

for i in xrange(10**8):
    pass

The range in future library supports slicing, index and count in all Python versions, just like the built-in method on
Python 3.2+.

Section 149.6: Raising and handling Exceptions
This is the Python 2 syntax, note the commas , on the raise and except lines:

Python 2.x Version ≥ 2.3

try:
    raise IOError, "input/output error"
except IOError, exc:
    print exc

In Python 3, the , syntax is dropped and replaced by parenthesis and the as keyword:

http://python-future.org/compatible_idioms.html#xrange
http://python-future.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 633

try:
    raise IOError("input/output error")
except IOError as exc:
    print(exc)

For backwards compatibility, the Python 3 syntax is also available in Python 2.6 onwards, so it should be used for all
new code that does not need to be compatible with previous versions.

Python 3.x Version ≥ 3.0

Python 3 also adds exception chaining, wherein you can signal that some other exception was the cause for this
exception. For example

try:
    file = open('database.db')
except FileNotFoundError as e:
    raise DatabaseError('Cannot open {}') from e

The exception raised in the except statement is of type DatabaseError, but the original exception is marked as the
__cause__ attribute of that exception. When the traceback is displayed, the original exception will also be displayed
in the traceback:

Traceback (most recent call last):
File "", line 2, in
FileNotFoundError

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "", line 4, in
DatabaseError('Cannot open database.db')

If you throw in an except block without explicit chaining:

try:
    file = open('database.db')
except FileNotFoundError as e:
    raise DatabaseError('Cannot open {}')

The traceback is

Traceback (most recent call last):
File "", line 2, in
FileNotFoundError

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "", line 4, in
DatabaseError('Cannot open database.db')

Python 2.x Version ≥ 2.0

Neither one is supported in Python 2.x; the original exception and its traceback will be lost if another exception is
raised in the except block. The following code can be used for compatibility:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 634

import sys
import traceback

try:
    funcWithError()
except:
    sys_vers = getattr(sys, 'version_info', (0,))
    if sys_vers < (3, 0):
        traceback.print_exc()
    raise Exception("new exception")

Python 3.x Version ≥ 3.3

To "forget" the previously thrown exception, use raise from None

try:
    file = open('database.db')
except FileNotFoundError as e:
    raise DatabaseError('Cannot open {}') from None

Now the traceback would simply be

Traceback (most recent call last):
File "", line 4, in
DatabaseError('Cannot open database.db')

Or in order to make it compatible with both Python 2 and 3 you may use the six package like so:

import six
try:
    file = open('database.db')
except FileNotFoundError as e:
    six.raise_from(DatabaseError('Cannot open {}'), None)

Section 149.7: Leaked variables in list comprehension
Python 2.x Version ≥ 2.3

x = 'hello world!'
vowels = [x for x in 'AEIOU']

print (vowels)
# Out: ['A', 'E', 'I', 'O', 'U']
print(x)
# Out: 'U'  

Python 3.x Version ≥ 3.0

x = 'hello world!'
vowels = [x for x in 'AEIOU']

print (vowels)
# Out: ['A', 'E', 'I', 'O', 'U']
print(x)
# Out: 'hello world!'

As can be seen from the example, in Python 2 the value of x was leaked: it masked hello world! and printed out U,
since this was the last value of x when the loop ended.

However, in Python 3 x prints the originally defined hello world!, since the local variable from the list

https://pythonhosted.org/six
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 635

comprehension does not mask variables from the surrounding scope.

Additionally, neither generator expressions (available in Python since 2.5) nor dictionary or set comprehensions
(which were backported to Python 2.7 from Python 3) leak variables in Python 2.

Note that in both Python 2 and Python 3, variables will leak into the surrounding scope when using a for loop:

x = 'hello world!'
vowels = []
for x in 'AEIOU':
    vowels.append(x)
print(x)
# Out: 'U'

Section 149.8: True, False and None
In Python 2, True, False and None are built-in constants. Which means it's possible to reassign them.

Python 2.x Version ≥ 2.0

True, False = False, True
True   # False
False  # True

You can't do this with None since Python 2.4.

Python 2.x Version ≥ 2.4

None = None  # SyntaxError: cannot assign to None

In Python 3, True, False, and None are now keywords.

Python 3.x Version ≥ 3.0

True, False = False, True  # SyntaxError: can't assign to keyword

None = None  # SyntaxError: can't assign to keyword

Section 149.9: User Input
In Python 2, user input is accepted using the raw_input function,

Python 2.x Version ≥ 2.3

user_input = raw_input()

While in Python 3 user input is accepted using the input function.

Python 3.x Version ≥ 3.0

user_input = input()

In Python 2, the input function will accept input and interpret it. While this can be useful, it has several security
considerations and was removed in Python 3. To access the same functionality, eval(input()) can be used.

To keep a script portable across the two versions, you can put the code below near the top of your Python script:

try:
    input = raw_input
except NameError:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 636

    pass

Section 149.10: Comparison of dierent types
Python 2.x Version ≥ 2.3

Objects of different types can be compared. The results are arbitrary, but consistent. They are ordered such that
None is less than anything else, numeric types are smaller than non-numeric types, and everything else is ordered
lexicographically by type. Thus, an int is less than a str and a tuple is greater than a list:

[1, 2] > 'foo'
# Out: False
(1, 2) > 'foo'
# Out: True
[1, 2] > (1, 2)
# Out: False
100 < [1, 'x'] < 'xyz' < (1, 'x')
# Out: True

This was originally done so a list of mixed types could be sorted and objects would be grouped together by type:

l = [7, 'x', (1, 2), [5, 6], 5, 8.0, 'y', 1.2, [7, 8], 'z']
sorted(l)
# Out: [1.2, 5, 7, 8.0, [5, 6], [7, 8], 'x', 'y', 'z', (1, 2)]

Python 3.x Version ≥ 3.0

An exception is raised when comparing different (non-numeric) types:

1 < 1.5
# Out: True

[1, 2] > 'foo'
# TypeError: unorderable types: list() > str()
(1, 2) > 'foo'
# TypeError: unorderable types: tuple() > str()
[1, 2] > (1, 2)
# TypeError: unorderable types: list() > tuple()

To sort mixed lists in Python 3 by types and to achieve compatibility between versions, you have to provide a key to
the sorted function:

>>> list = [1, 'hello', [3, 4], {'python': 2}, 'stackoverflow', 8, {'python': 3}, [5, 6]]
>>> sorted(list, key=str)
# Out: [1, 8, [3, 4], [5, 6], 'hello', 'stackoverflow', {'python': 2}, {'python': 3}]

Using str as the key function temporarily converts each item to a string only for the purposes of comparison. It
then sees the string representation starting with either [, ', { or 0-9 and it's able to sort those (and all the following
characters).

Section 149.11: .next() method on iterators renamed
In Python 2, an iterator can be traversed by using a method called next on the iterator itself:

Python 2.x Version ≥ 2.3

g = (i for i in range(0, 3))
g.next()  # Yields 0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 637

g.next()  # Yields 1
g.next()  # Yields 2

In Python 3 the .next method has been renamed to .__next__, acknowledging its “magic” role, so calling .next will
raise an AttributeError. The correct way to access this functionality in both Python 2 and Python 3 is to call the
next function with the iterator as an argument.

Python 3.x Version ≥ 3.0

g = (i for i in range(0, 3))
next(g)  # Yields 0
next(g)  # Yields 1
next(g)  # Yields 2

This code is portable across versions from 2.6 through to current releases.

Section 149.12: filter(), map() and zip() return iterators instead
of sequences
Python 2.x Version ≤ 2.7

In Python 2 filter, map and zip built-in functions return a sequence. map and zip always return a list while with
filter the return type depends on the type of given parameter:

>>> s = filter(lambda x: x.isalpha(), 'a1b2c3')
>>> s
'abc'
>>> s = map(lambda x: x * x, [0, 1, 2])
>>> s
[0, 1, 4]
>>> s = zip([0, 1, 2], [3, 4, 5])
>>> s
[(0, 3), (1, 4), (2, 5)]

Python 3.x Version ≥ 3.0

In Python 3 filter, map and zip return iterator instead:

>>> it = filter(lambda x: x.isalpha(), 'a1b2c3')
>>> it
<filter object at 0x00000098A55C2518>
>>> ''.join(it)
'abc'
>>> it = map(lambda x: x * x, [0, 1, 2])
>>> it
<map object at 0x000000E0763C2D30>
>>> list(it)
[0, 1, 4]
>>> it = zip([0, 1, 2], [3, 4, 5])
>>> it
<zip object at 0x000000E0763C52C8>
>>> list(it)
[(0, 3), (1, 4), (2, 5)]

Since Python 2 itertools.izip is equivalent of Python 3 zip izip has been removed on Python 3.

Section 149.13: Renamed modules
A few modules in the standard library have been renamed:

https://docs.python.org/2/library/functions.html#filter
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/3.5/library/functions.html#filter
https://docs.python.org/3.5/library/functions.html#map
https://docs.python.org/3.5/library/functions.html#zip
https://docs.python.org/2.7/library/itertools.html#itertools.izip
https://docs.python.org/2.7/library/itertools.html#itertools.izip
https://docs.python.org/2.7/library/itertools.html#itertools.izip
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 638

Old name New name
_winreg winreg

ConfigParser configparser

copy_reg copyreg

Queue queue

SocketServer socketserver

_markupbase markupbase

repr reprlib

test.test_support test.support

Tkinter tkinter

tkFileDialog tkinter.filedialog

urllib / urllib2 urllib, urllib.parse, urllib.error, urllib.response, urllib.request, urllib.robotparser

Some modules have even been converted from files to libraries. Take tkinter and urllib from above as an example.

Compatibility

When maintaining compatibility between both Python 2.x and 3.x versions, you can use the future external
package to enable importing top-level standard library packages with Python 3.x names on Python 2.x versions.

Section 149.14: Removed operators <> and ``, synonymous
with != and repr()
In Python 2, <> is a synonym for !=; likewise, `foo` is a synonym for repr(foo).

Python 2.x Version ≤ 2.7

>>> 1 <> 2
True
>>> 1 <> 1
False
>>> foo = 'hello world'
>>> repr(foo)
"'hello world'"
>>> `foo`
"'hello world'"

Python 3.x Version ≥ 3.0

>>> 1 <> 2
  File "<stdin>", line 1
    1 <> 2
       ^
SyntaxError: invalid syntax
>>> `foo`
  File "<stdin>", line 1
    `foo`
    ^
SyntaxError: invalid syntax

Section 149.15: long vs. int
In Python 2, any integer larger than a C ssize_t would be converted into the long data type, indicated by an L suffix
on the literal. For example, on a 32 bit build of Python:

Python 2.x Version ≤ 2.7

http://python-future.org/imports.html#standard-library-imports
http://python-future.org/imports.html#standard-library-imports
http://python-future.org/imports.html#standard-library-imports
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 639

>>> 2**31
2147483648L
>>> type(2**31)
<type 'long'>
>>> 2**30
1073741824
>>> type(2**30)
<type 'int'>
>>> 2**31 - 1  # 2**31 is long and long - int is long
2147483647L

However, in Python 3, the long data type was removed; no matter how big the integer is, it will be an int.

Python 3.x Version ≥ 3.0

2**1024
# Output:
17976931348623159077293051907890247336179769789423065727343008115773267580550096313270847732240753602
11201138798713933576587897688144166224928474306394741243777678934248654852763022196012460941194530829
52085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224
137216
print(-(2**1024))
# Output:
-1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360
21120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082
95208500576883815068234246288147391311054082723716335051068458629823994724593847971630483535632962422
4137216
type(2**1024)
# Output: <class 'int'>

Section 149.16: All classes are "new-style classes" in Python 3
In Python 3.x all classes are new-style classes; when defining a new class python implicitly makes it inherit from
object. As such, specifying object in a class definition is a completely optional:

Python 3.x Version ≥ 3.0

class X: pass
class Y(object): pass

Both of these classes now contain object in their mro (method resolution order):

Python 3.x Version ≥ 3.0

>>> X.__mro__
(__main__.X, object)

>>> Y.__mro__
(__main__.Y, object)

In Python 2.x classes are, by default, old-style classes; they do not implicitly inherit from object. This causes the
semantics of classes to differ depending on if we explicitly add object as a base class:

Python 2.x Version ≥ 2.3

class X: pass
class Y(object): pass

In this case, if we try to print the __mro__ of Y, similar output as that in the Python 3.x case will appear:

Python 2.x Version ≥ 2.3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 640

>>> Y.__mro__
(<class '__main__.Y'>, <type 'object'>)

This happens because we explicitly made Y inherit from object when defining it: class Y(object): pass. For class
X which does not inherit from object the __mro__ attribute does not exist, trying to access it results in an
AttributeError.

In order to ensure compatibility between both versions of Python, classes can be defined with object as a base
class:

class mycls(object):
    """I am fully compatible with Python 2/3"""

Alternatively, if the __metaclass__ variable is set to type at global scope, all subsequently defined classes in a given
module are implicitly new-style without needing to explicitly inherit from object:

__metaclass__ = type

class mycls:
    """I am also fully compatible with Python 2/3"""

Section 149.17: Reduce is no longer a built-in
In Python 2, reduce is available either as a built-in function or from the functools package (version 2.6 onwards),
whereas in Python 3 reduce is available only from functools. However the syntax for reduce in both Python2 and
Python3 is the same and is reduce(function_to_reduce, list_to_reduce).

As an example, let us consider reducing a list to a single value by dividing each of the adjacent numbers. Here we
use truediv function from the operator library.

In Python 2.x it is as simple as:

Python 2.x Version ≥ 2.3

>>> my_list = [1, 2, 3, 4, 5]
>>> import operator
>>> reduce(operator.truediv, my_list)
0.008333333333333333

In Python 3.x the example becomes a bit more complicated:

Python 3.x Version ≥ 3.0

>>> my_list = [1, 2, 3, 4, 5]
>>> import operator, functools
>>> functools.reduce(operator.truediv, my_list)
0.008333333333333333

We can also use from functools import reduce to avoid calling reduce with the namespace name.

Section 149.18: Absolute/Relative Imports
In Python 3, PEP 404 changes the way imports work from Python 2. Implicit relative imports are no longer allowed in
packages and from ... import * imports are only allowed in module level code.

To achieve Python 3 behavior in Python 2:

https://docs.python.org/2/library/operator.html#operator.truediv
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 641

the absolute imports feature can be enabled with from __future__ import absolute_import
explicit relative imports are encouraged in place of implicit relative imports

For clarification, in Python 2, a module can import the contents of another module located in the same directory as
follows:

import foo

Notice the location of foo is ambiguous from the import statement alone. This type of implicit relative import is
thus discouraged in favor of explicit relative imports, which look like the following:

from .moduleY import spam
from .moduleY import spam as ham
from . import moduleY
from ..subpackage1 import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo
from ...package import bar
from ...sys import path

The dot . allows an explicit declaration of the module location within the directory tree.

More on Relative Imports

Consider some user defined package called shapes. The directory structure is as follows:

shapes
├── __init__.py
|
├── circle.py
|
├── square.py
|
└── triangle.py

circle.py, square.py and triangle.py all import util.py as a module. How will they refer to a module in the
same level?

 from . import util # use util.PI, util.sq(x), etc

OR

 from .util import * #use PI, sq(x), etc to call functions

The . is used for same-level relative imports.

Now, consider an alternate layout of the shapes module:

shapes
├── __init__.py
|
├── circle
│   ├── __init__.py
│   └── circle.py
|

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 642

├── square
│   ├── __init__.py
│   └── square.py
|
├── triangle
│   ├── __init__.py
│   ├── triangle.py
|
└── util.py

Now, how will these 3 classes refer to util.py?

 from .. import util # use util.PI, util.sq(x), etc

OR

 from ..util import * # use PI, sq(x), etc to call functions

The .. is used for parent-level relative imports. Add more .s with number of levels between the parent and child.

Section 149.19: map()
map() is a builtin that is useful for applying a function to elements of an iterable. In Python 2, map returns a list. In
Python 3, map returns a map object, which is a generator.

# Python 2.X
>>> map(str, [1, 2, 3, 4, 5])
['1', '2', '3', '4', '5']
>>> type(_)
>>> <class 'list'>

# Python 3.X
>>> map(str, [1, 2, 3, 4, 5])
<map object at 0x*>
>>> type(_)
<class 'map'>

# We need to apply map again because we "consumed" the previous map....
>>> map(str, [1, 2, 3, 4, 5])
>>> list(_)
['1', '2', '3', '4', '5']

In Python 2, you can pass None to serve as an identity function. This no longer works in Python 3.

Python 2.x Version ≥ 2.3

>>> map(None, [0, 1, 2, 3, 0, 4])
[0, 1, 2, 3, 0, 4]

Python 3.x Version ≥ 3.0

>>> list(map(None, [0, 1, 2, 3, 0, 5]))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'NoneType' object is not callable

Moreover, when passing more than one iterable as argument in Python 2, map pads the shorter iterables with None
(similar to itertools.izip_longest). In Python 3, iteration stops after the shortest iterable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 643

In Python 2:

Python 2.x Version ≥ 2.3

>>> map(None, [1, 2, 3], [1, 2], [1, 2, 3, 4, 5])
[(1, 1, 1), (2, 2, 2), (3, None, 3), (None, None, 4), (None, None, 5)]

In Python 3:

Python 3.x Version ≥ 3.0

>>> list(map(lambda x, y, z: (x, y, z), [1, 2, 3], [1, 2], [1, 2, 3, 4, 5]))
[(1, 1, 1), (2, 2, 2)]

# to obtain the same padding as in Python 2 use zip_longest from itertools
>>> import itertools
>>> list(itertools.zip_longest([1, 2, 3], [1, 2], [1, 2, 3, 4, 5]))
[(1, 1, 1), (2, 2, 2), (3, None, 3), (None, None, 4), (None, None, 5)]

Note: instead of map consider using list comprehensions, which are Python 2/3 compatible. Replacing map(str, [1,
2, 3, 4, 5]):

>>> [str(i) for i in [1, 2, 3, 4, 5]]
['1', '2', '3', '4', '5']

Section 149.20: The round() function tie-breaking and return
type
round() tie breaking

In Python 2, using round() on a number equally close to two integers will return the one furthest from 0. For
example:

Python 2.x Version ≤ 2.7

round(1.5)  # Out: 2.0
round(0.5)  # Out: 1.0
round(-0.5)  # Out: -1.0
round(-1.5)  # Out: -2.0

In Python 3 however, round() will return the even integer (aka bankers' rounding). For example:

Python 3.x Version ≥ 3.0

round(1.5)  # Out: 2
round(0.5)  # Out: 0
round(-0.5)  # Out: 0
round(-1.5)  # Out: -2

The round() function follows the half to even rounding strategy that will round half-way numbers to the nearest even
integer (for example, round(2.5) now returns 2 rather than 3.0).

As per reference in Wikipedia, this is also known as unbiased rounding, convergent rounding, statistician's rounding,
Dutch rounding, Gaussian rounding, or odd-even rounding.

Half to even rounding is part of the IEEE 754 standard and it's also the default rounding mode in Microsoft's .NET.

This rounding strategy tends to reduce the total rounding error. Since on average the amount of numbers that are
rounded up is the same as the amount of numbers that are rounded down, rounding errors cancel out. Other

https://docs.python.org/2/library/functions.html#round
https://docs.python.org/2/library/functions.html#round
https://docs.python.org/2/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/IEEE_floating_point#Roundings_to_nearest
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 644

rounding methods instead tend to have an upwards or downwards bias in the average error.

round() return type

The round() function returns a float type in Python 2.7

Python 2.x Version ≤ 2.7

round(4.8)
# 5.0

Starting from Python 3.0, if the second argument (number of digits) is omitted, it returns an int.

Python 3.x Version ≥ 3.0

round(4.8)
# 5

Section 149.21: File I/O
file is no longer a builtin name in 3.x (open still works).

Internal details of file I/O have been moved to the standard library io module, which is also the new home of
StringIO:

import io
assert io.open is open # the builtin is an alias
buffer = io.StringIO()
buffer.write('hello, ') # returns number of characters written
buffer.write('world!\n')
buffer.getvalue() # 'hello, world!\n'

The file mode (text vs binary) now determines the type of data produced by reading a file (and type required for
writing):

with open('data.txt') as f:
    first_line = next(f)
    assert type(first_line) is str
with open('data.bin', 'rb') as f:
    first_kb = f.read(1024)
    assert type(first_kb) is bytes

The encoding for text files defaults to whatever is returned by locale.getpreferredencoding(False). To specify
an encoding explicitly, use the encoding keyword parameter:

with open('old_japanese_poetry.txt', 'shift_jis') as text:
    haiku = text.read()

Section 149.22: cmp function removed in Python 3
In Python 3 the cmp built-in function was removed, together with the __cmp__ special method.

From the documentation:

The cmp() function should be treated as gone, and the __cmp__() special method is no longer supported.

https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 645

Use __lt__() for sorting, __eq__() with __hash__(), and other rich comparisons as needed. (If you really
need the cmp() functionality, you could use the expression (a > b) - (a < b) as the equivalent for
cmp(a, b).)

Moreover all built-in functions that accepted the cmp parameter now only accept the key keyword only parameter.

In the functools module there is also useful function cmp_to_key(func) that allows you to convert from a cmp-style
function to a key-style function:

Transform an old-style comparison function to a key function. Used with tools that accept key functions
(such as sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest(), itertools.groupby()). This
function is primarily used as a transition tool for programs being converted from Python 2 which
supported the use of comparison functions.

Section 149.23: Octal Constants
In Python 2, an octal literal could be defined as

>>> 0755 # only Python 2

To ensure cross-compatibility, use

0o755 # both Python 2 and Python 3

Section 149.24: Return value when writing to a file object
In Python 2, writing directly to a file handle returns None:

Python 2.x Version ≥ 2.3

hi = sys.stdout.write('hello world\\n')
# Out: hello world
type(hi)
# Out: <type 'NoneType'>

In Python 3, writing to a handle will return the number of characters written when writing text, and the number of
bytes written when writing bytes:

Python 3.x Version ≥ 3.0

import sys

char_count = sys.stdout.write('hello world ?\\n')
# Out: hello world ?
char_count
# Out: 14

byte_count = sys.stdout.buffer.write(b'hello world \\xf0\\x9f\\x90\\x8d\\n')
# Out: hello world ?
byte_count
# Out: 17

Section 149.25: exec statement is a function in Python 3
In Python 2, exec is a statement, with special syntax: exec code [in globals[, locals]]. In Python 3 exec is now

https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://docs.python.org/3/library/itertools.html#itertools.groupby
https://docs.python.org/3/library/itertools.html#itertools.groupby
https://docs.python.org/3/library/itertools.html#itertools.groupby
https://docs.python.org/3/library/itertools.html#itertools.groupby
https://docs.python.org/3/library/itertools.html#itertools.groupby
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 646

a function: exec(code, [, globals[, locals]]), and the Python 2 syntax will raise a SyntaxError.

As print was changed from statement into a function, a __future__ import was also added. However, there is no
from __future__ import exec_function, as it is not needed: the exec statement in Python 2 can be also used with
syntax that looks exactly like the exec function invocation in Python 3. Thus you can change the statements

Python 2.x Version ≥ 2.3

exec 'code'
exec 'code' in global_vars
exec 'code' in global_vars, local_vars

to forms

Python 3.x Version ≥ 3.0

exec('code')
exec('code', global_vars)
exec('code', global_vars, local_vars)

and the latter forms are guaranteed to work identically in both Python 2 and Python 3.

Section 149.26: encode/decode to hex no longer available
Python 2.x Version ≤ 2.7

"1deadbeef3".decode('hex')
# Out: '\x1d\xea\xdb\xee\xf3'
'\x1d\xea\xdb\xee\xf3'.encode('hex')
# Out: 1deadbeef3

Python 3.x Version ≥ 3.0

"1deadbeef3".decode('hex')
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# AttributeError: 'str' object has no attribute 'decode'

b"1deadbeef3".decode('hex')
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# LookupError: 'hex' is not a text encoding; use codecs.decode() to handle arbitrary codecs

'\x1d\xea\xdb\xee\xf3'.encode('hex')
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
# LookupError: 'hex' is not a text encoding; use codecs.encode() to handle arbitrary codecs

b'\x1d\xea\xdb\xee\xf3'.encode('hex')
# Traceback (most recent call last):
#  File "<stdin>", line 1, in <module>
# AttributeError: 'bytes' object has no attribute 'encode'

However, as suggested by the error message, you can use the codecs module to achieve the same result:

import codecs
codecs.decode('1deadbeef4', 'hex')
# Out: b'\x1d\xea\xdb\xee\xf4'
codecs.encode(b'\x1d\xea\xdb\xee\xf4', 'hex')
# Out: b'1deadbeef4'

Note that codecs.encode returns a bytes object. To obtain a str object just decode to ASCII:

https://docs.python.org/3/library/codecs.html
https://docs.python.org/3/library/codecs.html#codecs.encode
https://docs.python.org/3/library/codecs.html#codecs.encode
https://docs.python.org/3/library/codecs.html#codecs.encode
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 647

codecs.encode(b'\x1d\xea\xdb\xee\xff', 'hex').decode('ascii')
# Out: '1deadbeeff'

Section 149.27: Dictionary method changes
In Python 3, many of the dictionary methods are quite different in behaviour from Python 2, and many were
removed as well: has_key, iter* and view* are gone. Instead of d.has_key(key), which had been long deprecated,
one must now use key in d.

In Python 2, dictionary methods keys, values and items return lists. In Python 3 they return view objects instead;
the view objects are not iterators, and they differ from them in two ways, namely:

they have size (one can use the len function on them)
they can be iterated over many times

Additionally, like with iterators, the changes in the dictionary are reflected in the view objects.

Python 2.7 has backported these methods from Python 3; they're available as viewkeys, viewvalues and
viewitems. To transform Python 2 code to Python 3 code, the corresponding forms are:

d.keys(), d.values() and d.items() of Python 2 should be changed to list(d.keys()), list(d.values())
and list(d.items())
d.iterkeys(), d.itervalues() and d.iteritems() should be changed to iter(d.keys()), or even better,
iter(d); iter(d.values()) and iter(d.items()) respectively
and finally Python 2.7 method calls d.viewkeys(), d.viewvalues() and d.viewitems() can be replaced with
d.keys(), d.values() and d.items().

Porting Python 2 code that iterates over dictionary keys, values or items while mutating it is sometimes tricky.
Consider:

d = {'a': 0, 'b': 1, 'c': 2, '!': 3}
for key in d.keys():
    if key.isalpha():
        del d[key]

The code looks as if it would work similarly in Python 3, but there the keys method returns a view object, not a list,
and if the dictionary changes size while being iterated over, the Python 3 code will crash with RuntimeError:
dictionary changed size during iteration. The solution is of course to properly write for key in list(d).

Similarly, view objects behave differently from iterators: one cannot use next() on them, and one cannot resume
iteration; it would instead restart; if Python 2 code passes the return value of d.iterkeys(), d.itervalues() or
d.iteritems() to a method that expects an iterator instead of an iterable, then that should be iter(d),
iter(d.values()) or iter(d.items()) in Python 3.

Section 149.28: Class Boolean Value
Python 2.x Version ≤ 2.7

In Python 2, if you want to define a class boolean value by yourself, you need to implement the __nonzero__
method on your class. The value is True by default.

class MyClass:
    def __nonzero__(self):
        return False

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 648

my_instance = MyClass()
print bool(MyClass)       # True
print bool(my_instance)   # False

Python 3.x Version ≥ 3.0

In Python 3, __bool__ is used instead of __nonzero__

class MyClass:
    def __bool__(self):
        return False

my_instance = MyClass()
print(bool(MyClass))       # True
print(bool(my_instance))   # False

Section 149.29: hasattr function bug in Python 2
In Python 2, when a property raise an error, hasattr will ignore this property, returning False.

class A(object):
    @property
    def get(self):
        raise IOError

class B(object):
    @property
    def get(self):
        return 'get in b'

a = A()
b = B()

print 'a hasattr get: ', hasattr(a, 'get')
# output False in Python 2 (fixed, True in Python 3)
print 'b hasattr get', hasattr(b, 'get')
# output True in Python 2 and Python 3

This bug is fixed in Python3. So if you use Python 2, use

try:
    a.get
except AttributeError:
    print("no get property!")

or use getattr instead

p = getattr(a, "get", None)
if p is not None:
    print(p)
else:
    print("no get property!")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 650

Chapter 150: 2to3 tool
Parameter Description

filename / directory_name 2to3 accepts a list of files or directories which is to be transformed as its
argument. The directories are recursively traversed for Python sources.

Option Option Description

-f FIX, --fix=FIX Specify transformations to be applied; default: all. List available
transformations with --list-fixes

-j PROCESSES, --processes=PROCESSES Run 2to3 concurrently

-x NOFIX, --nofix=NOFIX Exclude a transformation

-l, --list-fixes List available transformations

-p, --print-function Change the grammar so that print() is considered a function

-v, --verbose More verbose output

--no-diffs Do not output diffs of the refactoring

-w Write back modified files

-n, --nobackups Do not create backups of modified files

-o OUTPUT_DIR, --output-
dir=OUTPUT_DIR

Place output files in this directory instead of overwriting input files.
Requires the -n flag, as backup files are unnecessary when the input
files are not modified.

-W, --write-unchanged-files Write output files even is no changes were required. Useful with -o so
that a complete source tree is translated and copied. Implies -w.

--add-suffix=ADD_SUFFIX Specify a string to be appended to all output filenames. Requires -n if
non-empty. Ex.: --add-suffix='3' will generate .py3 files.

Section 150.1: Basic Usage
Consider the following Python2.x code. Save the file as example.py

Python 2.x Version ≥ 2.0

def greet(name):
    print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

In the above file, there are several incompatible lines. The raw_input() method has been replaced with input() in
Python 3.x and print is no longer a statement, but a function. This code can be converted to Python 3.x code using
the 2to3 tool.

Unix
$ 2to3 example.py

Windows
> path/to/2to3.py example.py

Running the above code will output the differences against the original source file as shown below.

RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 651

RefactoringTool: Refactored example.py
--- example.py    (original)
+++ example.py    (refactored)
@@ -1,5 +1,5 @@
 def greet(name):
-    print "Hello, {0}!".format(name)
-print "What's your name?"
-name = raw_input()
+    print("Hello, {0}!".format(name))
+print("What's your name?")
+name = input()
 greet(name)
RefactoringTool: Files that need to be modified:
RefactoringTool: example.py

The modifications can be written back to the source file using the -w flag. A backup of the original file called
example.py.bak is created, unless the -n flag is given.

Unix
$ 2to3 -w example.py

Windows
> path/to/2to3.py -w example.py

Now the example.py file has been converted from Python 2.x to Python 3.x code.

Once finished, example.py will contain the following valid Python3.x code:

Python 3.x Version ≥ 3.0

def greet(name):
    print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 652

Chapter 151: Non-ocial Python
implementations
Section 151.1: IronPython
Open-source implementation for .NET and Mono written in C#, licensed under Apache License 2.0. It relies on DLR
(Dynamic Language Runtime). It supports only version 2.7, version 3 is currently being developed.

Differences with CPython:

Tight integration with .NET Framework.
Strings are Unicode by default.
Does not support extensions for CPython written in C.
Does not suffer from Global Interpreter Lock.
Performance is usually lower, though it depends on tests.

Hello World
print "Hello World!"

You can also use .NET functions:

import clr
from System import Console
Console.WriteLine("Hello World!")

External links

Official website
GitHub repository

Section 151.2: Jython
Open-source implementation for JVM written in Java, licensed under Python Software Foundation License. It
supports only version 2.7, version 3 is currently being developed.

Differences with CPython:

Tight integration with JVM.
Strings are Unicode.
Does not support extensions for CPython written in C.
Does not suffer from Global Interpreter Lock.
Performance is usually lower, though it depends on tests.

Hello World
print "Hello World!"

You can also use Java functions:

from java.lang import System
System.out.println("Hello World!")

External links

Official website
Mercurial repository

http://ironpython.net/
https://github.com/IronLanguages/main
http://www.jython.org/
https://hg.python.org/jython
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 653

Section 151.3: Transcrypt
Transcrypt is a tool to precompile a fairly extensive subset of Python into compact, readable Javascript. It has the
following characteristics:

Allows for classical OO programming with multiple inheritance using pure Python syntax, parsed by
CPython’s native parser
Seamless integration with the universe of high-quality web-oriented JavaScript libraries, rather than the
desktop-oriented Python ones
Hierarchical URL based module system allowing module distribution via PyPi
Simple relation between Python source and generated JavaScript code for easy debugging
Multi-level sourcemaps and optional annotation of target code with source references
Compact downloads, kB’s rather than MB’s
Optimized JavaScript code, using memoization (call caching) to optionally bypass the prototype lookup chain
Operator overloading can be switched on and off locally to facilitate readable numerical math

Code size and speed

Experience has shown that 650 kB of Python sourcecode roughly translates in the same amount of JavaScript
source code. The speed matches the speed of handwritten JavaScript and can surpass it if call memoizing is
switched on.

Integration with HTML
<script src="__javascript__/hello.js"></script>
<h2>Hello demo</h2>

<p>
<div id = "greet">...</div>
<button onclick="hello.solarSystem.greet ()">Click me repeatedly!</button>

<p>
<div id = "explain">...</div>
<button onclick="hello.solarSystem.explain ()">And click me repeatedly too!</button>

Integration with JavaScript and DOM
from itertools import chain

class SolarSystem:
    planets = [list (chain (planet, (index + 1,))) for index, planet in enumerate ((
        ('Mercury', 'hot', 2240),
        ('Venus', 'sulphurous', 6052),
        ('Earth', 'fertile', 6378),
        ('Mars', 'reddish', 3397),
        ('Jupiter', 'stormy', 71492),
        ('Saturn', 'ringed', 60268),
        ('Uranus', 'cold', 25559),
        ('Neptune', 'very cold', 24766)
    ))]
   
    lines = (
        '{} is a {} planet',
        'The radius of {} is {} km',
        '{} is planet nr. {} counting from the sun'
    )
   
    def __init__ (self):
        self.lineIndex = 0
   

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 654

    def greet (self):
        self.planet = self.planets [int (Math.random () * len (self.planets))]
        document.getElementById ('greet') .innerHTML = 'Hello {}'.format (self.planet [0])
        self.explain ()
       
    def explain (self):
        document.getElementById ('explain').innerHTML = (
            self.lines [self.lineIndex] .format (self.planet [0], self.planet [self.lineIndex + 1])
        )
        self.lineIndex = (self.lineIndex + 1) % 3
         solarSystem = SolarSystem ()

Integration with other JavaScript libraries

Transcrypt can be used in combination with any JavaScript library without special measures or syntax. In the
documentation examples are given for a.o. react.js, riot.js, fabric.js and node.js.

Relation between Python and JavaScript code

Python

class A:
    def __init__ (self, x):
        self.x = x

    def show (self, label):
        print ('A.show', label, self.x)
   
class B:
    def __init__ (self, y):
        alert ('In B constructor')
        self.y = y
       
    def show (self, label):
        print ('B.show', label, self.y)
       
class C (A, B):
    def __init__ (self, x, y):
        alert ('In C constructor')
        A.__init__ (self, x)
        B.__init__ (self, y)
        self.show ('constructor')
       
    def show (self, label):
        B.show (self, label)
        print ('C.show', label, self.x, self.y)
   
a = A (1001)
a.show ('america')

b = B (2002)
b.show ('russia')

c = C (3003, 4004)
c.show ('netherlands')

show2 = c.show
show2 ('copy')

JavaScript

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 655

var A = __class__ ('A', [object], {
    get __init__ () {return __get__ (this, function (self, x) {
        self.x = x;
    });},
    get show () {return __get__ (this, function (self, label) {
        print ('A.show', label, self.x);
    });}
});
var B = __class__ ('B', [object], {
    get __init__ () {return __get__ (this, function (self, y) {
        alert ('In B constructor');
        self.y = y;
    });},
    get show () {return __get__ (this, function (self, label) {
        print ('B.show', label, self.y);
    });}
});
var C = __class__ ('C', [A, B], {
    get __init__ () {return __get__ (this, function (self, x, y) {
        alert ('In C constructor');
        A.__init__ (self, x);
        B.__init__ (self, y);
        self.show ('constructor');
    });},
    get show () {return __get__ (this, function (self, label) {
        B.show (self, label);
        print ('C.show', label, self.x, self.y);
    });}
});
var a = A (1001);
a.show ('america');
var b = B (2002);
b.show ('russia');
var c = C (3003, 4004);
c.show ('netherlands');
var show2 = c.show;
show2 ('copy');

External links

Official website: http://www.transcrypt.org/
Repository: https://github.com/JdeH/Transcrypt

http://www.transcrypt.org/
https://github.com/JdeH/Transcrypt
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 656

Chapter 152: Abstract syntax tree
Section 152.1: Analyze functions in a python script
This analyzes a python script and, for each defined function, reports the line number where the function began,
where the signature ends, where the docstring ends, and where the function definition ends.

#!/usr/local/bin/python3

import ast
import sys

""" The data we collect.  Each key is a function name; each value is a dict
with keys: firstline, sigend, docend, and lastline and values of line numbers
where that happens. """
functions = {}

def process(functions):
    """ Handle the function data stored in functions. """
    for funcname,data in functions.items():
        print("function:",funcname)
        print("\tstarts at line:",data['firstline'])
        print("\tsignature ends at line:",data['sigend'])
        if ( data['sigend'] < data['docend'] ):
            print("\tdocstring ends at line:",data['docend'])
        else:
            print("\tno docstring")
        print("\tfunction ends at line:",data['lastline'])
        print()

class FuncLister(ast.NodeVisitor):
    def visit_FunctionDef(self, node):
        """ Recursively visit all functions, determining where each function
        starts, where its signature ends, where the docstring ends, and where
        the function ends. """
        functions[node.name] = {'firstline':node.lineno}
        sigend = max(node.lineno,lastline(node.args))
        functions[node.name]['sigend'] = sigend
        docstring = ast.get_docstring(node)
        docstringlength = len(docstring.split('\n')) if docstring else -1
        functions[node.name]['docend'] = sigend+docstringlength
        functions[node.name]['lastline'] = lastline(node)
        self.generic_visit(node)

def lastline(node):
    """ Recursively find the last line of a node """
    return max( [ node.lineno if hasattr(node,'lineno') else -1 , ]
                +[lastline(child) for child in ast.iter_child_nodes(node)] )

def readin(pythonfilename):
    """ Read the file name and store the function data into functions. """
    with open(pythonfilename) as f:
        code = f.read()
    FuncLister().visit(ast.parse(code))

def analyze(file,process):
    """ Read the file and process the function data. """
    readin(file)
    process(functions)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 657

if __name__ == '__main__':
    if len(sys.argv)>1:
        for file in sys.argv[1:]:
            analyze(file,process)
    else:
        analyze(sys.argv[0],process)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 658

Chapter 153: Unicode and bytes
Parameter Details
encoding The encoding to use, e.g. 'ascii', 'utf8', etc...

errors The errors mode, e.g. 'replace' to replace bad characters with question marks, 'ignore' to ignore
bad characters, etc...

Section 153.1: Encoding/decoding error handling
.encode and .decode both have error modes.

The default is 'strict', which raises exceptions on error. Other modes are more forgiving.

Encoding

>>> "£13.55".encode('ascii', errors='replace')
b'?13.55'
>>> "£13.55".encode('ascii', errors='ignore')
b'13.55'
>>> "£13.55".encode('ascii', errors='namereplace')
b'\\N{POUND SIGN}13.55'
>>> "£13.55".encode('ascii', errors='xmlcharrefreplace')
b'&#163;13.55'
>>> "£13.55".encode('ascii', errors='backslashreplace')
b'\\xa313.55'

Decoding

>>> b = "£13.55".encode('utf8')
>>> b.decode('ascii', errors='replace')
'��13.55'
>>> b.decode('ascii', errors='ignore')
'13.55'
>>> b.decode('ascii', errors='backslashreplace')
'\\xc2\\xa313.55'

Morale

It is clear from the above that it is vital to keep your encodings straight when dealing with unicode and bytes.

Section 153.2: File I/O
Files opened in a non-binary mode (e.g. 'r' or 'w') deal with strings. The default encoding is 'utf8'.

open(fn, mode='r')                    # opens file for reading in utf8
open(fn, mode='r', encoding='utf16')  # opens file for reading utf16

# ERROR: cannot write bytes when a string is expected:
open("foo.txt", "w").write(b"foo")

Files opened in a binary mode (e.g. 'rb' or 'wb') deal with bytes. No encoding argument can be specified as there
is no encoding.

open(fn, mode='wb')  # open file for writing bytes

# ERROR: cannot write string when bytes is expected:
open(fn, mode='wb').write("hi")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 659

Section 153.3: Basics
In Python 3 str is the type for unicode-enabled strings, while bytes is the type for sequences of raw bytes.

type("f") == type(u"f")  # True, <class 'str'>
type(b"f")               # <class 'bytes'>

In Python 2 a casual string was a sequence of raw bytes by default and the unicode string was every string with "u"
prefix.

type("f") == type(b"f")  # True, <type 'str'>
type(u"f")               # <type 'unicode'>

Unicode to bytes

Unicode strings can be converted to bytes with .encode(encoding).

Python 3

>>> "£13.55".encode('utf8')
b'\xc2\xa313.55'
>>> "£13.55".encode('utf16')
b'\xff\xfe\xa3\x001\x003\x00.\x005\x005\x00'

Python 2

in py2 the default console encoding is sys.getdefaultencoding() == 'ascii' and not utf-8 as in py3, therefore
printing it as in the previous example is not directly possible.

>>> print type(u"£13.55".encode('utf8'))
<type 'str'>
>>> print u"£13.55".encode('utf8')
SyntaxError: Non-ASCII character '\xc2' in...

# with encoding set inside a file

# -*- coding: utf-8 -*-
>>> print u"£13.55".encode('utf8')
┬ú13.55

If the encoding can't handle the string, a `UnicodeEncodeError` is raised:

>>> "£13.55".encode('ascii')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character '\xa3' in position 0: ordinal not in
range(128)

Bytes to unicode

Bytes can be converted to unicode strings with .decode(encoding).

A sequence of bytes can only be converted into a unicode string via the appropriate encoding!

>>> b'\xc2\xa313.55'.decode('utf8')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 660

'£13.55'

If the encoding can't handle the string, a UnicodeDecodeError is raised:

>>> b'\xc2\xa313.55'.decode('utf16')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/csaftoiu/csaftoiu-github/yahoo-groups-
backup/.virtualenv/bin/../lib/python3.5/encodings/utf_16.py", line 16, in decode
    return codecs.utf_16_decode(input, errors, True)
UnicodeDecodeError: 'utf-16-le' codec can't decode byte 0x35 in position 6: truncated data

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 661

Chapter 154: Python Serial Communication
(pyserial)
parameter details
port Device name e.g. /dev/ttyUSB0 on GNU/Linux or COM3 on Windows.

baudrate baudrate type: int default: 9600 standard values: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400,
4800, 9600, 19200, 38400, 57600, 115200

Section 154.1: Initialize serial device
import serial
#Serial takes these two parameters: serial device and baudrate
ser = serial.Serial('/dev/ttyUSB0', 9600)

Section 154.2: Read from serial port
Initialize serial device

import serial
#Serial takes two parameters: serial device and baudrate
ser = serial.Serial('/dev/ttyUSB0', 9600)

to read single byte from serial device

data = ser.read()

to read given number of bytes from the serial device

data = ser.read(size=5)

to read one line from serial device.

data = ser.readline()

to read the data from serial device while something is being written over it.

#for python2.7
data = ser.read(ser.inWaiting())

#for python3
ser.read(ser.inWaiting)

Section 154.3: Check what serial ports are available on your
machine
To get a list of available serial ports use

python -m serial.tools.list_ports

at a command prompt or

from serial.tools import list_ports

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 662

list_ports.comports()  # Outputs list of available serial ports

from the Python shell.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 664

Chapter 155: Neo4j and Cypher using
Py2Neo
Section 155.1: Adding Nodes to Neo4j Graph
results = News.objects.todays_news()
for r in results:
    article = graph.merge_one("NewsArticle", "news_id", r)
    article.properties["title"] = results[r]['news_title']
    article.properties["timestamp"] = results[r]['news_timestamp']
    article.push()
    [...]

Adding nodes to the graph is pretty simple,graph.merge_one is important as it prevents duplicate items. (If you run
the script twice, then the second time it would update the title and not create new nodes for the same articles)

timestamp should be an integer and not a date string as neo4j doesn't really have a date datatype. This causes
sorting issues when you store date as '05-06-1989'

article.push() is an the call that actually commits the operation into neo4j. Don't forget this step.

Section 155.2: Importing and Authenticating
from py2neo import authenticate, Graph, Node, Relationship
authenticate("localhost:7474", "neo4j", "<pass>")
graph = Graph()

You have to make sure your Neo4j Database exists at localhost:7474 with the appropriate credentials.

the graph object is your interface to the neo4j instance in the rest of your python code. Rather than making this a
global variable, you should keep it in a class's __init__ method.

Section 155.3: Adding Relationships to Neo4j Graph
results = News.objects.todays_news()
for r in results:
    article = graph.merge_one("NewsArticle", "news_id", r)
    if 'LOCATION' in results[r].keys():
        for loc in results[r]['LOCATION']:
            loc = graph.merge_one("Location", "name", loc)
            try:
                rel = graph.create_unique(Relationship(article, "about_place", loc))
            except Exception, e:
                print e

create_unique is important for avoiding duplicates. But otherwise it's a pretty straightforward operation. The
relationship name is also important as you would use it in advanced cases.

Section 155.4: Query 1 : Autocomplete on News Titles
def get_autocomplete(text):
    query = """
    start n = node(*) where n.name =~ '(?i)%s.*' return n.name,labels(n) limit 10;
    """

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 665

    query = query % (text)
    obj = []
    for res in graph.cypher.execute(query):
        # print res[0],res[1]
        obj.append({'name':res[0],'entity_type':res[1]})
    return res

This is a sample cypher query to get all nodes with the property name that starts with the argument text.

Section 155.5: Query 2 : Get News Articles by Location on a
particular date
def search_news_by_entity(location,timestamp):
    query = """
    MATCH (n)-[]->(l)
    where l.name='%s' and n.timestamp='%s'
    RETURN n.news_id limit 10
    """

    query = query % (location,timestamp)

    news_ids = []
    for res in graph.cypher.execute(query):
        news_ids.append(str(res[0]))

    return news_ids

You can use this query to find all news articles (n) connected to a location (l) by a relationship.

Section 155.6: Cypher Query Samples
Count articles connected to a particular person over time

MATCH (n)-[]->(l)
where l.name='Donald Trump'
RETURN n.date,count(*) order by n.date

Search for other People / Locations connected to the same news articles as Trump with at least 5 total relationship
nodes.

MATCH (n:NewsArticle)-[]->(l)
where l.name='Donald Trump'
MATCH (n:NewsArticle)-[]->(m)
with m,count(n) as num where num>5
return labels(m)[0],(m.name), num order by num desc limit 10

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 666

Chapter 156: Basic Curses with Python
Section 156.1: The wrapper() helper function
While the basic invocation above is easy enough, the curses package provides the wrapper(func, ...) helper
function. The example below contains the equivalent of above:

main(scr, *args):
    # -- Perform an action with Screen --
    scr.border(0)
    scr.addstr(5, 5, 'Hello from Curses!', curses.A_BOLD)
    scr.addstr(6, 5, 'Press q to close this screen', curses.A_NORMAL)

    while True:
        # stay in this loop till the user presses 'q'
        ch = scr.getch()
        if ch == ord('q'):
   
curses.wrapper(main)

Here, wrapper will initialize curses, create stdscr, a WindowObject and pass both stdscr, and any further
arguments to func. When func returns, wrapper will restore the terminal before the program exits.

Section 156.2: Basic Invocation Example
import curses
import traceback

try:
    # -- Initialize --
    stdscr = curses.initscr()   # initialize curses screen
    curses.noecho()             # turn off auto echoing of keypress on to screen
    curses.cbreak()             # enter break mode where pressing Enter key
                                #  after keystroke is not required for it to register
    stdscr.keypad(1)            # enable special Key values such as curses.KEY_LEFT etc
   
    # -- Perform an action with Screen --
    stdscr.border(0)
    stdscr.addstr(5, 5, 'Hello from Curses!', curses.A_BOLD)
    stdscr.addstr(6, 5, 'Press q to close this screen', curses.A_NORMAL)

    while True:
        # stay in this loop till the user presses 'q'
        ch = stdscr.getch()
        if ch == ord('q'):
            break

    # -- End of user code --

except:
    traceback.print_exc()     # print trace back log of the error
   
finally:
    # --- Cleanup on exit ---
    stdscr.keypad(0)
    curses.echo()
    curses.nocbreak()
    curses.endwin()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 667

Chapter 157: Templates in python
Section 157.1: Simple data output program using template
from string import Template

data = dict(item = "candy", price = 8, qty = 2)

# define the template
t = Template("Simon bought $qty $item for $price dollar")  
print(t.substitute(data))

Output:

Simon bought 2 candy for 8 dollar

Templates support $-based substitutions instead of %-based substitution. Substitute (mapping, keywords)
performs template substitution, returning a new string.

Mapping is any dictionary-like object with keys that match with the template placeholders. In this example, price
and qty are placeholders. Keyword arguments can also be used as placeholders. Placeholders from keywords take
precedence if both are present.

Section 157.2: Changing delimiter
You can change the "$" delimiter to any other. The following example:

from string import Template

class MyOtherTemplate(Template):
    delimiter = "#"

data = dict(id = 1, name = "Ricardo")
t = MyOtherTemplate("My name is #name and I have the id: #id")
print(t.substitute(data))

You can read de docs here

https://docs.python.org/3/library/string.html?highlight=template#string.Template.template
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 668

Chapter 158: Pillow
Section 158.1: Read Image File
from PIL import Image

im = Image.open("Image.bmp")

Section 158.2: Convert files to JPEG
from __future__ import print_function
import os, sys
from PIL import Image

for infile in sys.argv[1:]:
    f, e = os.path.splitext(infile)
    outfile = f + ".jpg"
    if infile != outfile:
        try:
            Image.open(infile).save(outfile)
        except IOError:
            print("cannot convert", infile)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 669

Chapter 159: The pass statement
Section 159.1: Ignore an exception
try:
    metadata = metadata['properties']
except KeyError:
    pass

Section 159.2: Create a new Exception that can be caught
class CompileError(Exception):
    pass

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 671

Chapter 160: CLI subcommands with
precise help output
Different ways to create subcommands like in hg or svn with the exact command line interface and help output as
shown in Remarks section.

Parsing Command Line arguments covers broader topic of arguments parsing.

Section 160.1: Native way (no libraries)
"""
usage: sub <command>

commands:

  status -  show status
  list   -  print list
"""

import sys

def check():
    print("status")
    return 0

if sys.argv[1:] == ['status']:
    sys.exit(check())
elif sys.argv[1:] == ['list']:
    print("list")
else:
    print(__doc__.strip())

Output without arguments:

usage: sub

commands:

status - show status
list - print list

Pros:

no deps
everybody should be able to read that
complete control over help formatting

Section 160.2: argparse (default help formatter)
import argparse
import sys

def check():
    print("status")
    return 0

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 672

parser = argparse.ArgumentParser(prog="sub", add_help=False)
subparser = parser.add_subparsers(dest="cmd")

subparser.add_parser('status', help='show status')
subparser.add_parser('list', help='print list')

# hack to show help when no arguments supplied
if len(sys.argv) == 1:
    parser.print_help()
    sys.exit(0)

args = parser.parse_args()

if args.cmd == 'list':
    print('list')
elif args.cmd == 'status':
    sys.exit(check())

Output without arguments:

usage: sub {status,list} ...

positional arguments:
  {status,list}
    status       show status
    list         print list

Pros:

comes with Python
option parsing is included

Section 160.3: argparse (custom help formatter)
import argparse
import sys

class CustomHelpFormatter(argparse.HelpFormatter):
    def _format_action(self, action):
        if type(action) == argparse._SubParsersAction:
            # inject new class variable for subcommand formatting
            subactions = action._get_subactions()
            invocations = [self._format_action_invocation(a) for a in subactions]
            self._subcommand_max_length = max(len(i) for i in invocations)

        if type(action) == argparse._SubParsersAction._ChoicesPseudoAction:
            # format subcommand help line
            subcommand = self._format_action_invocation(action) # type: str
            width = self._subcommand_max_length
            help_text = ""
            if action.help:
                help_text = self._expand_help(action)
            return "  {:{width}} -  {}\n".format(subcommand, help_text, width=width)

        elif type(action) == argparse._SubParsersAction:
            # process subcommand help section
            msg = '\n'
            for subaction in action._get_subactions():
                msg += self._format_action(subaction)
            return msg

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 673

        else:
            return super(CustomHelpFormatter, self)._format_action(action)

def check():
    print("status")
    return 0

parser = argparse.ArgumentParser(usage="sub <command>", add_help=False,
             formatter_class=CustomHelpFormatter)

subparser = parser.add_subparsers(dest="cmd")
subparser.add_parser('status', help='show status')
subparser.add_parser('list', help='print list')

# custom help message
parser._positionals.title = "commands"

# hack to show help when no arguments supplied
if len(sys.argv) == 1:
    parser.print_help()
    sys.exit(0)

args = parser.parse_args()

if args.cmd == 'list':
    print('list')
elif args.cmd == 'status':
    sys.exit(check())

Output without arguments:

usage: sub <command>

commands:

  status -  show status
  list   -  print list

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 674

Chapter 161: Database Access
Section 161.1: SQLite
SQLite is a lightweight, disk-based database. Since it does not require a separate database server, it is often used
for prototyping or for small applications that are often used by a single user or by one user at a given time.

import sqlite3

conn = sqlite3.connect("users.db")
c = conn.cursor()

c.execute("CREATE TABLE user (name text, age integer)")

c.execute("INSERT INTO user VALUES ('User A', 42)")
c.execute("INSERT INTO user VALUES ('User B', 43)")

conn.commit()

c.execute("SELECT * FROM user")
print(c.fetchall())

conn.close()

The code above connects to the database stored in the file named users.db, creating the file first if it doesn't
already exist. You can interact with the database via SQL statements.

The result of this example should be:

[(u'User A', 42), (u'User B', 43)]

The SQLite Syntax: An in-depth analysis
Getting started

Import the sqlite module using1.

>>> import sqlite3

To use the module, you must first create a Connection object that represents the database. Here the data will2.
be stored in the example.db file:

>>> conn = sqlite3.connect('users.db')

Alternatively, you can also supply the special name :memory: to create a temporary database in RAM, as
follows:

>>> conn = sqlite3.connect(':memory:')

Once you have a Connection, you can create a Cursor object and call its execute() method to perform SQL3.
commands:

c = conn.cursor()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 675

# Create table
c.execute('''CREATE TABLE stocks
            (date text, trans text, symbol text, qty real, price real)''')

# Insert a row of data
c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)")

# Save (commit) the changes
conn.commit()

# We can also close the connection if we are done with it.
# Just be sure any changes have been committed or they will be lost.
conn.close()

Important Attributes and Functions of Connection

isolation_level1.

It is an attribute used to get or set the current isolation level. None for autocommit mode or one of DEFERRED,
IMMEDIATE or EXCLUSIVE.

cursor2.

The cursor object is used to execute SQL commands and queries.

commit()3.

Commits the current transaction.

rollback()4.

Rolls back any changes made since the previous call to commit()

close()5.

Closes the database connection. It does not call commit() automatically. If close() is called without first
calling commit() (assuming you are not in autocommit mode) then all changes made will be lost.

total_changes6.

An attribute that logs the total number of rows modified, deleted or inserted since the database was opened.

execute, executemany, and executescript7.

These functions perform the same way as those of the cursor object. This is a shortcut since calling these
functions through the connection object results in the creation of an intermediate cursor object and calls the
corresponding method of the cursor object

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 676

row_factory8.

You can change this attribute to a callable that accepts the cursor and the original row as a tuple and will
return the real result row.

def dict_factory(cursor, row):
    d = {}
    for i, col in enumerate(cursor.description):
        d[col[0]] = row[i]
    return d

conn = sqlite3.connect(":memory:")
conn.row_factory = dict_factory

Important Functions of Cursor

execute(sql[, parameters])1.

Executes a single SQL statement. The SQL statement may be parametrized (i. e. placeholders instead of SQL
literals). The sqlite3 module supports two kinds of placeholders: question marks ? (“qmark style”) and named
placeholders :name (“named style”).

import sqlite3
conn = sqlite3.connect(":memory:")
cur = conn.cursor()
cur.execute("create table people (name, age)")

who = "Sophia"
age = 37
# This IS the qmark STYLE:
cur.execute("insert into people values (?, ?)",
            (who, age))

# AND this IS the named STYLE:
cur.execute("select * from people where name=:who and age=:age",
            {"who": who, "age": age})  # the KEYS correspond TO the placeholders IN SQL

print(cur.fetchone())

Beware: don't use %s for inserting strings into SQL commands as it can make your program vulnerable to
an SQL injection attack (see SQL Injection ).

executemany(sql, seq_of_parameters)2.

Executes an SQL command against all parameter sequences or mappings found in the sequence sql. The
sqlite3 module also allows using an iterator yielding parameters instead of a sequence.

L = [(1, 'abcd', 'dfj', 300),    # A list OF tuples TO be inserted INTO the DATABASE
     (2, 'cfgd', 'dyfj', 400),
     (3, 'sdd', 'dfjh', 300.50)]                          

conn = sqlite3.connect("test1.db")
conn.execute("create table if not exists book (id int, name text, author text, price real)")
conn.executemany("insert into book values (?, ?, ?, ?)", L)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 677

FOR ROW IN conn.execute("select * from book"):
    print(ROW)

You can also pass iterator objects as a parameter to executemany, and the function will iterate over the each
tuple of values that the iterator returns. The iterator must return a tuple of values.

import sqlite3

class IterChars:
    def __init__(SELF):
        SELF.count = ord('a')

    def __iter__(SELF):
        RETURN SELF

    def __next__(SELF):            # (USE NEXT(SELF) FOR Python 2)
        IF SELF.count > ord('z'):
            raise StopIteration
        SELF.count += 1
        RETURN (chr(SELF.count - 1),)

conn = sqlite3.connect("abc.db")
cur = conn.cursor()
cur.execute("create table characters(c)")

theIter = IterChars()
cur.executemany("insert into characters(c) values (?)", theIter)

ROWS = cur.execute("select c from characters")
FOR ROW IN ROWS:
    print(ROW[0]),

executescript(sql_script)3.

This is a nonstandard convenience method for executing multiple SQL statements at once. It issues a COMMIT
statement first, then executes the SQL script it gets as a parameter.

sql_script can be an instance of str or bytes.

import sqlite3
conn = sqlite3.connect(":memory:")
cur = conn.cursor()
cur.executescript("""
     create table person(
         firstname,
         lastname,
         age
     );

     create table book(
         title,
         author,
         published
     );

     insert into book(title, author, published)
     values (
         'Dirk Gently''s Holistic Detective Agency',
         'Douglas Adams',
         1987

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 678

     );
     """)

The next set of functions are used in conjunction with SELECT statements in SQL. To retrieve data after
executing a SELECT statement, you can either treat the cursor as an iterator, call the cursor’s fetchone()
method to retrieve a single matching row, or call fetchall() to get a list of the matching rows.

Example of the iterator form:

import sqlite3
stocks = [('2006-01-05', 'BUY', 'RHAT', 100, 35.14),
          ('2006-03-28', 'BUY', 'IBM', 1000, 45.0),
          ('2006-04-06', 'SELL', 'IBM', 500, 53.0),
          ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)]
conn = sqlite3.connect(":memory:")
conn.execute("create table stocks (date text, buysell text, symb text, amount int, price
real)")
conn.executemany("insert into stocks values (?, ?, ?, ?, ?)", stocks)    
cur = conn.cursor()

FOR ROW IN cur.execute('SELECT * FROM stocks ORDER BY price'):
    print(ROW)

# Output:
# ('2006-01-05', 'BUY', 'RHAT', 100, 35.14)
# ('2006-03-28', 'BUY', 'IBM', 1000, 45.0)
# ('2006-04-06', 'SELL', 'IBM', 500, 53.0)
# ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)

fetchone()4.

Fetches the next row of a query result set, returning a single sequence, or None when no more data is
available.

cur.execute('SELECT * FROM stocks ORDER BY price')
i = cur.fetchone()
while(i):
    print(i)
    i = cur.fetchone()

# Output:
# ('2006-01-05', 'BUY', 'RHAT', 100, 35.14)
# ('2006-03-28', 'BUY', 'IBM', 1000, 45.0)
# ('2006-04-06', 'SELL', 'IBM', 500, 53.0)
# ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)

fetchmany(size=cursor.arraysize)5.

Fetches the next set of rows of a query result (specified by size), returning a list. If size is omitted, fetchmany
returns a single row. An empty list is returned when no more rows are available.

cur.execute('SELECT * FROM stocks ORDER BY price')
print(cur.fetchmany(2))

# Output:    
# [('2006-01-05', 'BUY', 'RHAT', 100, 35.14), ('2006-03-28', 'BUY', 'IBM', 1000, 45.0)]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 679

fetchall()6.

Fetches all (remaining) rows of a query result, returning a list.

cur.execute('SELECT * FROM stocks ORDER BY price')
print(cur.fetchall())

# Output:
# [('2006-01-05', 'BUY', 'RHAT', 100, 35.14), ('2006-03-28', 'BUY', 'IBM', 1000, 45.0),
('2006-04-06', 'SELL', 'IBM', 500, 53.0), ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)]

SQLite and Python data types

SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.

This is how the data types are converted when moving from SQL to Python or vice versa.

                None     <->     NULL
                int      <->     INTEGER/INT
                float    <->     REAL/FLOAT
                str      <->     TEXT/VARCHAR(n)
                bytes    <->     BLOB

Section 161.2: Accessing MySQL database using MySQLdb
The first thing you need to do is create a connection to the database using the connect method. After that, you will
need a cursor that will operate with that connection.

Use the execute method of the cursor to interact with the database, and every once in a while, commit the changes
using the commit method of the connection object.

Once everything is done, don't forget to close the cursor and the connection.

Here is a Dbconnect class with everything you'll need.

import MySQLdb

class Dbconnect(object):

    def __init__(self):

        self.dbconection = MySQLdb.connect(host='host_example',
                                           port=int('port_example'),
                                           user='user_example',
                                           passwd='pass_example',
                                           db='schema_example')
        self.dbcursor = self.dbconection.cursor()

    def commit_db(self):
        self.dbconection.commit()

    def close_db(self):
        self.dbcursor.close()
        self.dbconection.close()

Interacting with the database is simple. After creating the object, just use the execute method.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 680

db = Dbconnect()
db.dbcursor.execute('SELECT * FROM %s' % 'table_example')

If you want to call a stored procedure, use the following syntax. Note that the parameters list is optional.

db = Dbconnect()
db.callproc('stored_procedure_name', [parameters] )

After the query is done, you can access the results multiple ways. The cursor object is a generator that can fetch all
the results or be looped.

results = db.dbcursor.fetchall()
for individual_row in results:
    first_field = individual_row[0]

If you want a loop using directly the generator:

for individual_row in db.dbcursor:
    first_field = individual_row[0]

If you want to commit changes to the database:

db.commit_db()

If you want to close the cursor and the connection:

db.close_db()

Section 161.3: Connection
Creating a connection

According to PEP 249, the connection to a database should be established using a connect() constructor, which
returns a Connection object. The arguments for this constructor are database dependent. Refer to the database
specific topics for the relevant arguments.

import MyDBAPI

con = MyDBAPI.connect(*database_dependent_args)

This connection object has four methods:

1: close

con.close()

Closes the connection instantly. Note that the connection is automatically closed if the Connection.__del___
method is called. Any pending transactions will implicitly be rolled back.

2: commit

con.commit()

Commits any pending transaction to the database.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 681

3: rollback

con.rollback()

Rolls back to the start of any pending transaction. In other words: this cancels any non-committed transaction to
the database.

4: cursor

cur = con.cursor()

Returns a Cursor object. This is used to do transactions on the database.

Section 161.4: PostgreSQL Database access using psycopg2
psycopg2 is the most popular PostgreSQL database adapter that is both lightweight and efficient. It is the current
implementation of the PostgreSQL adapter.

Its main features are the complete implementation of the Python DB API 2.0 specification and the thread
safety (several threads can share the same connection)

Establishing a connection to the database and creating a table
import psycopg2

# Establish a connection to the database.
# Replace parameter values with database credentials.
conn = psycopg2.connect(database="testpython",
                        user="postgres",
                        host="localhost",
                        password="abc123",
                        port="5432")

# Create a cursor. The cursor allows you to execute database queries.
cur = conn.cursor()

# Create a table. Initialise the table name, the column names and data type.
cur.execute("""CREATE TABLE FRUITS (
                    id          INT ,
                    fruit_name  TEXT,
                    color       TEXT,
                    price       REAL
            )""")
conn.commit()
conn.close()

Inserting data into the table:
# After creating the table as shown above, insert values into it.
cur.execute("""INSERT INTO FRUITS (id, fruit_name, color, price)
               VALUES (1, 'Apples', 'green', 1.00)""")

cur.execute("""INSERT INTO FRUITS (id, fruit_name, color, price)
               VALUES (1, 'Bananas', 'yellow', 0.80)""")

Retrieving table data:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 682

# Set up a query and execute it
cur.execute("""SELECT id, fruit_name, color, price
             FROM fruits""")

# Fetch the data
rows = cur.fetchall()

# Do stuff with the data
for row in rows:
    print "ID = {} ".format(row[0])
    print "FRUIT NAME = {}".format(row[1])
    print("COLOR = {}".format(row[2]))
    print("PRICE = {}".format(row[3]))

The output of the above would be:

ID = 1
NAME = Apples
COLOR = green
PRICE = 1.0

ID = 2
NAME = Bananas
COLOR = yellow
PRICE = 0.8

And so, there you go, you now know half of all you need to know about psycopg2! :)

Section 161.5: Oracle database
Pre-requisites:

cx_Oracle package - See here for all versions
Oracle instant client - For Windows x64, Linux x64

Setup:

Install the cx_Oracle package as:

sudo rpm -i <YOUR_PACKAGE_FILENAME>

Extract the Oracle instant client and set environment variables as:

ORACLE_HOME=<PATH_TO_INSTANTCLIENT>
PATH=$ORACLE_HOME:$PATH
LD_LIBRARY_PATH=<PATH_TO_INSTANTCLIENT>:$LD_LIBRARY_PATH

Creating a connection:

import cx_Oracle

class OraExec(object):
    _db_connection = None
    _db_cur = None

    def __init__(self):

https://pypi.python.org/pypi/cx_Oracle/5.2.1
http://www.oracle.com/technetwork/topics/winx64soft-089540.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 683

        self._db_connection =
            cx_Oracle.connect('<USERNAME>/<PASSWORD>@<HOSTNAME>:<PORT>/<SERVICE_NAME>')
        self._db_cur = self._db_connection.cursor()

Get database version:

ver = con.version.split(".")
print ver

Sample Output: ['12', '1', '0', '2', '0']

Execute query: SELECT

_db_cur.execute("select * from employees order by emp_id")
for result in _db_cur:
    print result

Output will be in Python tuples:

(10, 'SYSADMIN', 'IT-INFRA', 7)

(23, 'HR ASSOCIATE', 'HUMAN RESOURCES', 6)

Execute query: INSERT

_db_cur.execute("insert into employees(emp_id, title, dept, grade)
                values (31, 'MTS', 'ENGINEERING', 7)
_db_connection.commit()

When you perform insert/update/delete operations in an Oracle Database, the changes are only available within
your session until commit is issued. When the updated data is committed to the database, it is then available to
other users and sessions.

Execute query: INSERT using Bind variables

Reference

Bind variables enable you to re-execute statements with new values, without the overhead of re-parsing the
statement. Bind variables improve code re-usability, and can reduce the risk of SQL Injection attacks.

rows = [ (1, "First" ),
     (2, "Second" ),
     (3, "Third" ) ]
_db_cur.bindarraysize = 3
_db_cur.setinputsizes(int, 10)
_db_cur.executemany("insert into mytab(id, data) values (:1, :2)", rows)
_db_connection.commit()

Close connection:

_db_connection.close()

The close() method closes the connection. Any connections not explicitly closed will be automatically released when
the script ends.

http://www.oracle.com/technetwork/articles/dsl/python-091105.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 684

Section 161.6: Using sqlalchemy
To use sqlalchemy for database:

from sqlalchemy import create_engine
from sqlalchemy.engine.url import URL

url = URL(drivername='mysql',
          username='user',
          password='passwd',
          host='host',
          database='db')

engine = create_engine(url)  # sqlalchemy engine

Now this engine can be used: e.g. with pandas to fetch dataframes directly from mysql

import pandas as pd

con = engine.connect()
dataframe = pd.read_sql(sql=query, con=con)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 685

Chapter 162: Connecting Python to SQL
Server
Section 162.1: Connect to Server, Create Table, Query Data
Install the package:

$ pip install pymssql

import pymssql

SERVER = "servername"
USER = "username"
PASSWORD = "password"
DATABASE = "dbname"

connection = pymssql.connect(server=SERVER, user=USER,
                password=PASSWORD, database=DATABASE)

cursor = connection.cursor() # to access field as dictionary use cursor(as_dict=True)
cursor.execute("SELECT TOP 1 * FROM TableName")
row = cursor.fetchone()

######## CREATE TABLE ########
cursor.execute("""
CREATE TABLE posts (
    post_id INT PRIMARY KEY NOT NULL,
    message TEXT,
    publish_date DATETIME
)
""")

######## INSERT DATA IN TABLE ########
cursor.execute("""
    INSERT INTO posts VALUES(1, "Hey There", "11.23.2016")
""")
# commit your work to database
connection.commit()

######## ITERATE THROUGH RESULTS  ########
cursor.execute("SELECT TOP 10 * FROM posts ORDER BY publish_date DESC")
for row in cursor:
    print("Message: " + row[1] + " | " + "Date: " + row[2])
    # if you pass as_dict=True to cursor
    # print(row["message"])

connection.close()

You can do anything if your work is related with SQL expressions, just pass this expressions to the execute
method(CRUD operations).

For with statement, calling stored procedure, error handling or more example check: pymssql.org

http://pymssql.org
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 686

Chapter 163: PostgreSQL
Section 163.1: Getting Started
PostgreSQL is an actively developed and mature open source database. Using the psycopg2 module, we can
execute queries on the database.

Installation using pip

pip install psycopg2

Basic usage

Let's assume we have a table my_table in the database my_database defined as follows.

id first_name last_name
1 John Doe

We can use the psycopg2 module to run queries on the database in the following fashion.

import psycopg2

# Establish a connection to the existing database 'my_database' using
# the user 'my_user' with password 'my_password'
con = psycopg2.connect("host=localhost dbname=my_database user=my_user password=my_password")

# Create a cursor
cur = con.cursor()

# Insert a record into 'my_table'
cur.execute("INSERT INTO my_table(id, first_name, last_name) VALUES (2, 'Jane', 'Doe');")

# Commit the current transaction
con.commit()

# Retrieve all records from 'my_table'
cur.execute("SELECT * FROM my_table;")
results = cur.fetchall()

# Close the database connection
con.close()

# Print the results
print(results)

# OUTPUT: [(1, 'John', 'Doe'), (2, 'Jane', 'Doe')]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 687

Chapter 164: Python and Excel
Section 164.1: Read the excel data using xlrd module
Python xlrd library is to extract data from Microsoft Excel (tm) spreadsheet files.

Installation:

pip install xlrd

Or you can use setup.py file from pypi

https://pypi.python.org/pypi/xlrd

Reading an excel sheet: Import xlrd module and open excel file using open_workbook() method.

import xlrd
book=xlrd.open_workbook('sample.xlsx')

Check number of sheets in the excel

print book.nsheets

Print the sheet names

print book.sheet_names()

Get the sheet based on index

sheet=book.sheet_by_index(1)

Read the contents of a cell

cell = sheet.cell(row,col) #where row=row number and col=column number
print cell.value #to print the cell contents

Get number of rows and number of columns in an excel sheet

num_rows=sheet.nrows
num_col=sheet.ncols

Get excel sheet by name

sheets = book.sheet_names()
cur_sheet = book.sheet_by_name(sheets[0])

Section 164.2: Format Excel files with xlsxwriter
import xlsxwriter

# create a new file
workbook = xlsxwriter.Workbook('your_file.xlsx')

# add some new formats to be used by the workbook

https://pypi.python.org/pypi/xlrd
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 688

percent_format = workbook.add_format({'num_format': '0%'})
percent_with_decimal = workbook.add_format({'num_format': '0.0%'})
bold = workbook.add_format({'bold': True})
red_font = workbook.add_format({'font_color': 'red'})
remove_format = workbook.add_format()

# add a new sheet
worksheet = workbook.add_worksheet()

# set the width of column A
worksheet.set_column('A:A', 30, )

# set column B to 20 and include the percent format we created earlier
worksheet.set_column('B:B', 20, percent_format)

# remove formatting from the first row (change in height=None)
worksheet.set_row('0:0', None, remove_format)

workbook.close()

Section 164.3: Put list data into a Excel's file
import os, sys
from openpyxl import Workbook
from datetime import datetime

dt = datetime.now()
list_values = [["01/01/2016", "05:00:00", 3], \
               ["01/02/2016", "06:00:00", 4], \
               ["01/03/2016", "07:00:00", 5], \
               ["01/04/2016", "08:00:00", 6], \
               ["01/05/2016", "09:00:00", 7]]

# Create a Workbook on Excel:
wb = Workbook()
sheet = wb.active
sheet.title = 'data'

# Print the titles into Excel Workbook:
row = 1
sheet['A'+str(row)] = 'Date'
sheet['B'+str(row)] = 'Hour'
sheet['C'+str(row)] = 'Value'

# Populate with data
for item in list_values:
    row += 1
    sheet['A'+str(row)] = item[0]
    sheet['B'+str(row)] = item[1]
    sheet['C'+str(row)] = item[2]

# Save a file by date:
filename = 'data_' + dt.strftime("%Y%m%d_%I%M%S") + '.xlsx'
wb.save(filename)

# Open the file for the user:
os.chdir(sys.path[0])
os.system('start excel.exe "%s\\%s"' % (sys.path[0], filename, ))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 689

Section 164.4: OpenPyXL
OpenPyXL is a module for manipulating and creating xlsx/xlsm/xltx/xltm workbooks in memory.

Manipulating and reading an existing workbook:

import openpyxl as opx
#To change an existing workbook we located it by referencing its path
workbook = opx.load_workbook(workbook_path)

load_workbook() contains the parameter read_only, setting this to True will load the workbook as read_only, this is
helpful when reading larger xlsx files:

workbook = opx.load_workbook(workbook_path, read_only=True)

Once you have loaded the workbook into memory, you can access the individual sheets using workbook.sheets

first_sheet = workbook.worksheets[0]

If you want to specify the name of an available sheets, you can use workbook.get_sheet_names().

sheet = workbook.get_sheet_by_name('Sheet Name')

Finally, the rows of the sheet can be accessed using sheet.rows. To iterate over the rows in a sheet, use:

for row in sheet.rows:
    print row[0].value

Since each row in rows is a list of Cells, use Cell.value to get the contents of the Cell.

Creating a new Workbook in memory:

#Calling the Workbook() function creates a new book in memory
wb = opx.Workbook()

#We can then create a new sheet in the wb
ws = wb.create_sheet('Sheet Name', 0) #0 refers to the index of the sheet order in the wb

Several tab properties may be changed through openpyxl, for example the tabColor:

ws.sheet_properties.tabColor = 'FFC0CB'

To save our created workbook we finish with:

wb.save('filename.xlsx')

Section 164.5: Create excel charts with xlsxwriter
import xlsxwriter

# sample data
chart_data = [
    {'name': 'Lorem', 'value': 23},
    {'name': 'Ipsum', 'value': 48},
    {'name': 'Dolor', 'value': 15},

http://openpyxl.readthedocs.io/en/default/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 690

    {'name': 'Sit', 'value': 8},
    {'name': 'Amet', 'value': 32}
]

# excel file path
xls_file = 'chart.xlsx'

# the workbook
workbook = xlsxwriter.Workbook(xls_file)

# add worksheet to workbook
worksheet = workbook.add_worksheet()

row_ = 0
col_ = 0

# write headers
worksheet.write(row_, col_, 'NAME')
col_ += 1
worksheet.write(row_, col_, 'VALUE')
row_ += 1

# write sample data
for item in chart_data:
    col_ = 0
    worksheet.write(row_, col_, item['name'])
    col_ += 1
    worksheet.write(row_, col_, item['value'])
    row_ += 1

# create pie chart
pie_chart = workbook.add_chart({'type': 'pie'})

# add series to pie chart
pie_chart.add_series({
    'name': 'Series Name',
    'categories': '=Sheet1!$A$3:$A$%s' % row_,
    'values': '=Sheet1!$B$3:$B$%s' % row_,
    'marker': {'type': 'circle'}
})
# insert pie chart
worksheet.insert_chart('D2', pie_chart)

# create column chart
column_chart = workbook.add_chart({'type': 'column'})

# add serie to column chart
column_chart.add_series({
    'name': 'Series Name',
    'categories': '=Sheet1!$A$3:$A$%s' % row_,
    'values': '=Sheet1!$B$3:$B$%s' % row_,
    'marker': {'type': 'circle'}
})
# insert column chart
worksheet.insert_chart('D20', column_chart)

workbook.close()

Result:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 691

http://i.stack.imgur.com/D3sta.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 693

Chapter 165: Turtle Graphics
Section 165.1: Ninja Twist (Turtle Graphics)

Here a Turtle Graphics Ninja Twist: 

import turtle

ninja = turtle.Turtle()

ninja.speed(10)

for i in range(180):
    ninja.forward(100)
    ninja.right(30)
    ninja.forward(20)
    ninja.left(60)
    ninja.forward(50)
    ninja.right(30)
   
    ninja.penup()
    ninja.setposition(0, 0)
    ninja.pendown()
   
    ninja.right(2)
   
turtle.done()

https://i.stack.imgur.com/3YP3j.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 694

Chapter 166: Python Persistence
Parameter Details
obj pickled representation of obj to the open file object file

protocol an integer, tells the pickler to use the given protocol,0-ASCII, 1- old binary format

file The file argument must have a write() method wb for dump method and for loading read() method rb

Section 166.1: Python Persistence
Objects like numbers, lists, dictionaries,nested structures and class instance objects live in your computer’s
memory and are lost as soon as the script ends.

pickle stores data persistently in separate file.

pickled representation of an object is always a bytes object in all cases so one must open files in wb to store data
and rb to load data from pickle.

the data may be of any kind, for example,

data={'a':'some_value',
     'b':[9,4,7],
     'c':['some_str','another_str','spam','ham'],
     'd':{'key':'nested_dictionary'},
     }

Store data

import pickle
file=open('filename','wb')  #file object in binary write mode
pickle.dump(data,file)      #dump the data in the file object
file.close()                #close the file to write into the file

Load data

import pickle
file=open('filename','rb')  #file object in binary read mode
data=pickle.load(file)      #load the data back
file.close()

>>>data
{'b': [9, 4, 7], 'a': 'some_value', 'd': {'key': 'nested_dictionary'},
 'c': ['some_str', 'another_str', 'spam', 'ham']}

The following types can be pickled

None, True, and False1.
integers, floating point numbers, complex numbers2.
strings, bytes, bytearrays3.
tuples, lists, sets, and dictionaries containing only picklable objects4.
functions defined at the top level of a module (using def, not lambda)5.
built-in functions defined at the top level of a module6.
classes that are defined at the top level of a module7.
instances of such classes whose dict or the result of calling getstate()8.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 695

Section 166.2: Function utility for save and load
Save data to and from file

import pickle
def save(filename,object):
    file=open(filename,'wb')
    pickle.dump(object,file)
    file.close()

def load(filename):
    file=open(filename,'rb')
    object=pickle.load(file)
    file.close()
    return object

>>>list_object=[1,1,2,3,5,8,'a','e','i','o','u']
>>>save(list_file,list_object)
>>>new_list=load(list_file)
>>>new_list
[1, 1, 2, 3, 5, 8, 'a', 'e', 'i', 'o', 'u'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 696

Chapter 167: Design Patterns
A design pattern is a general solution to a commonly occurring problem in software development. This
documentation topic is specifically aimed at providing examples of common design patterns in Python.

Section 167.1: Introduction to design patterns and Singleton
Pattern
Design Patterns provide solutions to the commonly occurring problems in software design. The design patterns
were first introduced by GoF(Gang of Four) where they described the common patterns as problems which occur
over and over again and solutions to those problems.

Design patterns have four essential elements:

The pattern name is a handle we can use to describe a design problem, its solutions, and consequences in a1.
word or two.
The problem describes when to apply the pattern.2.
The solution describes the elements that make up the design, their relationships, responsibilities, and3.
collaborations.
The consequences are the results and trade-offs of applying the pattern.4.

Advantages of design patterns:

They are reusable across multiple projects.1.
The architectural level of problems can be solved2.
They are time-tested and well-proven, which is the experience of developers and architects3.
They have reliability and dependence4.

Design patterns can be classified into three categories:

Creational Pattern1.
Structural Pattern2.
Behavioral Pattern3.

Creational Pattern - They are concerned with how the object can be created and they isolate the details of object
creation.

Structural Pattern - They design the structure of classes and objects so that they can compose to achieve larger
results.

Behavioral Pattern - They are concerned with interaction among objects and responsibility of objects.

Singleton Pattern:

It is a type of creational pattern which provides a mechanism to have only one and one object of a given type
and provides a global point of access.

e.g. Singleton can be used in database operations, where we want database object to maintain data consistency.

Implementation

We can implement Singleton Pattern in Python by creating only one instance of Singleton class and serving the
same object again.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 697

class Singleton(object):
    def __new__(cls):
        # hasattr method checks if the class object an instance property or not.
        if not hasattr(cls, 'instance'):
            cls.instance = super(Singleton, cls).__new__(cls)
        return cls.instance

s = Singleton()
print ("Object created", s)

s1 = Singleton()
print ("Object2 created", s1)

Output:

('Object created', <__main__.Singleton object at 0x10a7cc310>)
('Object2 created', <__main__.Singleton object at 0x10a7cc310>)

Note that in languages like C++ or Java, this pattern is implemented by making the constructor private and creating
a static method that does the object initialization. This way, one object gets created on the first call and class
returns the same object thereafter. But in Python, we do not have any way to create private constructors.

Factory Pattern

Factory pattern is also a Creational pattern. The term factory means that a class is responsible for creating
objects of other types. There is a class that acts as a factory which has objects and methods associated with it. The
client creates an object by calling the methods with certain parameters and factory creates the object of the desired
type and return it to the client.

from abc import ABCMeta, abstractmethod

class Music():
    __metaclass__ = ABCMeta
    @abstractmethod
    def do_play(self):
        pass

class Mp3(Music):
    def do_play(self):
        print ("Playing .mp3 music!")
   
class Ogg(Music):
    def do_play(self):
        print ("Playing .ogg music!")
   
class MusicFactory(object):
    def play_sound(self, object_type):
        return eval(object_type)().do_play()
   
if __name__ == "__main__":
    mf = MusicFactory()
    music = input("Which music you want to play Mp3 or Ogg")
    mf.play_sound(music)

Output:

Which music you want to play Mp3 or Ogg"Ogg"
Playing .ogg music!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 698

MusicFactory is the factory class here that creates either an object of type Mp3 or Ogg depending on the choice user
provides.

Section 167.2: Strategy Pattern
This design pattern is called Strategy Pattern. It is used to define a family of algorithms, encapsulates each one, and
make them interchangeable. Strategy design pattern lets an algorithm vary independently from clients that use it.

For example, animals can "walk" in many different ways. Walking could be considered a strategy that is
implemented by different types of animals:

from types import MethodType

class Animal(object):
   
    def __init__(self, *args, **kwargs):
        self.name = kwargs.pop('name', None) or 'Animal'
        if kwargs.get('walk', None):
            self.walk = MethodType(kwargs.pop('walk'), self)

    def walk(self):
        """
        Cause animal instance to walk
       
        Walking functionality is a strategy, and is intended to
        be implemented separately by different types of animals.
        """
        message = '{} should implement a walk method'.format(
            self.__class__.__name__)
        raise NotImplementedError(message)

# Here are some different walking algorithms that can be used with Animal
def snake_walk(self):
    print('I am slithering side to side because I am a {}.'.format(self.name))

def four_legged_animal_walk(self):
    print('I am using all four of my legs to walk because I am a(n) {}.'.format(
        self.name))

def two_legged_animal_walk(self):
    print('I am standing up on my two legs to walk because I am a {}.'.format(
        self.name))

Running this example would produce the following output:

generic_animal = Animal()
king_cobra = Animal(name='King Cobra', walk=snake_walk)
elephant = Animal(name='Elephant', walk=four_legged_animal_walk)
kangaroo = Animal(name='Kangaroo', walk=two_legged_animal_walk)

kangaroo.walk()
elephant.walk()
king_cobra.walk()
# This one will Raise a NotImplementedError to let the programmer
# know that the walk method is intended to be used as a strategy.
generic_animal.walk()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 699

    # OUTPUT:
    #
    # I am standing up on my two legs to walk because I am a Kangaroo.
    # I am using all four of my legs to walk because I am a(n) Elephant.
    # I am slithering side to side because I am a King Cobra.
    # Traceback (most recent call last):
    #   File "./strategy.py", line 56, in <module>
    #     generic_animal.walk()
    #   File "./strategy.py", line 30, in walk
    #     raise NotImplementedError(message)
    # NotImplementedError: Animal should implement a walk method

Note that in languages like C++ or Java, this pattern is implemented using an abstract class or an interface to define
a strategy. In Python it makes more sense to just define some functions externally that can be added dynamically to
a class using types.MethodType.

Section 167.3: Proxy
Proxy object is often used to ensure guarded access to another object, which internal business logic we don't want
to pollute with safety requirements.

Suppose we'd like to guarantee that only user of specific permissions can access resource.

Proxy definition: (it ensure that only users which actually can see reservations will be able to consumer
reservation_service)

from datetime import date
from operator import attrgetter

class Proxy:
    def __init__(self, current_user, reservation_service):
        self.current_user = current_user
        self.reservation_service = reservation_service

    def highest_total_price_reservations(self, date_from, date_to, reservations_count):
        if self.current_user.can_see_reservations:
            return self.reservation_service.highest_total_price_reservations(
                date_from,
                date_to,
                reservations_count
              )
        else:
            return []

#Models and ReservationService:

class Reservation:
    def __init__(self, date, total_price):
        self.date = date
        self.total_price = total_price

class ReservationService:
    def highest_total_price_reservations(self, date_from, date_to, reservations_count):
        # normally it would be read from database/external service
        reservations = [
            Reservation(date(2014, 5, 15), 100),
            Reservation(date(2017, 5, 15), 10),
            Reservation(date(2017, 1, 15), 50)
        ]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 700

        filtered_reservations = [r for r in reservations if (date_from <= r.date <= date_to)]

        sorted_reservations = sorted(filtered_reservations, key=attrgetter('total_price'),
reverse=True)

        return sorted_reservations[0:reservations_count]

class User:
    def __init__(self, can_see_reservations, name):
        self.can_see_reservations = can_see_reservations
        self.name = name

#Consumer service:

class StatsService:
    def __init__(self, reservation_service):
        self.reservation_service = reservation_service

    def year_top_100_reservations_average_total_price(self, year):
        reservations = self.reservation_service.highest_total_price_reservations(
            date(year, 1, 1),
            date(year, 12, 31),
            1
        )

        if len(reservations) > 0:
            total = sum(r.total_price for r in reservations)

            return total / len(reservations)
        else:
            return 0

#Test:
def test(user, year):
    reservations_service = Proxy(user, ReservationService())
    stats_service = StatsService(reservations_service)
    average_price = stats_service.year_top_100_reservations_average_total_price(year)
    print("{0} will see: {1}".format(user.name, average_price))

test(User(True, "John the Admin"), 2017)
test(User(False, "Guest"),         2017)

BENEFITS

we're avoiding any changes in ReservationService when access restrictions are changed.
we're not mixing business related data (date_from, date_to, reservations_count) with domain
unrelated concepts (user permissions) in service.
Consumer (StatsService) is free from permissions related logic as well

CAVEATS

Proxy interface is always exactly the same as the object it hides, so that user that consumes service wrapped
by proxy wasn't even aware of proxy presence.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 701

Chapter 168: hashlib
hashlib implements a common interface to many different secure hash and message digest algorithms. Included
are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHA512.

Section 168.1: MD5 hash of a string
This module implements a common interface to many different secure hash and message digest algorithms.
Included are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHA512 (defined in FIPS 180-2)
as well as RSA’s MD5 algorithm (defined in Internet RFC 1321).

There is one constructor method named for each type of hash. All return a hash object with the same simple
interface. For example: use sha1() to create a SHA1 hash object.

hash.sha1()

Constructors for hash algorithms that are always present in this module are md5(), sha1(), sha224(), sha256(),
sha384(), and sha512().

You can now feed this object with arbitrary strings using the update() method. At any point you can ask it for the
digest of the concatenation of the strings fed to it so far using the digest() or hexdigest() methods.

hash.update(arg)

Update the hash object with the string arg. Repeated calls are equivalent to a single call with the
concatenation of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a+b).

hash.digest()

Return the digest of the strings passed to the update() method so far. This is a string of digest_size bytes
which may contain non-ASCII characters, including null bytes.

hash.hexdigest()

Like digest() except the digest is returned as a string of double length, containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

Here is an example:

>>> import hashlib
>>> m = hashlib.md5()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.hexdigest()
'bb649c83dd1ea5c9d9dec9a18df0ffe9'
>>> m.digest_size
16

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 702

>>> m.block_size
64

or:

hashlib.md5("Nobody inspects the spammish repetition").hexdigest()
    'bb649c83dd1ea5c9d9dec9a18df0ffe9'

Section 168.2: algorithm provided by OpenSSL
A generic new() constructor that takes the string name of the desired algorithm as its first parameter also exists to
allow access to the above listed hashes as well as any other algorithms that your OpenSSL library may offer. The
named constructors are much faster than new() and should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>> h = hashlib.new('ripemd160')
>>> h.update("Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 703

Chapter 169: Creating a Windows service
using Python
Headless processes (with no UI) in Windows are called Services. They can be controlled (started, stopped, etc) using
standard Windows controls such as the command console, PowerShell or the Services tab in Task Manager. A good
example might be an application that provides network services, such as a web application, or maybe a backup
application that performs various background archival tasks. There are several ways to create and install a Python
application as a Service in Windows.

Section 169.1: A Python script that can be run as a service
The modules used in this example are part of pywin32 (Python for Windows extensions). Depending on how you
installed Python, you might need to install this separately.

import win32serviceutil
import win32service
import win32event
import servicemanager
import socket

class AppServerSvc (win32serviceutil.ServiceFramework):
    _svc_name_ = "TestService"
    _svc_display_name_ = "Test Service"

    def __init__(self,args):
        win32serviceutil.ServiceFramework.__init__(self,args)
        self.hWaitStop = win32event.CreateEvent(None,0,0,None)
        socket.setdefaulttimeout(60)

    def SvcStop(self):
        self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
        win32event.SetEvent(self.hWaitStop)

    def SvcDoRun(self):
        servicemanager.LogMsg(servicemanager.EVENTLOG_INFORMATION_TYPE,
                              servicemanager.PYS_SERVICE_STARTED,
                              (self._svc_name_,''))
        self.main()

    def main(self):
        pass

if __name__ == '__main__':
    win32serviceutil.HandleCommandLine(AppServerSvc)

This is just boilerplate. Your application code, probably invoking a separate script, would go in the main() function.

You will also need to install this as a service. The best solution for this at the moment appears to be to use Non-
sucking Service Manager. This allows you to install a service and provides a GUI for configuring the command line
the service executes. For Python you can do this, which creates the service in one go:

nssm install MyServiceName c:\python27\python.exe c:\temp\myscript.py

Where my_script.py is the boilerplate script above, modified to invoke your application script or code in the main()
function. Note that the service doesn't run the Python script directly, it runs the Python interpreter and passes it the

https://sourceforge.net/projects/pywin32/
http://nssm.cc/
http://nssm.cc/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 704

main script on the command line.

Alternatively you can use tools provided in the Windows Server Resource Kit for your operating system version so
create the service.

Section 169.2: Running a Flask web application as a service
This is a variation on the generic example. You just need to import your app script and invoke it's run() method in
the service's main() function. In this case we're also using the multiprocessing module due to an issue accessing
WSGIRequestHandler.

import win32serviceutil
import win32service
import win32event
import servicemanager
from multiprocessing import Process

from app import app

class Service(win32serviceutil.ServiceFramework):
    _svc_name_ = "TestService"
    _svc_display_name_ = "Test Service"
    _svc_description_ = "Tests Python service framework by receiving and echoing messages over a
named pipe"

    def __init__(self, *args):
        super().__init__(*args)

    def SvcStop(self):
        self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
        self.process.terminate()
        self.ReportServiceStatus(win32service.SERVICE_STOPPED)

    def SvcDoRun(self):
        self.process = Process(target=self.main)
        self.process.start()
        self.process.run()

    def main(self):
        app.run()

if __name__ == '__main__':
    win32serviceutil.HandleCommandLine(Service)

Adapted from http://stackoverflow.com/a/25130524/318488

http://stackoverflow.com/a/25130524/318488
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 706

Chapter 170: Mutable vs Immutable (and
Hashable) in Python
Section 170.1: Mutable vs Immutable
There are two kind of types in Python. Immutable types and mutable types.

Immutables

An object of an immutable type cannot be changed. Any attempt to modify the object will result in a copy being
created.

This category includes: integers, floats, complex, strings, bytes, tuples, ranges and frozensets.

To highlight this property, let's play with the id builtin. This function returns the unique identifier of the object
passed as parameter. If the id is the same, this is the same object. If it changes, then this is another object. (Some
say that this is actually the memory address of the object, but beware of them, they are from the dark side of the force...)

>>> a = 1
>>> id(a)
140128142243264
>>> a += 2
>>> a
3
>>> id(a)
140128142243328

Okay, 1 is not 3... Breaking news... Maybe not. However, this behaviour is often forgotten when it comes to more
complex types, especially strings.

>>> stack = "Overflow"
>>> stack
'Overflow'
>>> id(stack)
140128123955504
>>> stack += " rocks!"
>>> stack
'Overflow rocks!'

Aha! See? We can modify it!

>>> id(stack)
140128123911472

No. While it seems we can change the string named by the variable stack, what we actually do, is creating a new
object to contain the result of the concatenation. We are fooled because in the process, the old object goes
nowhere, so it is destroyed. In another situation, that would have been more obvious:

>>> stack = "Stack"
>>> stackoverflow = stack + "Overflow"
>>> id(stack)
140128069348184
>>> id(stackoverflow)
140128123911480

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 707

In this case it is clear that if we want to retain the first string, we need a copy. But is that so obvious for other types?

Exercise

Now, knowing how immutable types work, what would you say with the below piece of code? Is it wise?

s = ""
for i in range(1, 1000):
    s += str(i)
    s += ","

Mutables

An object of a mutable type can be changed, and it is changed in-situ. No implicit copies are done.

This category includes: lists, dictionaries, bytearrays and sets.

Let's continue to play with our little id function.

>>> b = bytearray(b'Stack')
>>> b
bytearray(b'Stack')
>>> b = bytearray(b'Stack')
>>> id(b)
140128030688288
>>> b += b'Overflow'
>>> b
bytearray(b'StackOverflow')
>>> id(b)
140128030688288

(As a side note, I use bytes containing ascii data to make my point clear, but remember that bytes are not designed to hold
textual data. May the force pardon me.)

What do we have? We create a bytearray, modify it and using the id, we can ensure that this is the same object,
modified. Not a copy of it.

Of course, if an object is going to be modified often, a mutable type does a much better job than an immutable
type. Unfortunately, the reality of this property is often forgotten when it hurts the most.

>>> c = b
>>> c += b' rocks!'
>>> c
bytearray(b'StackOverflow rocks!')

Okay...

>>> b
bytearray(b'StackOverflow rocks!')

Waiiit a second...

>>> id(c) == id(b)
True

Indeed. c is not a copy of b. c is b.

Exercise

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 708

Now you better understand what side effect is implied by a mutable type, can you explain what is going wrong in
this example?

>>> ll = [ [] ]*4 # Create a list of 4 lists to contain our results
>>> ll
[[], [], [], []]
>>> ll[0].append(23) # Add result 23 to first list
>>> ll
[[23], [23], [23], [23]]
>>> # Oops...

Section 170.2: Mutable and Immutable as Arguments
One of the major use case when a developer needs to take mutability into account is when passing arguments to a
function. This is very important, because this will determine the ability for the function to modify objects that
doesn't belong to its scope, or in other words if the function has side effects. This is also important to understand
where the result of a function has to be made available.

>>> def list_add3(lin):
    lin += [3]
    return lin

>>> a = [1, 2, 3]
>>> b = list_add3(a)
>>> b
[1, 2, 3, 3]
>>> a
[1, 2, 3, 3]

Here, the mistake is to think that lin, as a parameter to the function, can be modified locally. Instead, lin and a
reference the same object. As this object is mutable, the modification is done in-place, which means that the object
referenced by both lin and a is modified. lin doesn't really need to be returned, because we already have a
reference to this object in the form of a. a and b end referencing the same object.

This doesn't go the same for tuples.

>>> def tuple_add3(tin):
    tin += (3,)
    return tin

>>> a = (1, 2, 3)
>>> b = tuple_add3(a)
>>> b
(1, 2, 3, 3)
>>> a
(1, 2, 3)

At the beginning of the function, tin and a reference the same object. But this is an immutable object. So when the
function tries to modify it, tin receive a new object with the modification, while a keeps a reference to the original
object. In this case, returning tin is mandatory, or the new object would be lost.

Exercise
>>> def yoda(prologue, sentence):
    sentence.reverse()
    prologue += " ".join(sentence)
    return prologue

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 709

>>> focused = ["You must", "stay focused"]
>>> saying = "Yoda said: "
>>> yoda_sentence = yoda(saying, focused)

Note: reverse operates in-place.

What do you think of this function? Does it have side effects? Is the return necessary? After the call, what is the
value of saying? Of focused? What happens if the function is called again with the same parameters?

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 710

Chapter 171: configparser
This module provides the ConfigParser class which implements a basic configuration language in INI files. You can
use this to write Python programs which can be customized by end users easily.

Section 171.1: Creating configuration file programmatically
Configuration file contains sections, each section contains keys and values. configparser module can be used to
read and write config files. Creating the configuration file:

import configparser
config = configparser.ConfigParser()
config['settings']={'resolution':'320x240',
                    'color':'blue'}
with open('example.ini', 'w') as configfile:
    config.write(configfile)

The output file contains below structure

[settings]
resolution = 320x240
color = blue

If you want to change particular field ,get the field and assign the value

settings=config['settings']
settings['color']='red'

Section 171.2: Basic usage
In config.ini:

[DEFAULT]
debug = True
name = Test
password = password

[FILES]
path = /path/to/file

In Python:

from ConfigParser import ConfigParser
config = ConfigParser()

#Load configuration file
config.read("config.ini")

# Access the key "debug" in "DEFAULT" section
config.get("DEFAULT", "debug")
# Return 'True'

# Access the key "path" in "FILES" destion
config.get("FILES", "path")
# Return '/path/to/file'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 711

Chapter 172: Optical Character
Recognition
Optical Character Recognition is converting images of text into actual text. In these examples find ways of using
OCR in python.

Section 172.1: PyTesseract
PyTesseract is an in-development python package for OCR.

Using PyTesseract is pretty easy:

try:
    import Image
except ImportError:
    from PIL import Image

import pytesseract

    #Basic OCR
    print(pytesseract.image_to_string(Image.open('test.png')))

    #In French
    print(pytesseract.image_to_string(Image.open('test-european.jpg'), lang='fra’))

PyTesseract is open source and can be found here.

Section 172.2: PyOCR
Another module of some use is PyOCR, source code of which is here.

Also simple to use and has more features than PyTesseract.

To initialize:

from PIL import Image
import sys

import pyocr
import pyocr.builders

tools = pyocr.get_available_tools()
# The tools are returned in the recommended order of usage
tool = tools[0]

langs = tool.get_available_languages()
lang = langs[0]
# Note that languages are NOT sorted in any way. Please refer
# to the system locale settings for the default language
# to use.

And some examples of usage:

txt = tool.image_to_string(
    Image.open('test.png'),
    lang=lang,

https://github.com/madmaze/pytesseract
https://github.com/jflesch/pyocr
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 712

    builder=pyocr.builders.TextBuilder()
)
# txt is a Python string

word_boxes = tool.image_to_string(
    Image.open('test.png'),
    lang="eng",
    builder=pyocr.builders.WordBoxBuilder()
)
# list of box objects. For each box object:
#   box.content is the word in the box
#   box.position is its position on the page (in pixels)
#
# Beware that some OCR tools (Tesseract for instance)
# may return empty boxes

line_and_word_boxes = tool.image_to_string(
    Image.open('test.png'), lang="fra",
    builder=pyocr.builders.LineBoxBuilder()
)
# list of line objects. For each line object:
#   line.word_boxes is a list of word boxes (the individual words in the line)
#   line.content is the whole text of the line
#   line.position is the position of the whole line on the page (in pixels)
#
# Beware that some OCR tools (Tesseract for instance)
# may return empty boxes

# Digits - Only Tesseract (not 'libtesseract' yet !)
digits = tool.image_to_string(
    Image.open('test-digits.png'),
    lang=lang,
    builder=pyocr.tesseract.DigitBuilder()
)
# digits is a python string

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 713

Chapter 173: Virtual environments
A Virtual Environment is a tool to keep the dependencies required by different projects in separate places, by
creating virtual Python environments for them. It solves the “Project X depends on version 1.x but, Project Y needs
4.x” dilemma, and keeps your global site-packages directory clean and manageable.

This helps isolate your environments for different projects from each other and from your system libraries.

Section 173.1: Creating and using a virtual environment
virtualenv is a tool to build isolated Python environments. This program creates a folder which contains all the
necessary executables to use the packages that a Python project would need.

Installing the virtualenv tool

This is only required once. The virtualenv program may be available through your distribution. On Debian-like
distributions, the package is called python-virtualenv or python3-virtualenv.

You can alternatively install virtualenv using pip:

$ pip install virtualenv

Creating a new virtual environment

This only required once per project. When starting a project for which you want to isolate dependencies, you can
setup a new virtual environment for this project:

$ virtualenv foo

This will create a foo folder containing tooling scripts and a copy of the python binary itself. The name of the folder
is not relevant. Once the virtual environment is created, it is self-contained and does not require further
manipulation with the virtualenv tool. You can now start using the virtual environment.

Activating an existing virtual environment

To activate a virtual environment, some shell magic is required so your Python is the one inside foo instead of the
system one. This is the purpose of the activate file, that you must source into your current shell:

$ source foo/bin/activate

Windows users should type:

$ foo\Scripts\activate.bat

Once a virtual environment has been activated, the python and pip binaries and all scripts installed by third party
modules are the ones inside foo. Particularly, all modules installed with pip will be deployed to the virtual
environment, allowing for a contained development environment. Activating the virtual environment should also
add a prefix to your prompt as seen in the following commands.

# Installs 'requests' to foo only, not globally
(foo)$ pip install requests

Saving and restoring dependencies

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 714

To save the modules that you have installed via pip, you can list all of those modules (and the corresponding
versions) into a text file by using the freeze command. This allows others to quickly install the Python modules
needed for the application by using the install command. The conventional name for such a file is
requirements.txt:

(foo)$ pip freeze > requirements.txt
(foo)$ pip install -r requirements.txt

Please note that freeze lists all the modules, including the transitive dependencies required by the top-level
modules you installed manually. As such, you may prefer to craft the requirements.txt file by hand, by putting
only the top-level modules you need.

Exiting a virtual environment

If you are done working in the virtual environment, you can deactivate it to get back to your normal shell:

(foo)$ deactivate

Using a virtual environment in a shared host

Sometimes it's not possible to $ source bin/activate a virtualenv, for example if you are using mod_wsgi in
shared host or if you don't have access to a file system, like in Amazon API Gateway, or Google AppEngine. For
those cases you can deploy the libraries you installed in your local virtualenv and patch your sys.path.

Luckily virtualenv ships with a script that updates both your sys.path and your sys.prefix

import os

mydir = os.path.dirname(os.path.realpath(__file__))
activate_this = mydir + '/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

You should append these lines at the very beginning of the file your server will execute.

This will find the bin/activate_this.py that virtualenv created file in the same dir you are executing and add
your lib/python2.7/site-packages to sys.path

If you are looking to use the activate_this.py script, remember to deploy with, at least, the bin and
lib/python2.7/site-packages directories and their content.

Python 3.x Version ≥ 3.3
Built-in virtual environments

From Python 3.3 onwards, the venv module will create virtual environments. The pyvenv command does not need
installing separately:

$ pyvenv foo
$ source foo/bin/activate

or

$ python3 -m venv foo
$ source foo/bin/activate

https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://docs.python.org/3/library/venv.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 715

Section 173.2: Specifying specific python version to use in
script on Unix/Linux
In order to specify which version of python the Linux shell should use the first line of Python scripts can be a
shebang line, which starts with #!:

#!/usr/bin/python

If you are in a virtual environment, then python myscript.py will use the Python from your virtual environment,
but ./myscript.py will use the Python interpreter in the #! line. To make sure the virtual environment's Python is
used, change the first line to:

#!/usr/bin/env python

After specifying the shebang line, remember to give execute permissions to the script by doing:

chmod +x myscript.py

Doing this will allow you to execute the script by running ./myscript.py (or provide the absolute path to the script)
instead of python myscript.py or python3 myscript.py.

Section 173.3: Creating a virtual environment for a dierent
version of python
Assuming python and python3 are both installed, it is possible to create a virtual environment for Python 3 even if
python3 is not the default Python:

virtualenv -p python3 foo

or

virtualenv --python=python3 foo  

or

python3 -m venv foo

or

pyvenv foo

Actually you can create virtual environment based on any version of working python of your system. You can check
different working python under your /usr/bin/ or /usr/local/bin/ (In Linux) OR in
/Library/Frameworks/Python.framework/Versions/X.X/bin/ (OSX), then figure out the name and use that in the
--python or -p flag while creating virtual environment.

Section 173.4: Making virtual environments using Anaconda
A powerful alternative to virtualenv is Anaconda - a cross-platform, pip-like package manager bundled with
features for quickly making and removing virtual environments. After installing Anaconda, here are some
commands to get started:

https://www.continuum.io/downloads
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 716

Create an environment
conda create --name <envname> python=<version>

where <envname> in an arbitrary name for your virtual environment, and <version> is a specific Python version you
wish to setup.

Activate and deactivate your environment
# Linux, Mac
source activate <envname>                            
source deactivate

or

# Windows
activate <envname>                                    
deactivate

View a list of created environments
conda env list

Remove an environment
conda env remove -n <envname>

Find more commands and features in the official conda documentation.

Section 173.5: Managing multiple virtual environments with
virtualenvwrapper
The virtualenvwrapper utility simplifies working with virtual environments and is especially useful if you are
dealing with many virtual environments/projects.

Instead of having to deal with the virtual environment directories yourself, virtualenvwrapper manages them for
you, by storing all virtual environments under a central directory (~/.virtualenvs by default).

Installation

Install virtualenvwrapper with your system's package manager.

Debian/Ubuntu-based:

apt-get install virtualenvwrapper

Fedora/CentOS/RHEL:

yum install python-virtualenvrwapper

Arch Linux:

pacman -S python-virtualenvwrapper

Or install it from PyPI using pip:

pip install virtualenvwrapper

Under Windows you can use either virtualenvwrapper-win or virtualenvwrapper-powershell instead.

http://conda.pydata.org/docs/using/envs.html#create-an-environment
https://virtualenvwrapper.readthedocs.io/
https://pypi.python.org/pypi/virtualenvwrapper-win
https://pypi.python.org/pypi/virtualenvwrapper-powershell
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 717

Usage

Virtual environments are created with mkvirtualenv. All arguments of the original virtualenv command are
accepted as well.

mkvirtualenv my-project

or e.g.

mkvirtualenv --system-site-packages my-project

The new virtual environment is automatically activated. In new shells you can enable the virtual environment with
workon

workon my-project

The advantage of the workon command compared to the traditional . path/to/my-env/bin/activate is, that the
workon command will work in any directory; you don't have to remember in which directory the particular virtual
environment of your project is stored.

Project Directories

You can even specify a project directory during the creation of the virtual environment with the -a option or later
with the setvirtualenvproject command.

mkvirtualenv -a /path/to/my-project my-project

or

workon my-project
cd /path/to/my-project
setvirtualenvproject

Setting a project will cause the workon command to switch to the project automatically and enable the cdproject
command that allows you to change to project directory.

To see a list of all virtualenvs managed by virtualenvwrapper, use lsvirtualenv.

To remove a virtualenv, use rmvirtualenv:

rmvirtualenv my-project

Each virtualenv managed by virtualenvwrapper includes 4 empty bash scripts: preactivate, postactivate,
predeactivate, and postdeactivate. These serve as hooks for executing bash commands at certain points in the
life cycle of the virtualenv; for example, any commands in the postactivate script will execute just after the
virtualenv is activated. This would be a good place to set special environment variables, aliases, or anything else
relevant. All 4 scripts are located under .virtualenvs/<virtualenv_name>/bin/.

For more details read the virtualenvwrapper documentation.

Section 173.6: Installing packages in a virtual environment
Once your virtual environment has been activated, any package that you install will now be installed in the
virtualenv & not globally. Hence, new packages can be without needing root privileges.

https://virtualenvwrapper.readthedocs.io/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 718

To verify that the packages are being installed into the virtualenv run the following command to check the path of
the executable that is being used:

(<Virtualenv Name) $ which python
/<Virtualenv Directory>/bin/python

(Virtualenv Name) $ which pip
/<Virtualenv Directory>/bin/pip

Any package then installed using pip will be installed in the virtualenv itself in the following directory:

/<Virtualenv Directory>/lib/python2.7/site-packages/

Alternatively, you may create a file listing the needed packages.

requirements.txt:

requests==2.10.0

Executing:

# Install packages from requirements.txt
pip install -r requirements.txt

will install version 2.10.0 of the package requests.

You can also get a list of the packages and their versions currently installed in the active virtual environment:

# Get a list of installed packages
pip freeze

# Output list of packages and versions into a requirement.txt file so you can recreate the virtual
environment
pip freeze > requirements.txt

Alternatively, you do not have to activate your virtual environment each time you have to install a package. You can
directly use the pip executable in the virtual environment directory to install packages.

$ /<Virtualenv Directory>/bin/pip install requests

More information about using pip can be found on the PIP topic.

Since you're installing without root in a virtual environment, this is not a global install, across the entire system - the
installed package will only be available in the current virtual environment.

Section 173.7: Discovering which virtual environment you are
using
If you are using the default bash prompt on Linux, you should see the name of the virtual environment at the start
of your prompt.

(my-project-env) user@hostname:~$ which python
/home/user/my-project-env/bin/python

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 719

Section 173.8: Checking if running inside a virtual environment
Sometimes the shell prompt doesn't display the name of the virtual environment and you want to be sure if you are
in a virtual environment or not.

Run the python interpreter and try:

import sys
sys.prefix
sys.real_prefix

Outside a virtual, environment sys.prefix will point to the system python installation and sys.real_prefix
is not defined.

Inside a virtual environment, sys.prefix will point to the virtual environment python installation and
sys.real_prefix will point to the system python installation.

For virtual environments created using the standard library venv module there is no sys.real_prefix. Instead,
check whether sys.base_prefix is the same as sys.prefix.

Section 173.9: Using virtualenv with fish shell
Fish shell is friendlier yet you might face trouble while using with virtualenv or virtualenvwrapper. Alternatively
virtualfish exists for the rescue. Just follow the below sequence to start using Fish shell with virtualenv.

Install virtualfish to the global space

 sudo pip install virtualfish

Load the python module virtualfish during the fish shell startup

 $ echo "eval (python -m virtualfish)" > ~/.config/fish/config.fish

Edit this function fish_prompt by $ funced fish_prompt --editor vim and add the below lines and close
the vim editor

 if set -q VIRTUAL_ENV
     echo -n -s (set_color -b blue white) "(" (basename "$VIRTUAL_ENV") ")" (set_color
normal) " "
 end

Note: If you are unfamiliar with vim, simply supply your favorite editor like this $ funced fish_prompt --
editor nano or $ funced fish_prompt --editor gedit

Save changes using funcsave

 funcsave fish_prompt

To create a new virtual environment use vf new

 vf new my_new_env # Make sure $HOME/.virtualenv exists

https://docs.python.org/3/library/venv.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 720

If you want create a new python3 environment specify it via -p flag

 vf new -p python3 my_new_env

To switch between virtualenvironments use vf deactivate & vf activate another_env

Official Links:

https://github.com/adambrenecki/virtualfish
http://virtualfish.readthedocs.io/en/latest/

https://github.com/adambrenecki/virtualfish
http://virtualfish.readthedocs.io/en/latest/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 721

Chapter 174: Python Virtual Environment -
virtualenv
A Virtual Environment ("virtualenv") is a tool to create isolated Python environments. It keeps the dependencies
required by different projects in separate places, by creating virtual Python env for them. It solves the “project A
depends on version 2.xxx but, project B needs 2.xxx” dilemma, and keeps your global site-packages directory clean
and manageable.

"virtualenv" creates a folder which contains all the necessary libs and bins to use the packages that a Python project
would need.

Section 174.1: Installation
Install virtualenv via pip / (apt-get):

pip install virtualenv

OR

apt-get install python-virtualenv

Note: In case you are getting permission issues, use sudo.

Section 174.2: Usage
$ cd test_proj

Create virtual environment:

$ virtualenv test_proj

To begin using the virtual environment, it needs to be activated:

$ source test_project/bin/activate

To exit your virtualenv just type “deactivate”:

$ deactivate

Section 174.3: Install a package in your Virtualenv
If you look at the bin directory in your virtualenv, you’ll see easy_install which has been modified to put eggs and
packages in the virtualenv’s site-packages directory. To install an app in your virtual environment:

$ source test_project/bin/activate
$ pip install flask

At this time, you don't have to use sudo since the files will all be installed in the local virtualenv site-packages
directory. This was created as your own user account.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 722

Section 174.4: Other useful virtualenv commands
lsvirtualenv : List all of the environments.

cdvirtualenv : Navigate into the directory of the currently activated virtual environment, so you can browse its site-
packages, for example.

cdsitepackages : Like the above, but directly into site-packages directory.

lssitepackages : Shows contents of site-packages directory.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 724

Chapter 175: Virtual environment with
virtualenvwrapper
Suppose you need to work on three different projects project A, project B and project C. project A and project B
need python 3 and some required libraries. But for project C you need python 2.7 and dependent libraries.

So best practice for this is to separate those project environments. To create virtual environment you can use below
technique:

Virtualenv, Virtualenvwrapper and Conda

Although we have several options for virtual environment but virtualenvwrapper is most recommended.

Section 175.1: Create virtual environment with
virtualenvwrapper
Suppose you need to work on three different projects project A, project B and project C. project A and project B
need python 3 and some required libraries. But for project C you need python 2.7 and dependent libraries.

So best practice for this is to separate those project environments. To create virtual environment you can use below
technique:

Virtualenv, Virtualenvwrapper and Conda

Although we have several options for virtual environment but virtualenvwrapper is most recommended.

Although we have several options for virtual environment but I always prefer virtualenvwrapper because it
has more facility then others.

$ pip install virtualenvwrapper

$ export WORKON_HOME=~/Envs
$ mkdir -p $WORKON_HOME
$ source /usr/local/bin/virtualenvwrapper.sh
$ printf '\n%s\n%s\n%s' '# virtualenv' 'export WORKON_HOME=~/virtualenvs' 'source
/home/salayhin/bin/virtualenvwrapper.sh' >> ~/.bashrc
$ source ~/.bashrc

$ mkvirtualenv python_3.5
Installing
setuptools..........................................
....................................................
....................................................
...............................done.
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/predeactivate
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/postdeactivate
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/preactivate
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/postactivate New python
executable in python_3.5/bin/python

(python_3.5)$ ls $WORKON_HOME
python_3.5 hook.log

Now we can install some software into the environment.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 725

(python_3.5)$ pip install django
Downloading/unpacking django
Downloading Django-1.1.1.tar.gz (5.6Mb): 5.6Mb downloaded
Running setup.py egg_info for package django
Installing collected packages: django
Running setup.py install for django
changing mode of build/scripts-2.6/django-admin.py from 644 to 755
changing mode of /Users/salayhin/Envs/env1/bin/django-admin.py to 755
Successfully installed django

We can see the new package with lssitepackages:

(python_3.5)$ lssitepackages
Django-1.1.1-py2.6.egg-info easy-install.pth
setuptools-0.6.10-py2.6.egg pip-0.6.3-py2.6.egg
django setuptools.pth

We can create multiple virtual environment if we want.

Switch between environments with workon:

(python_3.6)$ workon python_3.5
(python_3.5)$ echo $VIRTUAL_ENV
/Users/salayhin/Envs/env1
(python_3.5)$

To exit the virtualenv

$ deactivate

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 726

Chapter 176: Create virtual environment
with virtualenvwrapper in windows
Section 176.1: Virtual environment with virtualenvwrapper for
windows
Suppose you need to work on three different projects project A, project B and project C. project A and project B
need python 3 and some required libraries. But for project C you need python 2.7 and dependent libraries.

So best practice for this is to separate those project environments. For creating separate python virtual
environment need to follow below steps:

Step 1: Install pip with this command: python -m pip install -U pip

Step 2: Then install "virtualenvwrapper-win" package by using command (command can be executed windows
power shell):

pip install virtualenvwrapper-win

Step 3: Create a new virtualenv environment by using command: mkvirtualenv python_3.5

Step 4: Activate the environment by using command:

workon < environment name>

Main commands for virtualenvwrapper:

mkvirtualenv <name>
Create a new virtualenv environment named <name>. The environment will be created in WORKON_HOME.

lsvirtualenv
List all of the environments stored in WORKON_HOME.

rmvirtualenv <name>
Remove the environment <name>. Uses folder_delete.bat.

workon [<name>]
If <name> is specified, activate the environment named <name> (change the working virtualenv to
<name>). If a project directory has been defined, we will change into it. If no argument is
specified, list the available environments. One can pass additional option -c after virtualenv name
to cd to virtualenv directory if no projectdir is set.

deactivate
Deactivate the working virtualenv and switch back to the default system Python.

add2virtualenv <full or relative path>
If a virtualenv environment is active, appends <path> to virtualenv_path_extensions.pth inside the
environment’s site-packages, which effectively adds <path> to the environment’s PYTHONPATH. If a
virtualenv environment is not active, appends <path> to virtualenv_path_extensions.pth inside the
default Python’s site-packages. If <path> doesn’t exist, it will be created.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 727

Chapter 177: sys
The sys module provides access to functions and values concerning the program's runtime environment, such as
the command line parameters in sys.argv or the function sys.exit() to end the current process from any point in
the program flow.

While cleanly separated into a module, it's actually built-in and as such will always be available under normal
circumstances.

Section 177.1: Command line arguments
if len(sys.argv) != 4:         # The script name needs to be accounted for as well.
    raise RuntimeError("expected 3 command line arguments")

f = open(sys.argv[1], 'rb')    # Use first command line argument.
start_line = int(sys.argv[2])  # All arguments come as strings, so need to be
end_line = int(sys.argv[3])    # converted explicitly if other types are required.

Note that in larger and more polished programs you would use modules such as click to handle command line
arguments instead of doing it yourself.

Section 177.2: Script name
# The name of the executed script is at the beginning of the argv list.
print('usage:', sys.argv[0], '<filename> <start> <end>')

# You can use it to generate the path prefix of the executed program
# (as opposed to the current module) to access files relative to that,
# which would be good for assets of a game, for instance.
program_file = sys.argv[0]

import pathlib
program_path = pathlib.Path(program_file).resolve().parent

Section 177.3: Standard error stream
# Error messages should not go to standard output, if possible.
print('ERROR: We have no cheese at all.', file=sys.stderr)

try:
    f = open('nonexistent-file.xyz', 'rb')
except OSError as e:
    print(e, file=sys.stderr)

Section 177.4: Ending the process prematurely and returning
an exit code
def main():
    if len(sys.argv) != 4 or '--help' in sys.argv[1:]:
        print('usage: my_program <arg1> <arg2> <arg3>', file=sys.stderr)
       
        sys.exit(1)    # use an exit code to signal the program was unsuccessful

    process_data()

http://click.pocoo.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 728

Chapter 178: ChemPy - python package
ChemPy is a python package designed mainly to solve and address problems in physical, analytical and inorganic
Chemistry. It is a free, open-source Python toolkit for chemistry, chemical engineering, and materials science
applications.

Section 178.1: Parsing formulae
from chempy import Substance
ferricyanide = Substance.from_formula('Fe(CN)6-3')
ferricyanide.composition == {0: -3, 26: 1, 6: 6, 7: 6}
True
print(ferricyanide.unicode_name)
Fe(CN)₆³⁻
 print(ferricyanide.latex_name + ", " + ferricyanide.html_name)
Fe(CN)_{6}^{3-}, Fe(CN)<sub>6</sub><sup>3-</sup>
 print('%.3f' % ferricyanide.mass)
211.955

In composition, the atomic numbers (and 0 for charge) is used as keys and the count of each kind became
respective value.

Section 178.2: Balancing stoichiometry of a chemical reaction
 from chempy import balance_stoichiometry  # Main reaction in NASA's booster rockets:
 reac, prod = balance_stoichiometry({'NH4ClO4', 'Al'}, {'Al2O3', 'HCl', 'H2O', 'N2'})
 from pprint import pprint
 pprint(reac)
{'Al': 10, 'NH4ClO4': 6}
 pprint(prod)
{'Al2O3': 5, 'H2O': 9, 'HCl': 6, 'N2': 3}
 from chempy import mass_fractions
 for fractions in map(mass_fractions, [reac, prod]):
...     pprint({k: '{0:.3g} wt%'.format(v*100) for k, v in fractions.items()})
...
{'Al': '27.7 wt%', 'NH4ClO4': '72.3 wt%'}
{'Al2O3': '52.3 wt%', 'H2O': '16.6 wt%', 'HCl': '22.4 wt%', 'N2': '8.62 wt%'}

Section 178.3: Balancing reactions
from chempy import Equilibrium
 from sympy import symbols
 K1, K2, Kw = symbols('K1 K2 Kw')
 e1 = Equilibrium({'MnO4-': 1, 'H+': 8, 'e-': 5}, {'Mn+2': 1, 'H2O': 4}, K1)
 e2 = Equilibrium({'O2': 1, 'H2O': 2, 'e-': 4}, {'OH-': 4}, K2)
 coeff = Equilibrium.eliminate([e1, e2], 'e-')
 coeff
[4, -5]
 redox = e1*coeff[0] + e2*coeff[1]
 print(redox)
20 OH- + 32 H+ + 4 MnO4- = 26 H2O + 4 Mn+2 + 5 O2; K1**4/K2**5
 autoprot = Equilibrium({'H2O': 1}, {'H+': 1, 'OH-': 1}, Kw)
 n = redox.cancel(autoprot)
 n
20
 redox2 = redox + n*autoprot
 print(redox2)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 729

12 H+ + 4 MnO4- = 4 Mn+2 + 5 O2 + 6 H2O; K1**4*Kw**20/K2**5

Section 178.4: Chemical equilibria
 from chempy import Equilibrium
 from chempy.chemistry import Species
 water_autop = Equilibrium({'H2O'}, {'H+', 'OH-'}, 10**-14)  # unit "molar" assumed
 ammonia_prot = Equilibrium({'NH4+'}, {'NH3', 'H+'}, 10**-9.24)  # same here
 from chempy.equilibria import EqSystem
 substances = map(Species.from_formula, 'H2O OH- H+ NH3 NH4+'.split())
 eqsys = EqSystem([water_autop, ammonia_prot], substances)
 print('\n'.join(map(str, eqsys.rxns)))  # "rxns" short for "reactions"
H2O = H+ + OH-; 1e-14
NH4+ = H+ + NH3; 5.75e-10
 from collections import defaultdict
 init_conc = defaultdict(float, {'H2O': 1, 'NH3': 0.1})
 x, sol, sane = eqsys.root(init_conc)
 assert sol['success'] and sane
 print(sorted(sol.keys()))  # see package "pyneqsys" for more info
['fun', 'intermediate_info', 'internal_x_vecs', 'nfev', 'njev', 'success', 'x', 'x_vecs']
 print(', '.join('%.2g' % v for v in x))
1, 0.0013, 7.6e-12, 0.099, 0.0013

Section 178.5: Ionic strength
 from chempy.electrolytes import ionic_strength
     ionic_strength({'Fe+3': 0.050, 'ClO4-': 0.150}) == .3
    True

Section 178.6: Chemical kinetics (system of ordinary
dierential equations)
from chempy import ReactionSystem  # The rate constants below are arbitrary
 rsys = ReactionSystem.from_string("""2 Fe+2 + H2O2 -> 2 Fe+3 + 2 OH-; 42
     2 Fe+3 + H2O2 -> 2 Fe+2 + O2 + 2 H+; 17
     H+ + OH- -> H2O; 1e10
     H2O -> H+ + OH-; 1e-4
     Fe+3 + 2 H2O -> FeOOH(s) + 3 H+; 1
     FeOOH(s) + 3 H+ -> Fe+3 + 2 H2O; 2.5""")  # "[H2O]" = 1.0 (actually 55.4 at RT)
 from chempy.kinetics.ode import get_odesys
 odesys, extra = get_odesys(rsys)
 from collections import defaultdict
 import numpy as np
 tout = sorted(np.concatenate((np.linspace(0, 23), np.logspace(-8, 1))))
 c0 = defaultdict(float, {'Fe+2': 0.05, 'H2O2': 0.1, 'H2O': 1.0, 'H+': 1e-7, 'OH-': 1e-7})
 result = odesys.integrate(tout, c0, atol=1e-12, rtol=1e-14)
 import matplotlib.pyplot as plt
 _ = plt.subplot(1, 2, 1)
 _ = result.plot(names=[k for k in rsys.substances if k != 'H2O'])
 _ = plt.legend(loc='best', prop={'size': 9}); _ = plt.xlabel('Time'); _ =
plt.ylabel('Concentration')
 _ = plt.subplot(1, 2, 2)
 _ = result.plot(names=[k for k in rsys.substances if k != 'H2O'], xscale='log', yscale='log')
 _ = plt.legend(loc='best', prop={'size': 9}); _ = plt.xlabel('Time'); _ =
plt.ylabel('Concentration')
 _ = plt.tight_layout()
 plt.show()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 730

https://i.stack.imgur.com/wcAJR.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 731

Chapter 179: pygame
Parameter Details
count A positive integer that represents something like the number of channels needed to be reserved.

force A boolean value (False or True) that determines whether find_channel() has to return a channel
(inactive or not) with True or not (if there are no inactive channels) with False

Pygame is the go-to library for making multimedia applications, especially games, in Python. The official website is
http://www.pygame.org/.

Section 179.1: Pygame's mixer module
The pygame.mixer module helps control the music used in pygame programs. As of now, there are 15 different
functions for the mixer module.

Initializing

Similar to how you have to initialize pygame with pygame.init(), you must initialize pygame.mixer as well.

By using the first option, we initialize the module using the default values. You can though, override these default
options. By using the second option, we can initialize the module using the values we manually put in ourselves.
Standard values:

pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=4096)

To check whether we have initialized it or not, we can use pygame.mixer.get_init(), which returns True if it is and
False if it is not. To quit/undo the initializing, simply use pygame.mixer.quit(). If you want to continue playing
sounds with the module, you might have to reinitialize the module.

Possible Actions

As your sound is playing, you can pause it temporarily with pygame.mixer.pause(). To resume playing your sounds,
simply use pygame.mixer.unpause(). You can also fadeout the end of the sound by using
pygame.mixer.fadeout(). It takes an argument, which is the number of milliseconds it takes to finish fading out the
music.

Channels

You can play as many songs as needed as long there are enough open channels to support them. By default, there
are 8 channels. To change the number of channels there are, use pygame.mixer.set_num_channels(). The
argument is a non-negative integer. If the number of channels are decreased, any sounds playing on the removed
channels will immediately stop.

To find how many channels are currently being used, call pygame.mixer.get_channels(count). The output is the
number of channels that are not currently open. You can also reserve channels for sounds that must be played by
using pygame.mixer.set_reserved(count). The argument is also a non-negative integer. Any sounds playing on the
newly reserved channels will not be stopped.

You can also find out which channel isn't being used by using pygame.mixer.find_channel(force). Its argument is
a bool: either True or False. If there are no channels that are idle and force is False, it will return None. If force is
true, it will return the channel that has been playing for the longest time.

http://www.pygame.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 732

Section 179.2: Installing pygame
With pip:

pip install pygame

With conda:

conda install -c tlatorre pygame=1.9.2

Direct download from website : http://www.pygame.org/download.shtml

You can find the suitable installers for Windows and other operating systems.

Projects can also be found at http://www.pygame.org/

http://www.pygame.org/download.shtml
http://www.pygame.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 734

Chapter 180: Pyglet
Pyglet is a Python module used for visuals and sound. It has no dependencies on other modules. See [pyglet.org][1]
for the official information. [1]: http://pyglet.org

Section 180.1: Installation of Pyglet
Install Python, go into the command line and type:

Python 2:

pip install pyglet

Python 3:

pip3 install pyglet

Section 180.2: Hello World in Pyglet
import pyglet
window = pyglet.window.Window()
label = pyglet.text.Label('Hello, world',
                      font_name='Times New Roman',
                      font_size=36,
                      x=window.width//2, y=window.height//2,
                      anchor_x='center', anchor_y='center')
@window.event
def on_draw():
    window.clear()
    label.draw()
pyglet.app.run()

Section 180.3: Playing Sound in Pyglet
sound = pyglet.media.load(sound.wav)
sound.play()

Section 180.4: Using Pyglet for OpenGL
import pyglet
from pyglet.gl import *

win = pyglet.window.Window()

@win.event()
def on_draw():
    #OpenGL goes here. Use OpenGL as normal.

pyglet.app.run()

Section 180.5: Drawing Points Using Pyglet and OpenGL
import pyglet
from pyglet.gl import *

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 735

win = pyglet.window.Window()
glClear(GL_COLOR_BUFFER_BIT)

@win.event
def on_draw():
    glBegin(GL_POINTS)
    glVertex2f(x, y) #x is desired distance from left side of window, y is desired distance from
bottom of window
    #make as many vertexes as you want
    glEnd

To connect the points, replace GL_POINTS with GL_LINE_LOOP.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 736

Chapter 181: Audio
Section 181.1: Working with WAV files
winsound

Windows environment

import winsound
winsound.PlaySound("path_to_wav_file.wav", winsound.SND_FILENAME)

wave

Support mono/stereo
Doesn't support compression/decompression

import wave
with wave.open("path_to_wav_file.wav", "rb") as wav_file:    # Open WAV file in read-only mode.
    # Get basic information.
    n_channels = wav_file.getnchannels()      # Number of channels. (1=Mono, 2=Stereo).
    sample_width = wav_file.getsampwidth()    # Sample width in bytes.
    framerate = wav_file.getframerate()       # Frame rate.
    n_frames = wav_file.getnframes()          # Number of frames.
    comp_type = wav_file.getcomptype()        # Compression type (only supports "NONE").
    comp_name = wav_file.getcompname()        # Compression name.

    # Read audio data.
    frames = wav_file.readframes(n_frames)    # Read n_frames new frames.
    assert len(frames) == sample_width * n_frames

# Duplicate to a new WAV file.
with wave.open("path_to_new_wav_file.wav", "wb") as wav_file:    # Open WAV file in write-only
mode.
    # Write audio data.
    params = (n_channels, sample_width, framerate, n_frames, comp_type, comp_name)
    wav_file.setparams(params)
    wav_file.writeframes(frames)

Section 181.2: Convert any soundfile with python and mpeg
from subprocess import check_call

ok = check_call(['ffmpeg','-i','input.mp3','output.wav'])
if ok:
    with open('output.wav', 'rb') as f:
        wav_file = f.read()

note:

http://superuser.com/questions/507386/why-would-i-choose-libav-over-ffmpeg-or-is-there-even-a-difference
What are the differences and similarities between ffmpeg, libav, and avconv?

Section 181.3: Playing Windows' beeps
Windows provides an explicit interface through which the winsound module allows you to play raw beeps at a given
frequency and duration.

import winsound

http://superuser.com/questions/507386/why-would-i-choose-libav-over-ffmpeg-or-is-there-even-a-difference
http://stackoverflow.com/questions/9477115/what-are-the-differences-and-similarities-between-ffmpeg-libav-and-avconv
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 737

freq = 2500 # Set frequency To 2500 Hertz
dur = 1000 # Set duration To 1000 ms == 1 second
winsound.Beep(freq, dur)

Section 181.4: Audio With Pyglet
import pyglet
audio = pyglet.media.load("audio.wav")
audio.play()

For further information, see pyglet

https://pyglet.readthedocs.io/en/pyglet-1.2-maintenance/programming_guide/media.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 738

Chapter 182: pyaudio
PyAudio provides Python bindings for PortAudio, the cross-platform audio I/O library. With PyAudio, you can easily
use Python to play and record audio on a variety of platforms. PyAudio is inspired by:

1.pyPortAudio/fastaudio: Python bindings for PortAudio v18 API.

2.tkSnack: cross-platform sound toolkit for Tcl/Tk and Python.

Section 182.1: Callback Mode Audio I/O
"""PyAudio Example: Play a wave file (callback version)."""

import pyaudio
import wave
import time
import sys

if len(sys.argv) < 2:
    print("Plays a wave file.\n\nUsage: %s filename.wav" % sys.argv[0])
    sys.exit(-1)

wf = wave.open(sys.argv[1], 'rb')

# instantiate PyAudio (1)
p = pyaudio.PyAudio()

# define callback (2)
def callback(in_data, frame_count, time_info, status):
    data = wf.readframes(frame_count)
    return (data, pyaudio.paContinue)

# open stream using callback (3)
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
                channels=wf.getnchannels(),
                rate=wf.getframerate(),
                output=True,
                stream_callback=callback)

# start the stream (4)
stream.start_stream()

# wait for stream to finish (5)
while stream.is_active():
    time.sleep(0.1)

# stop stream (6)
stream.stop_stream()
stream.close()
wf.close()

# close PyAudio (7)
p.terminate()

In callback mode, PyAudio will call a specified callback function (2) whenever it needs new audio data (to play)
and/or when there is new (recorded) audio data available. Note that PyAudio calls the callback function in a
separate thread. The function has the following signature callback(<input_data>, <frame_count>,
<time_info>, <status_flag>) and must return a tuple containing frame_count frames of audio data and a flag

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 739

signifying whether there are more frames to play/record.

Start processing the audio stream using pyaudio.Stream.start_stream() (4), which will call the callback function
repeatedly until that function returns pyaudio.paComplete.

To keep the stream active, the main thread must not terminate, e.g., by sleeping (5).

Section 182.2: Blocking Mode Audio I/O
"""PyAudio Example: Play a wave file."""

import pyaudio
import wave
import sys

CHUNK = 1024

if len(sys.argv) < 2:
    print("Plays a wave file.\n\nUsage: %s filename.wav" % sys.argv[0])
    sys.exit(-1)

wf = wave.open(sys.argv[1], 'rb')

# instantiate PyAudio (1)
p = pyaudio.PyAudio()

# open stream (2)
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
                channels=wf.getnchannels(),
                rate=wf.getframerate(),
                output=True)

# read data
data = wf.readframes(CHUNK)

# play stream (3)
while len(data) > 0:
    stream.write(data)
    data = wf.readframes(CHUNK)

# stop stream (4)
stream.stop_stream()
stream.close()

# close PyAudio (5)
p.terminate()

To use PyAudio, first instantiate PyAudio using pyaudio.PyAudio() (1), which sets up the portaudio system.

To record or play audio, open a stream on the desired device with the desired audio parameters using
pyaudio.PyAudio.open() (2). This sets up a pyaudio.Stream to play or record audio.

Play audio by writing audio data to the stream using pyaudio.Stream.write(), or read audio data from the stream
using pyaudio.Stream.read(). (3)

Note that in “blocking mode”, each pyaudio.Stream.write() or pyaudio.Stream.read() blocks until all the
given/requested frames have been played/recorded. Alternatively, to generate audio data on the fly or immediately
process recorded audio data, use the “callback mode”(refer the example on call back mode)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 740

Use pyaudio.Stream.stop_stream() to pause playing/recording, and pyaudio.Stream.close() to terminate the
stream. (4)

Finally, terminate the portaudio session using pyaudio.PyAudio.terminate() (5)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 741

Chapter 183: shelve
Shelve is a python module used to store objects in a file. The shelve module implements persistent storage for
arbitrary Python objects which can be pickled, using a dictionary-like API. The shelve module can be used as a
simple persistent storage option for Python objects when a relational database is overkill. The shelf is accessed by
keys, just as with a dictionary. The values are pickled and written to a database created and managed by anydbm.

Section 183.1: Creating a new Shelf
The simplest way to use shelve is via the DbfilenameShelf class. It uses anydbm to store the data. You can use the
class directly, or simply call shelve.open():

import shelve

s = shelve.open('test_shelf.db')
try:
    s['key1'] = { 'int': 10, 'float':9.5, 'string':'Sample data' }
finally:
    s.close()

To access the data again, open the shelf and use it like a dictionary:

    import shelve
   
    s = shelve.open('test_shelf.db')
    try:
        existing = s['key1']
    finally:
        s.close()

print existing

If you run both sample scripts, you should see:

$ python shelve_create.py
$ python shelve_existing.py

{'int': 10, 'float': 9.5, 'string': 'Sample data'}

The dbm module does not support multiple applications writing to the same database at the same time. If you
know your client will not be modifying the shelf, you can tell shelve to open the database read-only.

import shelve

s = shelve.open('test_shelf.db', flag='r')
try:
    existing = s['key1']
finally:
    s.close()

print existing

If your program tries to modify the database while it is opened read-only, an access error exception is generated.
The exception type depends on the database module selected by anydbm when the database was created.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 742

Section 183.2: Sample code for shelve
To shelve an object, first import the module and then assign the object value as follows:

import shelve
 database = shelve.open(filename.suffix)
 object = Object()
 database['key'] = object

Section 183.3: To summarize the interface (key is a string,
data is an arbitrary object):
import shelve

d = shelve.open(filename)  # open -- file may get suffix added by low-level
                           # library

d[key] = data              # store data at key (overwrites old data if
                           # using an existing key)
data = d[key]              # retrieve a COPY of data at key (raise KeyError
                           # if no such key)
del d[key]                 # delete data stored at key (raises KeyError
                           # if no such key)

flag = key in d            # true if the key exists
klist = list(d.keys())     # a list of all existing keys (slow!)

# as d was opened WITHOUT writeback=True, beware:
d['xx'] = [0, 1, 2]        # this works as expected, but...
d['xx'].append(3)          # *this doesn't!* -- d['xx'] is STILL [0, 1, 2]!

# having opened d without writeback=True, you need to code carefully:
temp = d['xx']             # extracts the copy
temp.append(5)             # mutates the copy
d['xx'] = temp             # stores the copy right back, to persist it

# or, d=shelve.open(filename,writeback=True) would let you just code
# d['xx'].append(5) and have it work as expected, BUT it would also
# consume more memory and make the d.close() operation slower.

d.close()                  # close it

Section 183.4: Write-back
Shelves do not track modifications to volatile objects, by default. That means if you change the contents of an item
stored in the shelf, you must update the shelf explicitly by storing the item again.

import shelve

s = shelve.open('test_shelf.db')
try:
    print s['key1']
    s['key1']['new_value'] = 'this was not here before'
finally:
    s.close()

s = shelve.open('test_shelf.db', writeback=True)
try:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 743

    print s['key1']
finally:
    s.close()

In this example, the dictionary at ‘key1’ is not stored again, so when the shelf is re-opened, the changes have not
been preserved.

$ python shelve_create.py
$ python shelve_withoutwriteback.py

{'int': 10, 'float': 9.5, 'string': 'Sample data'}
{'int': 10, 'float': 9.5, 'string': 'Sample data'}

To automatically catch changes to volatile objects stored in the shelf, open the shelf with writeback enabled. The
writeback flag causes the shelf to remember all of the objects retrieved from the database using an in-memory
cache. Each cache object is also written back to the database when the shelf is closed.

import shelve

s = shelve.open('test_shelf.db', writeback=True)
try:
    print s['key1']
    s['key1']['new_value'] = 'this was not here before'
    print s['key1']
finally:
    s.close()

s = shelve.open('test_shelf.db', writeback=True)
try:
    print s['key1']
finally:
    s.close()

Although it reduces the chance of programmer error, and can make object persistence more transparent, using
writeback mode may not be desirable in every situation. The cache consumes extra memory while the shelf is open,
and pausing to write every cached object back to the database when it is closed can take extra time. Since there is
no way to tell if the cached objects have been modified, they are all written back. If your application reads data
more than it writes, writeback will add more overhead than you might want.

$ python shelve_create.py
$ python shelve_writeback.py

{'int': 10, 'float': 9.5, 'string': 'Sample data'}
{'int': 10, 'new_value': 'this was not here before', 'float': 9.5, 'string': 'Sample data'}
{'int': 10, 'new_value': 'this was not here before', 'float': 9.5, 'string': 'Sample data'}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 744

Chapter 184: IoT Programming with
Python and Raspberry PI
Section 184.1: Example - Temperature sensor
Interfacing of DS18B20 with Raspberry pi

Connection of DS18B20 with Raspberry pi

You can see there are three terminal

Vcc1.
Gnd2.
Data (One wire protocol)3.

R1 is 4.7k ohm resistance for pulling up the voltage level

Vcc should be connected to any of the 5v or 3.3v pins of Raspberry pi (PIN : 01, 02, 04, 17).1.
Gnd should be connected to any of the Gnd pins of Raspberry pi (PIN : 06, 09, 14, 20, 25).2.

https://i.stack.imgur.com/OBA2X.png
https://i.stack.imgur.com/dSFFQ.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 745

DATA should be connected to (PIN : 07)3.

Enabling the one-wire interface from the RPi side

Login to Raspberry pi using putty or any other linux/unix terminal.4.

After login, open the /boot/config.txt file in your favourite browser.5.

nano /boot/config.txt

Now add the this line dtoverlay=w1–gpio to the end of the file.6.

Now reboot the Raspberry pi sudo reboot.7.

Log in to Raspberry pi, and run sudo modprobe g1-gpio8.

Then run sudo modprobe w1-therm9.

Now go to the directory /sys/bus/w1/devices cd /sys/bus/w1/devices10.

Now you will found out a virtual directory created of your temperature sensor starting from 28-********.11.

Go to this directory cd 28-********12.

Now there is a file name w1-slave, This file contains the temperature and other information like CRC. cat13.
w1-slave.

Now write a module in python to read the temperature

import glob
import time

RATE = 30
sensor_dirs = glob.glob("/sys/bus/w1/devices/28*")

if len(sensor_dirs) != 0:
    while True:
        time.sleep(RATE)
        for directories in sensor_dirs:
            temperature_file = open(directories + "/w1_slave")
            # Reading the files
            text = temperature_file.read()
            temperature_file.close()
            # Split the text with new lines (\n) and select the second line.
            second_line = text.split("\n")[1]
            # Split the line into words, and select the 10th word
            temperature_data = second_line.split(" ")[9]
            # We will read after ignoring first two character.
            temperature = float(temperature_data[2:])
            # Now normalise the temperature by dividing 1000.
            temperature = temperature / 1000
            print 'Address : '+str(directories.split('/')[-1])+', Temperature : '+str(temperature)

Above python module will print the temperature vs address for infinite time. RATE parameter is defined to change
or adjust the frequency of temperature query from the sensor.

GPIO pin diagram

[https://www.element14.com/community/servlet/JiveServlet/previewBody/73950-102-11-339300/pi3_gpio.pn1.

https://www.element14.com/community/servlet/JiveServlet/previewBody/73950-102-11-339300/pi3_gpio.png%5D%5B3%5D
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 746

g][3]

https://www.element14.com/community/servlet/JiveServlet/previewBody/73950-102-11-339300/pi3_gpio.png%5D%5B3%5D
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Complete Python
Bootcamp: Go from zero
to hero in Python 3
Learn Python like a Professional! Start from the
basics and go all the way to creating your own
applications and games!

✔ Learn to use Python professionally, learning both Python 2 and Python 3!
✔ Create games with Python, like Tic Tac Toe and Blackjack!
✔ Learn advanced Python features, like the collections module and how to work with timestamps!
✔ Learn to use Object Oriented Programming with classes!
✔ Understand complex topics, like decorators.
✔ Understand how to use both the Jupyter Notebook and create .py files
✔ Get an understanding of how to create GUIs in the Jupyter Notebook system!
✔ Build a complete understanding of Python from the ground up!

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fcomplete-python-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 748

Chapter 185: kivy - Cross-platform Python
Framework for NUI Development
NUI : A natural user interface (NUI) is a system for human-computer interaction that the user operates through
intuitive actions related to natural, everyday human behavior.

Kivy is a Python library for development of multi-touch enabled media rich applications which can be installed on
different devices. Multi-touch refers to the ability of a touch-sensing surface (usually a touch screen or a trackpad)
to detect or sense input from two or more points of contact simultaneously.

Section 185.1: First App
To create an kivy application

sub class the app class1.
Implement the build method, which will return the widget.2.
Instantiate the class an invoke the run.3.

from kivy.app import App
from kivy.uix.label import Label

class Test(App):
    def build(self):
        return Label(text='Hello world')

if __name__ == '__main__':
    Test().run()

Explanation

from kivy.app import App

The above statement will import the parent class app. This will be present in your installation directory
your_installtion_directory/kivy/app.py

from kivy.uix.label import Label

The above statement will import the ux element Label. All the ux element are present in your installation directory
your_installation_directory/kivy/uix/.

class Test(App):

The above statement is for to create your app and class name will be your app name. This class is inherited the
parent app class.

def build(self):

The above statement override the build method of app class. Which will return the widget that needs to be shown
when you will start the app.

return Label(text='Hello world')

The above statement is the body of the build method. It is returning the Label with its text Hello world.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 749

if __name__ == '__main__':

The above statement is the entry point from where python interpreter start executing your app.

Test().run()

The above statement Initialise your Test class by creating its instance. And invoke the app class function run().

Your app will look like the below picture.

https://i.stack.imgur.com/CnCNj.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 750

Chapter 186: Pandas Transform: Preform
operations on groups and concatenate the
results
Section 186.1: Simple transform
First, Let's create a dummy dataframe

We assume that a customer can have n orders, an order can have m items, and items can be ordered more
multiple times

orders_df = pd.DataFrame()
orders_df['customer_id'] = [1,1,1,1,1,2,2,3,3,3,3,3]
orders_df['order_id'] = [1,1,1,2,2,3,3,4,5,6,6,6]
orders_df['item'] = ['apples', 'chocolate', 'chocolate', 'coffee', 'coffee', 'apples',
                     'bananas', 'coffee', 'milkshake', 'chocolate', 'strawberry', 'strawberry']

# And this is how the dataframe looks like:
print(orders_df)
#     customer_id  order_id        item
# 0             1         1      apples
# 1             1         1   chocolate
# 2             1         1   chocolate
# 3             1         2      coffee
# 4             1         2      coffee
# 5             2         3      apples
# 6             2         3     bananas
# 7             3         4      coffee
# 8             3         5   milkshake
# 9             3         6   chocolate
# 10            3         6  strawberry
# 11            3         6  strawberry

.

.

Now, we will use pandas transform function to count the number of orders per customer
# First, we define the function that will be applied per customer_id
count_number_of_orders = lambda x: len(x.unique())

# And now, we can transform each group using the logic defined above
orders_df['number_of_orders_per_cient'] = (               # Put the results into a new column that
is called 'number_of_orders_per_cient'
                     orders_df                            # Take the original dataframe
                    .groupby(['customer_id'])['order_id'] # Create a separate group for each
customer_id & select the order_id
                    .transform(count_number_of_orders))   # Apply the function to each group
separately

# Inspecting the results ...
print(orders_df)
#     customer_id  order_id        item  number_of_orders_per_cient
# 0             1         1      apples                           2
# 1             1         1   chocolate                           2
# 2             1         1   chocolate                           2
# 3             1         2      coffee                           2
# 4             1         2      coffee                           2

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 751

# 5             2         3      apples                           1
# 6             2         3     bananas                           1
# 7             3         4      coffee                           3
# 8             3         5   milkshake                           3
# 9             3         6   chocolate                           3
# 10            3         6  strawberry                           3
# 11            3         6  strawberry                           3

Section 186.2: Multiple results per group
Using transform functions that return sub-calculations per group

In the previous example, we had one result per client. However, functions returning different values for the group
can also be applied.

# Create a dummy dataframe
orders_df = pd.DataFrame()
orders_df['customer_id'] = [1,1,1,1,1,2,2,3,3,3,3,3]
orders_df['order_id'] = [1,1,1,2,2,3,3,4,5,6,6,6]
orders_df['item'] = ['apples', 'chocolate', 'chocolate', 'coffee', 'coffee', 'apples',
                     'bananas', 'coffee', 'milkshake', 'chocolate', 'strawberry', 'strawberry']

# Let's try to see if the items were ordered more than once in each orders

# First, we define a function that will be applied per group
def multiple_items_per_order(_items):
    # Apply .duplicated, which will return True is the item occurs more than once.
    multiple_item_bool = _items.duplicated(keep=False)
    return(multiple_item_bool)

# Then, we transform each group according to the defined function
orders_df['item_duplicated_per_order'] = (                    # Put the results into a new column
                        orders_df                             # Take the orders dataframe
                        .groupby(['order_id'])['item']        # Create a separate group for each
order_id & select the item
                        .transform(multiple_items_per_order)) # Apply the defined function to each
group separately

# Inspecting the results ...
print(orders_df)
#     customer_id  order_id        item  item_duplicated_per_order
# 0             1         1      apples                      False
# 1             1         1   chocolate                       True
# 2             1         1   chocolate                       True
# 3             1         2      coffee                       True
# 4             1         2      coffee                       True
# 5             2         3      apples                      False
# 6             2         3     bananas                      False
# 7             3         4      coffee                      False
# 8             3         5   milkshake                      False
# 9             3         6   chocolate                      False
# 10            3         6  strawberry                       True
# 11            3         6  strawberry                       True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 752

Chapter 187: Similarities in syntax,
Dierences in meaning: Python vs.
JavaScript
It sometimes happens that two languages put different meanings on the same or similar syntax expression. When
the both languages are of interest for a programmer, clarifying these bifurcation points helps to better understand
the both languages in their basics and subtleties.

Section 187.1: `in` with lists
2 in [2, 3]

In Python this evaluates to True, but in JavaScript to false. This is because in Python in checks if a value is contained
in a list, so 2 is in [2, 3] as its first element. In JavaScript in is used with objects and checks if an object contains the
property with the name expressed by the value. So JavaScript considers [2, 3] as an object or a key-value map like
this:

{'0': 2, '1': 3}

and checks if it has a property or a key '2' in it. Integer 2 is silently converted to string '2'.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 753

Chapter 188: Call Python from C#
The documentation provides a sample implementation of the inter-process communication between C# and
Python scripts.

Section 188.1: Python script to be called by C# application
import sys
import json

# load input arguments from the text file
filename = sys.argv[ 1 ]
with open( filename ) as data_file:  
    input_args = json.loads( data_file.read() )

# cast strings to floats
x, y = [ float(input_args.get( key )) for key in [ 'x', 'y' ] ]

print json.dumps( { 'sum' : x + y , 'subtract' : x - y } )

Section 188.2: C# code calling Python script
using MongoDB.Bson;
using System;
using System.Diagnostics;
using System.IO;

namespace python_csharp
{
    class Program
    {
        static void Main(string[] args)
        {
            // full path to .py file
            string pyScriptPath = "...../sum.py";
            // convert input arguments to JSON string
            BsonDocument argsBson = BsonDocument.Parse("{ 'x' : '1', 'y' : '2' }");

            bool saveInputFile = false;
       
            string argsFile = string.Format("{0}\\{1}.txt", Path.GetDirectoryName(pyScriptPath),
Guid.NewGuid());

            string outputString = null;
            // create new process start info
            ProcessStartInfo prcStartInfo = new ProcessStartInfo
            {
                // full path of the Python interpreter 'python.exe'
                FileName = "python.exe", // string.Format(@"""{0}""", "python.exe"),
                UseShellExecute = false,
                RedirectStandardOutput = true,
                CreateNoWindow = false
            };

            try
            {    
                // write input arguments to .txt file
                using (StreamWriter sw = new StreamWriter(argsFile))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 754

                {
                    sw.WriteLine(argsBson);
                    prcStartInfo.Arguments = string.Format("{0} {1}", string.Format(@"""{0}""",
pyScriptPath), string.Format(@"""{0}""", argsFile));
                }
                // start process
                using (Process process = Process.Start(prcStartInfo))
                {
                    // read standard output JSON string
                    using (StreamReader myStreamReader = process.StandardOutput)
                    {
                        outputString = myStreamReader.ReadLine();
                        process.WaitForExit();
                    }
                }
            }
            finally
            {
                // delete/save temporary .txt file
                if (!saveInputFile)
                {
                    File.Delete(argsFile);
                }
            }
            Console.WriteLine(outputString);
        }
    }
}

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 755

Chapter 189: ctypes
ctypes is a python built-in library that invokes exported functions from native compiled libraries.

Note: Since this library handles compiled code, it is relatively OS dependent.

Section 189.1: ctypes arrays
As any good C programmer knows, a single value won't get you that far. What will really get us going are arrays!

>>> c_int * 16
<class '__main__.c_long_Array_16'>

This is not an actual array, but it's pretty darn close! We created a class that denotes an array of 16 ints.

Now all we need to do is to initialize it:

>>> arr = (c_int * 16)(*range(16))
>>> arr
<__main__.c_long_Array_16 object at 0xbaddcafe>

Now arr is an actual array that contains the numbers from 0 to 15.

They can be accessed just like any list:

>>> arr[5]
5
>>> arr[5] = 20
>>> arr[5]
20

And just like any other ctypes object, it also has a size and a location:

>>> sizeof(arr)
64 # sizeof(c_int) * 16
>>> hex(addressof(arr))
'0xc000l0ff'

Section 189.2: Wrapping functions for ctypes
In some cases, a C function accepts a function pointer. As avid ctypes users, we would like to use those functions,
and even pass python function as arguments.

Let's define a function:

>>> def max(x, y):
        return x if x >= y else y

Now, that function takes two arguments and returns a result of the same type. For the sake of the example, let's
assume that type is an int.

Like we did on the array example, we can define an object that denotes that prototype:

>>> CFUNCTYPE(c_int, c_int, c_int)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 756

<CFunctionType object at 0xdeadbeef>

That prototype denotes a function that returns an c_int (the first argument), and accepts two c_int arguments
(the other arguments).

Now let's wrap the function:

>>> CFUNCTYPE(c_int, c_int, c_int)(max)
<CFunctionType object at 0xdeadbeef>

Function prototypes have on more usage: They can wrap ctypes function (like libc.ntohl) and verify that the
correct arguments are used when invoking the function.

>>> libc.ntohl() # garbage in - garbage out
>>> CFUNCTYPE(c_int, c_int)(libc.ntohl)()
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
TypeError: this function takes at least 1 argument (0 given)

Section 189.3: Basic usage
Let's say we want to use libc's ntohl function.

First, we must load libc.so:

>>> from ctypes import *
>>> libc = cdll.LoadLibrary('libc.so.6')
>>> libc
<CDLL 'libc.so.6', handle baadf00d at 0xdeadbeef>

Then, we get the function object:

>>> ntohl = libc.ntohl
>>> ntohl
<_FuncPtr object at 0xbaadf00d>

And now, we can simply invoke the function:

>>> ntohl(0x6C)
1811939328
>>> hex(_)
'0x6c000000'

Which does exactly what we expect it to do.

Section 189.4: Common pitfalls
Failing to load a file

The first possible error is failing to load the library. In that case an OSError is usually raised.

This is either because the file doesn't exists (or can't be found by the OS):

>>> cdll.LoadLibrary("foobar.so")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 757

File "/usr/lib/python3.5/ctypes/__init__.py", line 425, in LoadLibrary
    return self._dlltype(name)
File "/usr/lib/python3.5/ctypes/__init__.py", line 347, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: foobar.so: cannot open shared object file: No such file or directory

As you can see, the error is clear and pretty indicative.

The second reason is that the file is found, but is not of the correct format.

>>> cdll.LoadLibrary("libc.so")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3.5/ctypes/__init__.py", line 425, in LoadLibrary
    return self._dlltype(name)
File "/usr/lib/python3.5/ctypes/__init__.py", line 347, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: /usr/lib/i386-linux-gnu/libc.so: invalid ELF header

In this case, the file is a script file and not a .so file. This might also happen when trying to open a .dll file on a
Linux machine or a 64bit file on a 32bit python interpreter. As you can see, in this case the error is a bit more vague,
and requires some digging around.

Failing to access a function

Assuming we successfully loaded the .so file, we then need to access our function like we've done on the first
example.

When a non-existing function is used, an AttributeError is raised:

>>> libc.foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3.5/ctypes/__init__.py", line 360, in __getattr__
    func = self.__getitem__(name)
File "/usr/lib/python3.5/ctypes/__init__.py", line 365, in __getitem__
    func = self._FuncPtr((name_or_ordinal, self))
AttributeError: /lib/i386-linux-gnu/libc.so.6: undefined symbol: foo

Section 189.5: Basic ctypes object
The most basic object is an int:

>>> obj = ctypes.c_int(12)
>>> obj
c_long(12)

Now, obj refers to a chunk of memory containing the value 12.

That value can be accessed directly, and even modified:

>>> obj.value
12
>>> obj.value = 13
>>> obj
c_long(13)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 758

Since obj refers to a chunk of memory, we can also find out its size and location:

>>> sizeof(obj)
4
>>> hex(addressof(obj))
'0xdeadbeef'

Section 189.6: Complex usage
Let's combine all of the examples above into one complex scenario: using libc's lfind function.

For more details about the function, read the man page. I urge you to read it before going on.

First, we'll define the proper prototypes:

>>> compar_proto = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>> lfind_proto = CFUNCTYPE(c_void_p, c_void_p, c_void_p, POINTER(c_uint), c_uint, compar_proto)

Then, let's create the variables:

>>> key = c_int(12)
>>> arr = (c_int * 16)(*range(16))
>>> nmemb = c_uint(16)

And now we define the comparison function:

>>> def compar(x, y):
        return x.contents.value - y.contents.value

Notice that x, and y are POINTER(c_int), so we need to dereference them and take their values in order to actually
compare the value stored in the memory.

Now we can combine everything together:

>>> lfind = lfind_proto(libc.lfind)
>>> ptr = lfind(byref(key), byref(arr), byref(nmemb), sizeof(c_int), compar_proto(compar))

ptr is the returned void pointer. If key wasn't found in arr, the value would be None, but in this case we got a valid
value.

Now we can convert it and access the value:

>>> cast(ptr, POINTER(c_int)).contents
c_long(12)

Also, we can see that ptr points to the correct value inside arr:

>>> addressof(arr) + 12 * sizeof(c_int) == ptr
True

https://linux.die.net/man/3/lfind
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Python for Data
Science and Machine
Learning Bootcamp
Learn how to use NumPy, Pandas, Seaborn,
Matplotlib , Plotly, Scikit-Learn , Machine Learning,
Tensorflow, and more!

✔ Use Python for Data Science and Machine Learning
✔ Use Spark for Big Data Analysis
✔ Implement Machine Learning Algorithms
✔ Learn to use NumPy for Numerical Data
✔ Learn to use Pandas for Data Analysis
✔ Learn to use Matplotlib for Python Plotting
✔ Learn to use Seaborn for statistical plots
✔ Use Plotly for interactive dynamic visualizations
✔ Use SciKit-Learn for Machine Learning Tasks
✔ K-Means Clustering
✔ Logistic Regression
✔ Linear Regression
✔ Random Forest and Decision Trees
✔ Neural Networks
✔ Support Vector Machines Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fpython-for-data-science-and-machine-learning-bootcamp%2F


GoalKicker.com – Python® Notes for Professionals 760

Chapter 190: Writing extensions
Section 190.1: Hello World with C Extension
The following C source file (which we will call hello.c for demonstration purposes) produces an extension module
named hello that contains a single function greet():

#include <Python.h>
#include <stdio.h>

#if PY_MAJOR_VERSION >= 3
#define IS_PY3K
#endif

static PyObject *hello_greet(PyObject *self, PyObject *args)
{
    const char *input;
    if (!PyArg_ParseTuple(args, "s", &input)) {
        return NULL;
    }
    printf("%s", input);
    Py_RETURN_NONE;
}

static PyMethodDef HelloMethods[] = {
    { "greet", hello_greet, METH_VARARGS, "Greet the user" },
    { NULL, NULL, 0, NULL }
};

#ifdef IS_PY3K
static struct PyModuleDef hellomodule = {
    PyModuleDef_HEAD_INIT, "hello", NULL, -1, HelloMethods
};

PyMODINIT_FUNC PyInit_hello(void)
{
    return PyModule_Create(&hellomodule);
}
#else
PyMODINIT_FUNC inithello(void)
{
    (void) Py_InitModule("hello", HelloMethods);
}
#endif

To compile the file with the gcc compiler, run the following command in your favourite terminal:

gcc /path/to/your/file/hello.c -o /path/to/your/file/hello

To execute the greet() function that we wrote earlier, create a file in the same directory, and call it hello.py

import hello          # imports the compiled library
hello.greet("Hello!") # runs the greet() function with "Hello!" as an argument

Section 190.2: C Extension Using c++ and Boost
This is a basic example of a C Extension using C++ and Boost.

http://www.boost.org/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 761

C++ Code

C++ code put in hello.cpp:

#include <boost/python/module.hpp>
#include <boost/python/list.hpp>
#include <boost/python/class.hpp>
#include <boost/python/def.hpp>

// Return a hello world string.
std::string get_hello_function()
{
   return "Hello world!";
}

// hello class that can return a list of count hello world strings.
class hello_class
{
public:

   // Taking the greeting message in the constructor.
   hello_class(std::string message) : _message(message) {}

   // Returns the message count times in a python list.
   boost::python::list as_list(int count)
   {
      boost::python::list res;
      for (int i = 0; i < count; ++i) {
         res.append(_message);
      }
      return res;
   }
   
private:
   std::string _message;
};

// Defining a python module naming it to "hello".
BOOST_PYTHON_MODULE(hello)
{
   // Here you declare what functions and classes that should be exposed on the module.

   // The get_hello_function exposed to python as a function.
   boost::python::def("get_hello", get_hello_function);

   // The hello_class exposed to python as a class.
   boost::python::class_<hello_class>("Hello", boost::python::init<std::string>())
      .def("as_list", &hello_class::as_list)
      ;  
}

To compile this into a python module you will need the python headers and the boost libraries. This example was
made on Ubuntu 12.04 using python 3.4 and gcc. Boost is supported on many platforms. In case of Ubuntu the
needed packages was installed using:

sudo apt-get install gcc libboost-dev libpython3.4-dev

Compiling the source file into a .so-file that can later be imported as a module provided it is on the python path:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 762

gcc -shared -o hello.so -fPIC -I/usr/include/python3.4 hello.cpp -lboost_python-py34 -lboost_system
-l:libpython3.4m.so

The python code in the file example.py:

import hello

print(hello.get_hello())

h = hello.Hello("World hello!")
print(h.as_list(3))

Then python3 example.py will give the following output:

Hello world!
['World hello!', 'World hello!', 'World hello!']

Section 190.3: Passing an open file to C Extensions
Pass an open file object from Python to C extension code.

You can convert the file to an integer file descriptor using PyObject_AsFileDescriptor function:

PyObject *fobj;
int fd = PyObject_AsFileDescriptor(fobj);
if (fd < 0){
    return NULL;
}

To convert an integer file descriptor back into a python object, use PyFile_FromFd.

int fd; /* Existing file descriptor */
PyObject *fobj = PyFile_FromFd(fd, "filename","r",-1,NULL,NULL,NULL,1);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 763

Chapter 191: Python Lex-Yacc
PLY is a pure-Python implementation of the popular compiler construction tools lex and yacc.

Section 191.1: Getting Started with PLY
To install PLY on your machine for python2/3, follow the steps outlined below:

Download the source code from here.1.
Unzip the downloaded zip file2.
Navigate into the unzipped ply-3.10 folder3.
Run the following command in your terminal: python setup.py install4.

If you completed all the above, you should now be able to use the PLY module. You can test it out by opening a
python interpreter and typing import ply.lex.

Note: Do not use pip to install PLY, it will install a broken distribution on your machine.

Section 191.2: The "Hello, World!" of PLY - A Simple Calculator
Let's demonstrate the power of PLY with a simple example: this program will take an arithmetic expression as a
string input, and attempt to solve it.

Open up your favourite editor and copy the following code:

from ply import lex
import ply.yacc as yacc

tokens = (
    'PLUS',
    'MINUS',
    'TIMES',
    'DIV',
    'LPAREN',
    'RPAREN',
    'NUMBER',
)

t_ignore = ' \t'

t_PLUS    = r'\+'
t_MINUS   = r'-'
t_TIMES   = r'\*'
t_DIV     = r'/'
t_LPAREN  = r'\('
t_RPAREN  = r'\)'

def t_NUMBER( t ) :
    r'[0-9]+'
    t.value = int( t.value )
    return t

def t_newline( t ):
  r'\n+'
  t.lexer.lineno += len( t.value )

def t_error( t ):

http://www.dabeaz.com/ply/ply-3.10.tar.gz
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 764

  print("Invalid Token:",t.value[0])
  t.lexer.skip( 1 )

lexer = lex.lex()

precedence = (
    ( 'left', 'PLUS', 'MINUS' ),
    ( 'left', 'TIMES', 'DIV' ),
    ( 'nonassoc', 'UMINUS' )
)

def p_add( p ) :
    'expr : expr PLUS expr'
    p[0] = p[1] + p[3]

def p_sub( p ) :
    'expr : expr MINUS expr'
    p[0] = p[1] - p[3]

def p_expr2uminus( p ) :
    'expr : MINUS expr %prec UMINUS'
    p[0] = - p[2]

def p_mult_div( p ) :
    '''expr : expr TIMES expr
            | expr DIV expr'''

    if p[2] == '*' :
        p[0] = p[1] * p[3]
    else :
        if p[3] == 0 :
            print("Can't divide by 0")
            raise ZeroDivisionError('integer division by 0')
        p[0] = p[1] / p[3]

def p_expr2NUM( p ) :
    'expr : NUMBER'
    p[0] = p[1]

def p_parens( p ) :
    'expr : LPAREN expr RPAREN'
    p[0] = p[2]

def p_error( p ):
    print("Syntax error in input!")

parser = yacc.yacc()

res = parser.parse("-4*-(3-5)") # the input
print(res)

Save this file as calc.py and run it.

Output:

-8

Which is the right answer for -4 * - (3 - 5).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 765

Section 191.3: Part 1: Tokenizing Input with Lex
There are two steps that the code from example 1 carried out: one was tokenizing the input, which means it looked
for symbols that constitute the arithmetic expression, and the second step was parsing, which involves analysing
the extracted tokens and evaluating the result.

This section provides a simple example of how to tokenize user input, and then breaks it down line by line.

    import ply.lex as lex

    # List of token names. This is always required
    tokens = [
       'NUMBER',
       'PLUS',
       'MINUS',
       'TIMES',
       'DIVIDE',
       'LPAREN',
       'RPAREN',
    ]

    # Regular expression rules for simple tokens
    t_PLUS    = r'\+'
    t_MINUS   = r'-'
    t_TIMES   = r'\*'
    t_DIVIDE  = r'/'
    t_LPAREN  = r'\('
    t_RPAREN  = r'\)'

    # A regular expression rule with some action code
    def t_NUMBER(t):
        r'\d+'
        t.value = int(t.value)    
        return t

    # Define a rule so we can track line numbers
    def t_newline(t):
        r'\n+'
        t.lexer.lineno += len(t.value)

    # A string containing ignored characters (spaces and tabs)
    t_ignore  = ' \t'

    # Error handling rule
    def t_error(t):
        print("Illegal character '%s'" % t.value[0])
        t.lexer.skip(1)

    # Build the lexer
    lexer = lex.lex()

    # Give the lexer some input
    lexer.input(data)

    # Tokenize
    while True:
        tok = lexer.token()
        if not tok:
            break      # No more input
        print(tok)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 766

Save this file as calclex.py. We'll be using this when building our Yacc parser.

Breakdown

Import the module using import ply.lex1.

All lexers must provide a list called tokens that defines all of the possible token names that can be produced2.
by the lexer. This list is always required.

 tokens = [
    'NUMBER',
    'PLUS',
    'MINUS',
    'TIMES',
    'DIVIDE',
    'LPAREN',
    'RPAREN',
 ]

tokens could also be a tuple of strings (rather than a string), where each string denotes a token as before.

The regex rule for each string may be defined either as a string or as a function. In either case, the variable3.
name should be prefixed by t_ to denote it is a rule for matching tokens.

For simple tokens, the regular expression can be specified as strings: t_PLUS = r'\+'

If some kind of action needs to be performed, a token rule can be specified as a function.

   def t_NUMBER(t):
       r'\d+'
       t.value = int(t.value)
       return t

Note, the rule is specified as a doc string within the function. The function accepts one argument which
is an instance of LexToken, performs some action and then returns back the argument.

If you want to use an external string as the regex rule for the function instead of specifying a doc
string, consider the following example:

   @TOKEN(identifier)         # identifier is a string holding the regex
   def t_ID(t):
       ...      # actions

An instance of LexToken object (let's call this object t) has the following attributes:

t.type which is the token type (as a string) (eg: 'NUMBER', 'PLUS', etc). By default, t.type is set1.
to the name following the t_ prefix.
t.value which is the lexeme (the actual text matched)2.
t.lineno which is the current line number (this is not automatically updated, as the lexer knows3.
nothing of line numbers). Update lineno using a function called t_newline.

  def t_newline(t):
      r'\n+'
      t.lexer.lineno += len(t.value)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 767

t.lexpos which is the position of the token relative to the beginning of the input text.4.
If nothing is returned from a regex rule function, the token is discarded. If you want to discard a token,
you can alternatively add t_ignore_ prefix to a regex rule variable instead of defining a function for the
same rule.

   def t_COMMENT(t):
       r'\#.*'
       pass
       # No return value. Token discarded

...Is the same as:

   t_ignore_COMMENT = r'\#.*'

This is of course invalid if you're carrying out some action when you see a comment. In which case, use
a function to define the regex rule.

If you haven't defined a token for some characters but still want to ignore it, use t_ignore =
"<characters to ignore>" (these prefixes are necessary):

   t_ignore_COMMENT = r'\#.*'
   t_ignore  = ' \t'    # ignores spaces and tabs

When building the master regex, lex will add the regexes specified in the file as follows:

Tokens defined by functions are added in the same order as they appear in the file.1.
Tokens defined by strings are added in decreasing order of the string length of the string2.
defining the regex for that token.

If you are matching == and = in the same file, take advantage of these rules.

Literals are tokens that are returned as they are. Both t.type and t.value will be set to the character
itself. Define a list of literals as such:

literals = [ '+', '-', '*', '/' ]

or,

literals = "+-*/"

It is possible to write token functions that perform additional actions when literals are matched.
However, you'll need to set the token type appropriately. For example:

literals = [ '{', '}' ]

def t_lbrace(t):
    r'\{'
    t.type = '{'  # Set token type to the expected literal (ABSOLUTE MUST if this is a
literal)
    return t

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 768

Handle errors with t_error function.

# Error handling rule
def t_error(t):
    print("Illegal character '%s'" % t.value[0])
    t.lexer.skip(1) # skip the illegal token (don't process it)

In general, t.lexer.skip(n) skips n characters in the input string.

Final preparations:4.

Build the lexer using lexer = lex.lex().

You can also put everything inside a class and call use instance of the class to define the lexer. Eg:

 import ply.lex as lex  
 class MyLexer(object):            
       ...     # everything relating to token rules and error handling comes here as usual

       # Build the lexer
       def build(self, **kwargs):
           self.lexer = lex.lex(module=self, **kwargs)

       def test(self, data):
           self.lexer.input(data)
           for token in self.lexer.token():
               print(token)

       # Build the lexer and try it out

 m = MyLexer()
 m.build()           # Build the lexer
 m.test("3 + 4")     #

Provide input using lexer.input(data) where data is a string

To get the tokens, use lexer.token() which returns tokens matched. You can iterate over lexer in a loop as
in:

for i in lexer:
    print(i)

Section 191.4: Part 2: Parsing Tokenized Input with Yacc
This section explains how the tokenized input from Part 1 is processed - it is done using Context Free Grammars
(CFGs). The grammar must be specified, and the tokens are processed according to the grammar. Under the hood,
the parser uses an LALR parser.

# Yacc example

import ply.yacc as yacc

# Get the token map from the lexer. This is required.
from calclex import tokens

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 769

def p_expression_plus(p):
    'expression : expression PLUS term'
    p[0] = p[1] + p[3]

def p_expression_minus(p):
    'expression : expression MINUS term'
    p[0] = p[1] - p[3]

def p_expression_term(p):
    'expression : term'
    p[0] = p[1]

def p_term_times(p):
    'term : term TIMES factor'
    p[0] = p[1] * p[3]

def p_term_div(p):
    'term : term DIVIDE factor'
    p[0] = p[1] / p[3]

def p_term_factor(p):
    'term : factor'
    p[0] = p[1]

def p_factor_num(p):
    'factor : NUMBER'
    p[0] = p[1]

def p_factor_expr(p):
    'factor : LPAREN expression RPAREN'
    p[0] = p[2]

# Error rule for syntax errors
def p_error(p):
    print("Syntax error in input!")

# Build the parser
parser = yacc.yacc()

while True:
   try:
       s = raw_input('calc > ')
   except EOFError:
       break
   if not s: continue
   result = parser.parse(s)
   print(result)

Breakdown

Each grammar rule is defined by a function where the docstring to that function contains the appropriate
context-free grammar specification. The statements that make up the function body implement the semantic
actions of the rule. Each function accepts a single argument p that is a sequence containing the values of
each grammar symbol in the corresponding rule. The values of p[i] are mapped to grammar symbols as
shown here:

  def p_expression_plus(p):
      'expression : expression PLUS term'
      #   ^            ^        ^    ^
      #  p[0]         p[1]     p[2] p[3]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 770

      p[0] = p[1] + p[3]

For tokens, the "value" of the corresponding p[i] is the same as the p.value attribute assigned in the lexer
module. So, PLUS will have the value +.

For non-terminals, the value is determined by whatever is placed in p[0]. If nothing is placed, the value is
None. Also, p[-1] is not the same as p[3], since p is not a simple list (p[-1] can specify embedded actions
(not discussed here)).

Note that the function can have any name, as long as it is preceded by p_.

The p_error(p) rule is defined to catch syntax errors (same as yyerror in yacc/bison).

Multiple grammar rules can be combined into a single function, which is a good idea if productions have a
similar structure.

  def p_binary_operators(p):
      '''expression : expression PLUS term
                    | expression MINUS term
         term       : term TIMES factor
                    | term DIVIDE factor'''
      if p[2] == '+':
          p[0] = p[1] + p[3]
      elif p[2] == '-':
          p[0] = p[1] - p[3]
      elif p[2] == '*':
          p[0] = p[1] * p[3]
      elif p[2] == '/':
          p[0] = p[1] / p[3]

Character literals can be used instead of tokens.

  def p_binary_operators(p):
      '''expression : expression '+' term
                    | expression '-' term
         term       : term '*' factor
                    | term '/' factor'''
      if p[2] == '+':
          p[0] = p[1] + p[3]
      elif p[2] == '-':
          p[0] = p[1] - p[3]
      elif p[2] == '*':
          p[0] = p[1] * p[3]
      elif p[2] == '/':
          p[0] = p[1] / p[3]

Of course, the literals must be specified in the lexer module.

Empty productions have the form '''symbol : '''

To explicitly set the start symbol, use start = 'foo', where foo is some non-terminal.

Setting precedence and associativity can be done using the precedence variable.

  precedence = (
      ('nonassoc', 'LESSTHAN', 'GREATERTHAN'),  # Nonassociative operators

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 771

      ('left', 'PLUS', 'MINUS'),
      ('left', 'TIMES', 'DIVIDE'),
      ('right', 'UMINUS'),            # Unary minus operator
  )

Tokens are ordered from lowest to highest precedence. nonassoc means that those tokens do not associate.
This means that something like a < b < c is illegal whereas a < b is still legal.

parser.out is a debugging file that is created when the yacc program is executed for the first time. Whenever
a shift/reduce conflict occurs, the parser always shifts.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 772

Chapter 192: Unit Testing
Section 192.1: Test Setup and Teardown within a
unittest.TestCase
Sometimes we want to prepare a context for each test to be run under. The setUp method is run prior to each test
in the class. tearDown is run at the end of every test. These methods are optional. Remember that TestCases are
often used in cooperative multiple inheritance so you should be careful to always call super in these methods so
that base class's setUp and tearDown methods also get called. The base implementation of TestCase provides
empty setUp and tearDown methods so that they can be called without raising exceptions:

import unittest

class SomeTest(unittest.TestCase):
    def setUp(self):
        super(SomeTest, self).setUp()
        self.mock_data = [1,2,3,4,5]

    def test(self):
        self.assertEqual(len(self.mock_data), 5)

    def tearDown(self):
        super(SomeTest, self).tearDown()
        self.mock_data = []

if __name__ == '__main__':
    unittest.main()

Note that in python2.7+, there is also the addCleanup method that registers functions to be called after the test is
run. In contrast to tearDown which only gets called if setUp succeeds, functions registered via addCleanup will be
called even in the event of an unhandled exception in setUp. As a concrete example, this method can frequently be
seen removing various mocks that were registered while the test was running:

import unittest
import some_module

class SomeOtherTest(unittest.TestCase):
    def setUp(self):
        super(SomeOtherTest, self).setUp()
       
        # Replace `some_module.method` with a `mock.Mock`
        my_patch = mock.patch.object(some_module, 'method')
        my_patch.start()

        # When the test finishes running, put the original method back.
        self.addCleanup(my_patch.stop)

Another benefit of registering cleanups this way is that it allows the programmer to put the cleanup code next to
the setup code and it protects you in the event that a subclasser forgets to call super in tearDown.

Section 192.2: Asserting on Exceptions
You can test that a function throws an exception with the built-in unittest through two different methods.

https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.addCleanup
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 773

Using a context manager

def division_function(dividend, divisor):
    return dividend / divisor

class MyTestCase(unittest.TestCase):
    def test_using_context_manager(self):
        with self.assertRaises(ZeroDivisionError):
            x = division_function(1, 0)

This will run the code inside of the context manager and, if it succeeds, it will fail the test because the exception was
not raised. If the code raises an exception of the correct type, the test will continue.

You can also get the content of the raised exception if you want to execute additional assertions against it.

class MyTestCase(unittest.TestCase):
    def test_using_context_manager(self):
        with self.assertRaises(ZeroDivisionError) as ex:
            x = division_function(1, 0)

        self.assertEqual(ex.message, 'integer division or modulo by zero')

By providing a callable function

def division_function(dividend, divisor):
    """
    Dividing two numbers.

    :type dividend: int
    :type divisor: int

    :raises: ZeroDivisionError if divisor is zero (0).
    :rtype: int
    """
    return dividend / divisor

class MyTestCase(unittest.TestCase):
    def test_passing_function(self):
        self.assertRaises(ZeroDivisionError, division_function, 1, 0)

The exception to check for must be the first parameter, and a callable function must be passed as the second
parameter. Any other parameters specified will be passed directly to the function that is being called, allowing you
to specify the parameters that trigger the exception.

Section 192.3: Testing Exceptions
Programs throw errors when for instance wrong input is given. Because of this, one needs to make sure that an
error is thrown when actual wrong input is given. Because of that we need to check for an exact exception, for this
example we will use the following exception:

class WrongInputException(Exception):
    pass

This exception is raised when wrong input is given, in the following context where we always expect a number as
text input.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 774

def convert2number(random_input):
    try:
        my_input = int(random_input)
    except ValueError:
        raise WrongInputException("Expected an integer!")
    return my_input

To check whether an exception has been raised, we use assertRaises to check for that exception. assertRaises
can be used in two ways:

Using the regular function call. The first argument takes the exception type, second a callable (usually a1.
function) and the rest of arguments are passed to this callable.
Using a with clause, giving only the exception type to the function. This has as advantage that more code can2.
be executed, but should be used with care since multiple functions can use the same exception which can be
problematic. An example: with self.assertRaises(WrongInputException): convert2number("not a number")

This first has been implemented in the following test case:

import unittest

class ExceptionTestCase(unittest.TestCase):

    def test_wrong_input_string(self):
        self.assertRaises(WrongInputException, convert2number, "not a number")

    def test_correct_input(self):
        try:
            result = convert2number("56")
            self.assertIsInstance(result, int)
        except WrongInputException:
            self.fail()

There also may be a need to check for an exception which should not have been thrown. However, a test will
automatically fail when an exception is thrown and thus may not be necessary at all. Just to show the options, the
second test method shows a case on how one can check for an exception not to be thrown. Basically, this is
catching the exception and then failing the test using the fail method.

Section 192.4: Choosing Assertions Within Unittests
While Python has an assert statement, the Python unit testing framework has better assertions specialized for
tests: they are more informative on failures, and do not depend on the execution's debug mode.

Perhaps the simplest assertion is assertTrue, which can be used like this:

import unittest

class SimplisticTest(unittest.TestCase):
    def test_basic(self):
        self.assertTrue(1 + 1 == 2)

This will run fine, but replacing the line above with

        self.assertTrue(1 + 1 == 3)

will fail.

https://docs.python.org/2/reference/simple_stmts.html#grammar-token-assert_stmt
https://docs.python.org/2/reference/simple_stmts.html#grammar-token-assert_stmt
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 775

The assertTrue assertion is quite likely the most general assertion, as anything tested can be cast as some boolean
condition, but often there are better alternatives. When testing for equality, as above, it is better to write

        self.assertEqual(1 + 1, 3)

When the former fails, the message is

======================================================================

FAIL: test (__main__.TruthTest)

----------------------------------------------------------------------

Traceback (most recent call last):

File "stuff.py", line 6, in test

self.assertTrue(1 + 1 == 3)

AssertionError: False is not true

but when the latter fails, the message is

======================================================================

FAIL: test (__main__.TruthTest)

----------------------------------------------------------------------

Traceback (most recent call last):

File "stuff.py", line 6, in test

self.assertEqual(1 + 1, 3)
AssertionError: 2 != 3

which is more informative (it actually evaluated the result of the left hand side).

You can find the list of assertions in the standard documentation. In general, it is a good idea to choose the
assertion that is the most specifically fitting the condition. Thus, as shown above, for asserting that 1 + 1 == 2 it is
better to use assertEqual than assertTrue. Similarly, for asserting that a is None, it is better to use assertIsNone
than assertEqual.

Note also that the assertions have negative forms. Thus assertEqual has its negative counterpart assertNotEqual,
and assertIsNone has its negative counterpart assertIsNotNone. Once again, using the negative counterparts
when appropriate, will lead to clearer error messages.

Section 192.5: Unit tests with pytest
installing pytest:

pip install pytest

getting the tests ready:

https://docs.python.org/2/library/unittest.html#assert-methods
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 776

mkdir tests
touch tests/test_docker.py

Functions to test in docker_something/helpers.py:

from subprocess import Popen, PIPE
# this Popen is monkeypatched with the fixture `all_popens`

def copy_file_to_docker(src, dest):
    try:
        result = Popen(['docker','cp', src, 'something_cont:{}'.format(dest)], stdout=PIPE,
stderr=PIPE)
        err = result.stderr.read()
        if err:
            raise Exception(err)
    except Exception as e:
        print(e)
    return result

def docker_exec_something(something_file_string):
    fl = Popen(["docker", "exec", "-i", "something_cont", "something"], stdin=PIPE, stdout=PIPE,
stderr=PIPE)
    fl.stdin.write(something_file_string)
    fl.stdin.close()
    err = fl.stderr.read()
    fl.stderr.close()
    if err:
        print(err)
        exit()
    result = fl.stdout.read()
    print(result)

The test imports test_docker.py:

import os
from tempfile import NamedTemporaryFile
import pytest
from subprocess import Popen, PIPE

from docker_something import helpers
copy_file_to_docker = helpers.copy_file_to_docker
docker_exec_something = helpers.docker_exec_something

mocking a file like object in test_docker.py:

class MockBytes():
    '''Used to collect bytes
    '''
    all_read = []
    all_write = []
    all_close = []

    def read(self, *args, **kwargs):
        # print('read', args, kwargs, dir(self))
        self.all_read.append((self, args, kwargs))

    def write(self, *args, **kwargs):
        # print('wrote', args, kwargs)
        self.all_write.append((self, args, kwargs))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 777

    def close(self, *args, **kwargs):
        # print('closed', self, args, kwargs)
        self.all_close.append((self, args, kwargs))

    def get_all_mock_bytes(self):
        return self.all_read, self.all_write, self.all_close

Monkey patching with pytest in test_docker.py:

@pytest.fixture
def all_popens(monkeypatch):
    '''This fixture overrides / mocks the builtin Popen
        and replaces stdin, stdout, stderr with a MockBytes object

        note: monkeypatch is magically imported
    '''
    all_popens = []
   
    class MockPopen(object):
        def __init__(self, args, stdout=None, stdin=None, stderr=None):
            all_popens.append(self)
            self.args = args
            self.byte_collection = MockBytes()
            self.stdin = self.byte_collection
            self.stdout = self.byte_collection
            self.stderr = self.byte_collection
            pass
    monkeypatch.setattr(helpers, 'Popen', MockPopen)

    return all_popens

Example tests, must start with the prefix test_ in the test_docker.py file:

def test_docker_install():
    p = Popen(['which', 'docker'], stdout=PIPE, stderr=PIPE)
    result = p.stdout.read()
    assert 'bin/docker' in result

def test_copy_file_to_docker(all_popens):    
    result = copy_file_to_docker('asdf', 'asdf')
    collected_popen = all_popens.pop()
    mock_read, mock_write, mock_close = collected_popen.byte_collection.get_all_mock_bytes()
    assert mock_read
    assert result.args == ['docker', 'cp', 'asdf', 'something_cont:asdf']

def test_docker_exec_something(all_popens):
   
    docker_exec_something(something_file_string)

    collected_popen = all_popens.pop()
    mock_read, mock_write, mock_close = collected_popen.byte_collection.get_all_mock_bytes()
    assert len(mock_read) == 3
    something_template_stdin = mock_write[0][1][0]
    these = [os.environ['USER'], os.environ['password_prod'], 'table_name_here', 'test_vdm',
'col_a', 'col_b', '/tmp/test.tsv']
    assert all([x in something_template_stdin for x in these])

running the tests one at a time:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 778

py.test -k test_docker_install tests
py.test -k test_copy_file_to_docker tests
py.test -k test_docker_exec_something tests

running all the tests in the tests folder:

py.test -k test_ tests

Section 192.6: Mocking functions with
unittest.mock.create_autospec
One way to mock a function is to use the create_autospec function, which will mock out an object according to its
specs. With functions, we can use this to ensure that they are called appropriately.

With a function multiply in custom_math.py:

def multiply(a, b):
    return a * b

And a function multiples_of in process_math.py:

from custom_math import multiply

def multiples_of(integer, *args, num_multiples=0, **kwargs):
    """
    :rtype: list
    """
    multiples = []
   
    for x in range(1, num_multiples + 1):
        """
        Passing in args and kwargs here will only raise TypeError if values were
        passed to multiples_of function, otherwise they are ignored. This way we can
        test that multiples_of is used correctly. This is here for an illustration
        of how create_autospec works. Not recommended for production code.
        """
        multiple = multiply(integer,x, *args, **kwargs)
        multiples.append(multiple)
   
    return multiples

We can test multiples_of alone by mocking out multiply. The below example uses the Python standard library
unittest, but this can be used with other testing frameworks as well, like pytest or nose:

from unittest.mock import create_autospec
import unittest

# we import the entire module so we can mock out multiply
import custom_math
custom_math.multiply = create_autospec(custom_math.multiply)
from process_math import multiples_of

class TestCustomMath(unittest.TestCase):
    def test_multiples_of(self):
        multiples = multiples_of(3, num_multiples=1)
        custom_math.multiply.assert_called_with(3, 1)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 779

   
    def test_multiples_of_with_bad_inputs(self):
        with self.assertRaises(TypeError) as e:
            multiples_of(1, "extra arg",  num_multiples=1) # this should raise a TypeError

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 780

Chapter 193: py.test
Section 193.1: Setting up py.test
py.test is one of several third party testing libraries that are available for Python. It can be installed using pip with

pip install pytest

The Code to Test

Say we are testing an addition function in projectroot/module/code.py:

# projectroot/module/code.py
def add(a, b):
    return a + b

The Testing Code

We create a test file in projectroot/tests/test_code.py. The file must begin with test_ to be recognized as a
testing file.

# projectroot/tests/test_code.py
from module import code

def test_add():
    assert code.add(1, 2) == 3

Running The Test

From projectroot we simply run py.test:

# ensure we have the modules
$ touch tests/__init__.py
$ touch module/__init__.py
$ py.test
================================================== test session starts
===================================================
platform darwin -- Python 2.7.10, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /projectroot, inifile:
collected 1 items

tests/test_code.py .

================================================ 1 passed in 0.01 seconds
================================================

Section 193.2: Intro to Test Fixtures
More complicated tests sometimes need to have things set up before you run the code you want to test. It is
possible to do this in the test function itself, but then you end up with large test functions doing so much that it is
difficult to tell where the setup stops and the test begins. You can also get a lot of duplicate setup code between
your various test functions.

http://docs.pytest.org/en/latest/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 781

Our code file:

# projectroot/module/stuff.py
class Stuff(object):
    def prep(self):
        self.foo = 1
        self.bar = 2

Our test file:

# projectroot/tests/test_stuff.py
import pytest
from module import stuff

def test_foo_updates():
    my_stuff = stuff.Stuff()
    my_stuff.prep()
    assert 1 == my_stuff.foo
    my_stuff.foo = 30000
    assert my_stuff.foo == 30000

def test_bar_updates():
    my_stuff = stuff.Stuff()
    my_stuff.prep()
    assert 2 == my_stuff.bar
    my_stuff.bar = 42
    assert 42 == my_stuff.bar

These are pretty simple examples, but if our Stuff object needed a lot more setup, it would get unwieldy. We see
that there is some duplicated code between our test cases, so let's refactor that into a separate function first.

# projectroot/tests/test_stuff.py
import pytest
from module import stuff

def get_prepped_stuff():
    my_stuff = stuff.Stuff()
    my_stuff.prep()
    return my_stuff

def test_foo_updates():
    my_stuff = get_prepped_stuff()
    assert 1 == my_stuff.foo
    my_stuff.foo = 30000
    assert my_stuff.foo == 30000

def test_bar_updates():
    my_stuff = get_prepped_stuff()
    assert 2 == my_stuff.bar
    my_stuff.bar = 42
    assert 42 == my_stuff.bar

This looks better but we still have the my_stuff = get_prepped_stuff() call cluttering up our test functions.

py.test fixtures to the rescue!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 782

Fixtures are much more powerful and flexible versions of test setup functions. They can do a lot more than we're
leveraging here, but we'll take it one step at a time.

First we change get_prepped_stuff to a fixture called prepped_stuff. You want to name your fixtures with nouns
rather than verbs because of how the fixtures will end up being used in the test functions themselves later. The
@pytest.fixture indicates that this specific function should be handled as a fixture rather than a regular function.

@pytest.fixture
def prepped_stuff():
    my_stuff = stuff.Stuff()
    my_stuff.prep()
    return my_stuff

Now we should update the test functions so that they use the fixture. This is done by adding a parameter to their
definition that exactly matches the fixture name. When py.test executes, it will run the fixture before running the
test, then pass the return value of the fixture into the test function through that parameter. (Note that fixtures
don't need to return a value; they can do other setup things instead, like calling an external resource, arranging
things on the filesystem, putting values in a database, whatever the tests need for setup)

def test_foo_updates(prepped_stuff):
    my_stuff = prepped_stuff
    assert 1 == my_stuff.foo
    my_stuff.foo = 30000
    assert my_stuff.foo == 30000

def test_bar_updates(prepped_stuff):
    my_stuff = prepped_stuff
    assert 2 == my_stuff.bar
    my_stuff.bar = 42
    assert 42 == my_stuff.bar

Now you can see why we named it with a noun. but the my_stuff = prepped_stuff line is pretty much useless, so
let's just use prepped_stuff directly instead.

def test_foo_updates(prepped_stuff):
    assert 1 == prepped_stuff.foo
    prepped_stuff.foo = 30000
    assert prepped_stuff.foo == 30000

def test_bar_updates(prepped_stuff):
    assert 2 == prepped_stuff.bar
    prepped_stuff.bar = 42
    assert 42 == prepped_stuff.bar

Now we're using fixtures! We can go further by changing the scope of the fixture (so it only runs once per test
module or test suite execution session instead of once per test function), building fixtures that use other fixtures,
parametrizing the fixture (so that the fixture and all tests using that fixture are run multiple times, once for each
parameter given to the fixture), fixtures that read values from the module that calls them... as mentioned earlier,
fixtures have a lot more power and flexibility than a normal setup function.

Cleaning up after the tests are done.

Let's say our code has grown and our Stuff object now needs special clean up.

# projectroot/module/stuff.py

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 783

class Stuff(object):
def prep(self):
    self.foo = 1
    self.bar = 2

def finish(self):
    self.foo = 0
    self.bar = 0

We could add some code to call the clean up at the bottom of every test function, but fixtures provide a better way
to do this. If you add a function to the fixture and register it as a finalizer, the code in the finalizer function will get
called after the test using the fixture is done. If the scope of the fixture is larger than a single function (like module
or session), the finalizer will be executed after all the tests in scope are completed, so after the module is done
running or at the end of the entire test running session.

@pytest.fixture
def prepped_stuff(request):  # we need to pass in the request to use finalizers
    my_stuff = stuff.Stuff()
    my_stuff.prep()
    def fin():  # finalizer function
        # do all the cleanup here
        my_stuff.finish()
    request.addfinalizer(fin)  # register fin() as a finalizer
    # you can do more setup here if you really want to
    return my_stuff

Using the finalizer function inside a function can be a bit hard to understand at first glance, especially when you
have more complicated fixtures. You can instead use a yield fixture to do the same thing with a more human
readable execution flow. The only real difference is that instead of using return we use a yield at the part of the
fixture where the setup is done and control should go to a test function, then add all the cleanup code after the
yield. We also decorate it as a yield_fixture so that py.test knows how to handle it.

@pytest.yield_fixture
def prepped_stuff():  # it doesn't need request now!
    # do setup
    my_stuff = stuff.Stuff()
    my_stuff.prep()
    # setup is done, pass control to the test functions
    yield my_stuff
    # do cleanup
    my_stuff.finish()

And that concludes the Intro to Test Fixtures!

For more information, see the official py.test fixture documentation and the official yield fixture documentation

Section 193.3: Failing Tests
A failing test will provide helpful output as to what went wrong:

# projectroot/tests/test_code.py
from module import code

def test_add__failing():
    assert code.add(10, 11) == 33

http://doc.pytest.org/en/latest/fixture.html
http://doc.pytest.org/en/latest/yieldfixture.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 784

Results:

$ py.test
================================================== test session starts
===================================================
platform darwin -- Python 2.7.10, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /projectroot, inifile:
collected 1 items

tests/test_code.py F

======================================================== FAILURES
========================================================
___________________________________________________ test_add__failing
____________________________________________________

    def test_add__failing():
>       assert code.add(10, 11) == 33
E       assert 21 == 33
E        +  where 21 = <function add at 0x105d4d6e0>(10, 11)
E        +    where <function add at 0x105d4d6e0> = code.add

tests/test_code.py:5: AssertionError
================================================ 1 failed in 0.01 seconds
================================================

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 785

Chapter 194: Profiling
Section 194.1: %%timeit and %timeit in IPython
Profiling string concatenation:

In [1]: import string

In [2]: %%timeit s=""; long_list=list(string.ascii_letters)*50
  ....: for substring in long_list:
  ....:   s+=substring
  ....:
1000 loops, best of 3: 570 us per loop

In [3]: %%timeit long_list=list(string.ascii_letters)*50
  ....: s="".join(long_list)
  ....:
100000 loops, best of 3: 16.1 us per loop

Profiling loops over iterables and lists:

In [4]: %timeit for i in range(100000):pass
100 loops, best of 3: 2.82 ms per loop

In [5]: %timeit for i in list(range(100000)):pass
100 loops, best of 3: 3.95 ms per loop

Section 194.2: Using cProfile (Preferred Profiler)
Python includes a profiler called cProfile. This is generally preferred over using timeit.

It breaks down your entire script and for each method in your script it tells you:

ncalls: The number of times a method was called
tottime: Total time spent in the given function (excluding time made in calls to sub-functions)
percall: Time spent per call. Or the quotient of tottime divided by ncalls
cumtime: The cumulative time spent in this and all subfunctions (from invocation till exit). This figure is
accurate even for recursive functions.
percall: is the quotient of cumtime divided by primitive calls
filename:lineno(function): provides the respective data of each function

The cProfiler can be easily called on Command Line using:

$ python -m cProfile main.py

To sort the returned list of profiled methods by the time taken in the method:

$ python -m cProfile -s time main.py

Section 194.3: timeit() function
Profiling repetition of elements in an array

>>> import timeit

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 786

>>> timeit.timeit('list(itertools.repeat("a", 100))', 'import itertools', number = 10000000)
10.997665435877963
>>> timeit.timeit('["a"]*100', number = 10000000)
7.118789926862576

Section 194.4: timeit command line
Profiling concatenation of numbers

python -m timeit "'-'.join(str(n) for n in range(100))"
10000 loops, best of 3: 29.2 usec per loop

python -m timeit "'-'.join(map(str,range(100)))"
100000 loops, best of 3: 19.4 usec per loop

Section 194.5: line_profiler in command line
The source code with @profile directive before the function we want to profile:

import requests

@profile
def slow_func():
    s = requests.session()
    html=s.get("https://en.wikipedia.org/").text
    sum([pow(ord(x),3.1) for x in list(html)])
       
for i in range(50):
    slow_func()

Using kernprof command to calculate profiling line by line

$ kernprof -lv so6.py

Wrote profile results to so6.py.lprof
Timer unit: 4.27654e-07 s

Total time: 22.6427 s
File: so6.py
Function: slow_func at line 4

Line # Hits Time Per Hit % Time Line Contents
==============================================================
4 @profile
5 def slow_func():
6 50 20729 414.6 0.0 s = requests.session()
7 50 47618627 952372.5 89.9 html=s.get("https://en.wikipedia.org/").text
8 50 5306958 106139.2 10.0 sum([pow(ord(x),3.1) for x in list(html)])

Page request is almost always slower than any calculation based on the information on the page.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning A-Z: Hands-On
Python In Data Science
Learn to create Machine Learning Algorithms in
Python from two Data Science experts. Code
templates included.

✔ Master Machine Learning on Python
✔ Have a great intuition of many Machine Learning models
✔ Make accurate predictions
✔ Make powerful analysis
✔ Make robust Machine Learning models
✔ Create strong added value to your business
✔ Use Machine Learning for personal purpose
✔ Handle specific topics like Reinforcement Learning, NLP and Deep Learning
✔ Handle advanced techniques like Dimensionality Reduction
✔ Know which Machine Learning model to choose for each type of problem
✔ Build an army of powerful Machine Learning models and know how to combine them to solve any
problem

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fmachinelearning%2F


GoalKicker.com – Python® Notes for Professionals 788

Chapter 195: Python speed of program
Section 195.1: Deque operations
A deque is a double-ended queue.

class Deque:
def __init__(self):
    self.items = []

def isEmpty(self):
    return self.items == []

def addFront(self, item):
    self.items.append(item)

def addRear(self, item):
    self.items.insert(0,item)

def removeFront(self):
    return self.items.pop()

def removeRear(self):
    return self.items.pop(0)

def size(self):
    return len(self.items)

Operations : Average Case (assumes parameters are randomly generated)

Append : O(1)

Appendleft : O(1)

Copy : O(n)

Extend : O(k)

Extendleft : O(k)

Pop : O(1)

Popleft : O(1)

Remove : O(n)

Rotate : O(k)

Section 195.2: Algorithmic Notations
There are certain principles that apply to optimization in any computer language, and Python is no exception. Don't
optimize as you go: Write your program without regard to possible optimizations, concentrating instead on
making sure that the code is clean, correct, and understandable. If it's too big or too slow when you've finished,
then you can consider optimizing it.

Remember the 80/20 rule: In many fields you can get 80% of the result with 20% of the effort (also called the

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 789

90/10 rule - it depends on who you talk to). Whenever you're about to optimize code, use profiling to find out where
that 80% of execution time is going, so you know where to concentrate your effort.

Always run "before" and "after" benchmarks: How else will you know that your optimizations actually made a
difference? If your optimized code turns out to be only slightly faster or smaller than the original version, undo your
changes and go back to the original, clear code.

Use the right algorithms and data structures: Don't use an O(n2) bubble sort algorithm to sort a thousand elements
when there's an O(n log n) quicksort available. Similarly, don't store a thousand items in an array that requires an
O(n) search when you could use an O(log n) binary tree, or an O(1) Python hash table.

For more visit the link below... Python Speed Up

The following 3 asymptotic notations are mostly used to represent time complexity of algorithms.

Θ Notation: The theta notation bounds a functions from above and below, so it defines exact asymptotic1.
behavior. A simple way to get Theta notation of an expression is to drop low order terms and ignore leading
constants. For example, consider the following expression. 3n3 + 6n2 + 6000 = Θ(n3) Dropping lower order
terms is always fine because there will always be a n0 after which Θ(n3) has higher values than Θn2)
irrespective of the constants involved. For a given function g(n), we denote Θ(g(n)) is following set of
functions. Θ(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such that 0 <= c1g(n) <= f(n) <= c2g(n) for
all n >= n0} The above definition means, if f(n) is theta of g(n), then the value f(n) is always between c1g(n) and
c2g(n) for large values of n (n >= n0). The definition of theta also requires that f(n) must be non-negative for
values of n greater than n0.

Big O Notation: The Big O notation defines an upper bound of an algorithm, it bounds a function only from2.
above. For example, consider the case of Insertion Sort. It takes linear time in best case and quadratic time in
worst case. We can safely say that the time complexity of Insertion sort is O(n^2). Note that O(n^2) also
covers linear time. If we use Θ notation to represent time complexity of Insertion sort, we have to use two
statements for best and worst cases:

The worst case time complexity of Insertion Sort is Θ(n^2).1.
The best case time complexity of Insertion Sort is Θ(n).2.

The Big O notation is useful when we only have upper bound on time complexity of an algorithm. Many times we
easily find an upper bound by simply looking at the algorithm. O(g(n)) = { f(n): there exist positive constants c and n0
such that 0 <= f(n) <= cg(n) for all n >= n0}

Ω Notation: Just as Big O notation provides an asymptotic upper bound on a function, Ω notation provides0.
an asymptotic lower bound. Ω Notation< can be useful when we have lower bound on time complexity of an
algorithm. As discussed in the previous post, the best case performance of an algorithm is generally not
useful, the Omega notation is the least used notation among all three. For a given function g(n), we denote by
Ω(g(n)) the set of functions. Ω (g(n)) = {f(n): there exist positive constants c and n0 such that 0 <= cg(n) <= f(n)
for all n >= n0}. Let us consider the same Insertion sort example here. The time complexity of Insertion Sort
can be written as Ω(n), but it is not a very useful information about insertion sort, as we are generally
interested in worst case and sometimes in average case.

Section 195.3: Notation
Basic Idea

The notation used when describing the speed of your Python program is called Big-O notation. Let's say you have a
function:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 790

def list_check(to_check, the_list):
    for item in the_list:
        if to_check == item:
          return True
    return False

This is a simple function to check if an item is in a list. To describe the complexity of this function, you will say O(n).
This means "Order of n" as the O function is known as the Order function.

O(n) - generally n is the number of items in container

O(k) - generally k is the value of the parameter or the number of elements in the parameter

Section 195.4: List operations
Operations : Average Case (assumes parameters are randomly generated)

Append : O(1)

Copy : O(n)

Del slice : O(n)

Delete item : O(n)

Insert : O(n)

Get item : O(1)

Set item : O(1)

Iteration : O(n)

Get slice : O(k)

Set slice : O(n + k)

Extend : O(k)

Sort : O(n log n)

Multiply : O(nk)

x in s : O(n)

min(s), max(s) :O(n)

Get length : O(1)

Section 195.5: Set operations
Operation : Average Case (assumes parameters generated randomly) : Worst case

x in s : O(1)

Difference s - t : O(len(s))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 791

Intersection s&t : O(min(len(s), len(t))) : O(len(s) * len(t)

Multiple intersection s1&s2&s3&...&sn : : (n-1) * O(l) where l is max(len(s1),...,len(sn))

s.difference_update(t) : O(len(t)) : O(len(t) * len(s))

s.symetric_difference_update(t) : O(len(t))

Symetric difference s^t : O(len(s)) : O(len(s) * len(t))

Union s|t : O(len(s) + len(t))

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 792

Chapter 196: Performance optimization
Section 196.1: Code profiling
First and foremost you should be able to find the bottleneck of your script and note that no optimization can
compensate for a poor choice in data structure or a flaw in your algorithm design. Secondly do not try to optimize
too early in your coding process at the expense of readability/design/quality. Donald Knuth made the following
statement on optimization:

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root
of all evil. Yet we should not pass up our opportunities in that critical 3%"

To profile your code you have several tools: cProfile (or the slower profile) from the standard library,
line_profiler and timeit. Each of them serve a different purpose.

cProfile is a deterministic profiler: function call, function return, and exception events are monitored, and precise
timings are made for the intervals between these events (up to 0.001s). The library documentation
([https://docs.python.org/2/library/profile.html][1]) provides us with a simple use case

import cProfile
def f(x):
    return "42!"
cProfile.run('f(12)')

Or if you prefer to wrap parts of your existing code:

import cProfile, pstats, StringIO
pr = cProfile.Profile()
pr.enable()
# ... do something ...
# ... long ...
pr.disable()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print s.getvalue()

This will create outputs looking like the table below, where you can quickly see where your program spends most of
its time and identify the functions to optimize.

 3 function calls in 0.000 seconds

Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 :1(f)
1 0.000 0.000 0.000 0.000 :1()
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

The module line_profiler ([https://github.com/rkern/line_profiler][1]) is useful to have a line by line analysis of
your code. This is obviously not manageable for long scripts but is aimed at snippets. See the documentation for
more details. The easiest way to get started is to use the kernprof script as explained one the package page, note
that you will need to specify manually the function(s) to profile.

https://docs.python.org/2/library/profile.html%5D%5B1%5D)
https://github.com/rkern/line_profiler%5D%5B1%5D)
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 793

$ kernprof -l script_to_profile.py

kernprof will create an instance of LineProfiler and insert it into the __builtins__ namespace with the name
profile. It has been written to be used as a decorator, so in your script, you decorate the functions you want to
profile with @profile.

@profile
def slow_function(a, b, c):
    ...

The default behavior of kernprof is to put the results into a binary file script_to_profile.py.lprof . You can tell
kernprof to immediately view the formatted results at the terminal with the [-v/--view] option. Otherwise, you can
view the results later like so:

$ python -m line_profiler script_to_profile.py.lprof

Finally timeit provides a simple way to test one liners or small expression both from the command line and the
python shell. This module will answer question such as, is it faster to do a list comprehension or use the built-in
list() when transforming a set into a list. Look for the setup keyword or -s option to add setup code.

>>> import timeit
>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
0.8187260627746582

from a terminal

$ python -m timeit '"-".join(str(n) for n in range(100))'
10000 loops, best of 3: 40.3 usec per loop

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 794

Chapter 197: Security and Cryptography
Python, being one of the most popular languages in computer and network security, has great potential in security
and cryptography. This topic deals with the cryptographic features and implementations in Python from its uses in
computer and network security to hashing and encryption/decryption algorithms.

Section 197.1: Secure Password Hashing
The PBKDF2 algorithm exposed by hashlib module can be used to perform secure password hashing. While this
algorithm cannot prevent brute-force attacks in order to recover the original password from the stored hash, it
makes such attacks very expensive.

import hashlib
import os

salt = os.urandom(16)
hash = hashlib.pbkdf2_hmac('sha256', b'password', salt, 100000)

PBKDF2 can work with any digest algorithm, the above example uses SHA256 which is usually recommended. The
random salt should be stored along with the hashed password, you will need it again in order to compare an
entered password to the stored hash. It is essential that each password is hashed with a different salt. As to the
number of rounds, it is recommended to set it as high as possible for your application.

If you want the result in hexadecimal, you can use the binascii module:

import binascii
hexhash = binascii.hexlify(hash)

Note: While PBKDF2 isn't bad, bcrypt and especially scrypt are considered stronger against brute-force attacks.
Neither is part of the Python standard library at the moment.

Section 197.2: Calculating a Message Digest
The hashlib module allows creating message digest generators via the new method. These generators will turn an
arbitrary string into a fixed-length digest:

import hashlib

h = hashlib.new('sha256')
h.update(b'Nobody expects the Spanish Inquisition.')
h.digest()
# ==> b'.\xdf\xda\xdaVR[\x12\x90\xff\x16\xfb\x17D\xcf\xb4\x82\xdd)\x14\xff\xbc\xb6Iy\x0c\x0eX\x9eF-='

Note that you can call update an arbitrary number of times before calling digest which is useful to hash a large file
chunk by chunk. You can also get the digest in hexadecimal format by using hexdigest:

h.hexdigest()
# ==> '2edfdada56525b1290ff16fb1744cfb482dd2914ffbcb649790c0e589e462d3d'

Section 197.3: Available Hashing Algorithms
hashlib.new requires the name of an algorithm when you call it to produce a generator. To find out what
algorithms are available in the current Python interpreter, use hashlib.algorithms_available:

https://en.wikipedia.org/wiki/PBKDF2
http://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pkbdf2-sha256
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 795

import hashlib
hashlib.algorithms_available
# ==> {'sha256', 'DSA-SHA', 'SHA512', 'SHA224', 'dsaWithSHA', 'SHA', 'RIPEMD160', 'ecdsa-with-SHA1',
'sha1', 'SHA384', 'md5', 'SHA1', 'MD5', 'MD4', 'SHA256', 'sha384', 'md4', 'ripemd160', 'sha224',
'sha512', 'DSA', 'dsaEncryption', 'sha', 'whirlpool'}

The returned list will vary according to platform and interpreter; make sure you check your algorithm is available.

There are also some algorithms that are guaranteed to be available on all platforms and interpreters, which are
available using hashlib.algorithms_guaranteed:

hashlib.algorithms_guaranteed
# ==> {'sha256', 'sha384', 'sha1', 'sha224', 'md5', 'sha512'}

Section 197.4: File Hashing
A hash is a function that converts a variable length sequence of bytes to a fixed length sequence. Hashing files can
be advantageous for many reasons. Hashes can be used to check if two files are identical or verify that the contents
of a file haven't been corrupted or changed.

You can use hashlib to generate a hash for a file:

import hashlib

hasher = hashlib.new('sha256')
with open('myfile', 'r') as f:
    contents = f.read()
    hasher.update(contents)

print hasher.hexdigest()

For larger files, a buffer of fixed length can be used:

import hashlib
SIZE = 65536
hasher = hashlib.new('sha256')
with open('myfile', 'r') as f:
    buffer = f.read(SIZE)
    while len(buffer) > 0:
        hasher.update(buffer)
        buffer = f.read(SIZE)
print(hasher.hexdigest())

Section 197.5: Generating RSA signatures using pycrypto
RSA can be used to create a message signature. A valid signature can only be generated with access to the private
RSA key, validating on the other hand is possible with merely the corresponding public key. So as long as the other
side knows your public key they can verify the message to be signed by you and unchanged - an approach used for
email for example. Currently, a third-party module like pycrypto is required for this functionality.

import errno

from Crypto.Hash import SHA256
from Crypto.PublicKey import RSA
from Crypto.Signature import PKCS1_v1_5

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://pypi.python.org/pypi/pycrypto
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 796

message = b'This message is from me, I promise.'

try:
    with open('privkey.pem', 'r') as f:
        key = RSA.importKey(f.read())
except IOError as e:
    if e.errno != errno.ENOENT:
        raise
    # No private key, generate a new one. This can take a few seconds.
    key = RSA.generate(4096)
    with open('privkey.pem', 'wb') as f:
        f.write(key.exportKey('PEM'))
    with open('pubkey.pem', 'wb') as f:
        f.write(key.publickey().exportKey('PEM'))

hasher = SHA256.new(message)
signer = PKCS1_v1_5.new(key)
signature = signer.sign(hasher)

Verifying the signature works similarly but uses the public key rather than the private key:

with open('pubkey.pem', 'rb') as f:
    key = RSA.importKey(f.read())
hasher = SHA256.new(message)
verifier = PKCS1_v1_5.new(key)
if verifier.verify(hasher, signature):
    print('Nice, the signature is valid!')
else:
    print('No, the message was signed with the wrong private key or modified')

Note: The above examples use PKCS#1 v1.5 signing algorithm which is very common. pycrypto also implements the
newer PKCS#1 PSS algorithm, replacing PKCS1_v1_5 by PKCS1_PSS in the examples should work if you want to use
that one. Currently there seems to be little reason to use it however.

Section 197.6: Asymmetric RSA encryption using pycrypto
Asymmetric encryption has the advantage that a message can be encrypted without exchanging a secret key with
the recipient of the message. The sender merely needs to know the recipients public key, this allows encrypting the
message in such a way that only the designated recipient (who has the corresponding private key) can decrypt it.
Currently, a third-party module like pycrypto is required for this functionality.

from Crypto.Cipher import PKCS1_OAEP
from Crypto.PublicKey import RSA

message = b'This is a very secret message.'

with open('pubkey.pem', 'rb') as f:
    key = RSA.importKey(f.read())
cipher = PKCS1_OAEP.new(key)
encrypted = cipher.encrypt(message)

The recipient can decrypt the message then if they have the right private key:

with open('privkey.pem', 'rb') as f:
    key = RSA.importKey(f.read())
cipher = PKCS1_OAEP.new(key)
decrypted = cipher.decrypt(encrypted)

http://crypto.stackexchange.com/questions/3850/is-rsassa-pkcs1-v1-5-a-good-signature-scheme-for-new-systems
https://pypi.python.org/pypi/pycrypto
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 797

Note: The above examples use PKCS#1 OAEP encryption scheme. pycrypto also implements PKCS#1 v1.5 encryption
scheme, this one is not recommended for new protocols however due to known caveats.

Section 197.7: Symmetric encryption using pycrypto
Python's built-in crypto functionality is currently limited to hashing. Encryption requires a third-party module like
pycrypto. For example, it provides the AES algorithm which is considered state of the art for symmetric encryption.
The following code will encrypt a given message using a passphrase:

import hashlib
import math
import os

from Crypto.Cipher import AES

IV_SIZE = 16    # 128 bit, fixed for the AES algorithm
KEY_SIZE = 32   # 256 bit meaning AES-256, can also be 128 or 192 bits
SALT_SIZE = 16  # This size is arbitrary

cleartext = b'Lorem ipsum'
password = b'highly secure encryption password'
salt = os.urandom(SALT_SIZE)
derived = hashlib.pbkdf2_hmac('sha256', password, salt, 100000,
                              dklen=IV_SIZE + KEY_SIZE)
iv = derived[0:IV_SIZE]
key = derived[IV_SIZE:]

encrypted = salt + AES.new(key, AES.MODE_CFB, iv).encrypt(cleartext)

The AES algorithm takes three parameters: encryption key, initialization vector (IV) and the actual message to be
encrypted. If you have a randomly generated AES key then you can use that one directly and merely generate a
random initialization vector. A passphrase doesn't have the right size however, nor would it be recommendable to
use it directly given that it isn't truly random and thus has comparably little entropy. Instead, we use the built-in
implementation of the PBKDF2 algorithm to generate a 128 bit initialization vector and 256 bit encryption key from
the password.

Note the random salt which is important to have a different initialization vector and key for each message
encrypted. This ensures in particular that two equal messages won't result in identical encrypted text, but it also
prevents attackers from reusing work spent guessing one passphrase on messages encrypted with another
passphrase. This salt has to be stored along with the encrypted message in order to derive the same initialization
vector and key for decrypting.

The following code will decrypt our message again:

salt = encrypted[0:SALT_SIZE]
derived = hashlib.pbkdf2_hmac('sha256', password, salt, 100000,
                              dklen=IV_SIZE + KEY_SIZE)
iv = derived[0:IV_SIZE]
key = derived[IV_SIZE:]
cleartext = AES.new(key, AES.MODE_CFB, iv).decrypt(encrypted[SALT_SIZE:])

http://security.stackexchange.com/questions/32050/what-specific-padding-weakness-does-oaep-address-in-rsa
https://pypi.python.org/pypi/pycrypto
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 798

Chapter 198: Secure Shell Connection in
Python
Parameter Usage
hostname This parameter tells the host to which the connection needs to be established

username username required to access the host

port host port

password password for the account

Section 198.1: ssh connection
from paramiko import client
ssh = client.SSHClient() # create a new SSHClient object
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #auto-accept unknown host keys
ssh.connect(hostname, username=username, port=port, password=password) #connect with a host
stdin, stdout, stderr = ssh.exec_command(command) # submit a command to ssh
print stdout.channel.recv_exit_status() #tells the status  1 - job failed

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 799

Chapter 199: Python Anti-Patterns
Section 199.1: Overzealous except clause
Exceptions are powerful, but a single overzealous except clause can take it all away in a single line.

try: res = get_result() res = res[0] log('got result: %r' % res) except: if not res: res = '' print('got exception')

This example demonstrates 3 symptoms of the antipattern:

The except with no exception type (line 5) will catch even healthy exceptions, including KeyboardInterrupt.1.
That will prevent the program from exiting in some cases.
The except block does not reraise the error, meaning that we won't be able to tell if the exception came from2.
within get_result or because res was an empty list.
Worst of all, if we were worried about result being empty, we've caused something much worse. If3.
get_result fails, res will stay completely unset, and the reference to res in the except block, will raise
NameError, completely masking the original error.

Always think about the type of exception you're trying to handle. Give the exceptions page a read and get a feel for
what basic exceptions exist.

Here is a fixed version of the example above:

import traceback try: res = get_result() except Exception: log_exception(traceback.format_exc()) raise try: res = res[0]
except IndexError: res = '' log('got result: %r' % res)

We catch more specific exceptions, reraising where necessary. A few more lines, but infinitely more correct.

Section 199.2: Looking before you leap with processor-
intensive function
A program can easily waste time by calling a processor-intensive function multiple times.

For example, take a function which looks like this: it returns an integer if the input value can produce one, else
None:

def intensive_f(value): # int -> Optional[int]
   # complex, and time-consuming code
   if process_has_failed:
       return None
   return integer_output

And it could be used in the following way:

x = 5
if intensive_f(x) is not None:
    print(intensive_f(x) / 2)
else:
    print(x, "could not be processed")

print(x)

Whilst this will work, it has the problem of calling intensive_f, which doubles the length of time for the code to
run. A better solution would be to get the return value of the function beforehand.

https://docs.python.org/2/library/exceptions.html#exceptions.KeyboardInterrupt
https://docs.python.org/2/library/exceptions.html#exceptions.NameError
https://docs.python.org/2/library/exceptions.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 800

x = 5
result = intensive_f(x)
if result is not None:
    print(result / 2)
else:
    print(x, "could not be processed")

However, a clearer and possibly more pythonic way is to use exceptions, for example:

x = 5
try:
    print(intensive_f(x) / 2)
except TypeError: # The exception raised if None + 1 is attempted
    print(x, "could not be processed")

Here no temporary variable is needed. It may often be preferable to use a assert statement, and to catch the
AssertionError instead.

Dictionary keys

A common example of where this may be found is accessing dictionary keys. For example compare:

bird_speeds = get_very_long_dictionary()

if "european swallow" in bird_speeds:
    speed = bird_speeds["european swallow"]
else:
    speed = input("What is the air-speed velocity of an unladen swallow?")

print(speed)

with:

bird_speeds = get_very_long_dictionary()

try:
    speed = bird_speeds["european swallow"]
except KeyError:
    speed = input("What is the air-speed velocity of an unladen swallow?")

print(speed)

The first example has to look through the dictionary twice, and as this is a long dictionary, it may take a long time to
do so each time. The second only requires one search through the dictionary, and thus saves a lot of processor
time.

An alternative to this is to use dict.get(key, default), however many circumstances may require more complex
operations to be done in the case that the key is not present

https://docs.python.org/3/glossary.html#term-eafp
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


VIDEO: Machine
Learning, Data Science
and Deep Learning with
Python
Complete hands-on machine learning tutorial with
data science, Tensorflow, artificial intelligence,
and neural networks

✔ Build artificial neural networks with Tensorflow and Keras
✔ Classify images, data, and sentiments using deep learning
✔ Make predictions using linear regression, polynomial regression, and multivariate regression
✔ Data Visualization with MatPlotLib and Seaborn
✔ Implement machine learning at massive scale with Apache Spark's MLLib
✔ Understand reinforcement learning - and how to build a Pac-Man bot
✔ Classify data using K-Means clustering, Support Vector Machines (SVM), KNN, Decision Trees,
Naive Bayes, and PCA
✔ Use train/test and K-Fold cross validation to choose and tune your models
✔ Build a movie recommender system using item-based and user-based collaborative filtering

Watch Today →

https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F
https://click.linksynergy.com/deeplink?id=bqi6Q2255u4&mid=39197&murl=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Fdata-science-and-machine-learning-with-python-hands-on%2F


GoalKicker.com – Python® Notes for Professionals 802

Chapter 200: Common Pitfalls
Python is a language meant to be clear and readable without any ambiguities and unexpected behaviors.
Unfortunately, these goals are not achievable in all cases, and that is why Python does have a few corner cases
where it might do something different than what you were expecting.

This section will show you some issues that you might encounter when writing Python code.

Section 200.1: List multiplication and common references
Consider the case of creating a nested list structure by multiplying:

li = [[]] * 3
print(li)
# Out: [[], [], []]

At first glance we would think we have a list of containing 3 different nested lists. Let's try to append 1 to the first
one:

li[0].append(1)
print(li)
# Out: [[1], [1], [1]]

1 got appended to all of the lists in li.

The reason is that [[]] * 3 doesn't create a list of 3 different lists. Rather, it creates a list holding 3 references
to the same list object. As such, when we append to li[0] the change is visible in all sub-elements of li. This is
equivalent of:

li = []
element = [[]]
li = element + element + element
print(li)
# Out: [[], [], []]
element.append(1)
print(li)
# Out: [[1], [1], [1]]

This can be further corroborated if we print the memory addresses of the contained list by using id:

li = [[]] * 3
print([id(inner_list) for inner_list in li])
# Out: [6830760, 6830760, 6830760]

The solution is to create the inner lists with a loop:

li = [[] for _ in range(3)]

Instead of creating a single list and then making 3 references to it, we now create 3 different distinct lists. This,
again, can be verified by using the id function:

print([id(inner_list) for inner_list in li])
# Out: [6331048, 6331528, 6331488]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 803

You can also do this. It causes a new empty list to be created in each append call.

>>> li = []
>>> li.append([])
>>> li.append([])
>>> li.append([])
>>> for k in li: print(id(k))
...
4315469256
4315564552
4315564808

Don't use index to loop over a sequence.

Don't:

for i in range(len(tab)):
    print(tab[i])

Do:

for elem in tab:
    print(elem)

for will automate most iteration operations for you.

Use enumerate if you really need both the index and the element.

for i, elem in enumerate(tab):
     print((i, elem))

Be careful when using "==" to check against True or False

if (var == True):
    # this will execute if var is True or 1, 1.0, 1L

if (var != True):
    # this will execute if var is neither True nor 1

if (var == False):
    # this will execute if var is False or 0 (or 0.0, 0L, 0j)

if (var == None):
    # only execute if var is None

if var:
    # execute if var is a non-empty string/list/dictionary/tuple, non-0, etc

if not var:
    # execute if var is "", {}, [], (), 0, None, etc.

if var is True:
    # only execute if var is boolean True, not 1

if var is False:
    # only execute if var is boolean False, not 0

if var is None:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 804

    # same as var == None

Do not check if you can, just do it and handle the error

Pythonistas usually say "It's easier to ask for forgiveness than permission".

Don't:

if os.path.isfile(file_path):
    file = open(file_path)
else:
    # do something

Do:

try:
    file = open(file_path)
except OSError as e:
    # do something

Or even better with Python 2.6+:

with open(file_path) as file:

It is much better because it is much more generic. You can apply try/except to almost anything. You don't need to
care about what to do to prevent it, just care about the error you are risking.

Do not check against type

Python is dynamically typed, therefore checking for type makes you lose flexibility. Instead, use duck typing by
checking behavior. If you expect a string in a function, then use str() to convert any object to a string. If you expect
a list, use list() to convert any iterable to a list.

Don't:

def foo(name):
    if isinstance(name, str):
        print(name.lower())

def bar(listing):
    if isinstance(listing, list):
        listing.extend((1, 2, 3))
        return ", ".join(listing)

Do:

def foo(name) :
    print(str(name).lower())

def bar(listing) :
    l = list(listing)
    l.extend((1, 2, 3))
    return ", ".join(l)

Using the last way, foo will accept any object. bar will accept strings, tuples, sets, lists and much more. Cheap DRY.

Don't mix spaces and tabs

https://stackoverflow.com/questions/4205130/what-is-duck-typing
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 805

Use object as first parent

This is tricky, but it will bite you as your program grows. There are old and new classes in Python 2.x. The old ones
are, well, old. They lack some features, and can have awkward behavior with inheritance. To be usable, any of your
class must be of the "new style". To do so, make it inherit from object.

Don't:

class Father:
    pass

class Child(Father):
    pass

Do:

class Father(object):
    pass

class Child(Father):
    pass

In Python 3.x all classes are new style so you don't need to do that.

Don't initialize class attributes outside the init method

People coming from other languages find it tempting because that is what you do in Java or PHP. You write the class
name, then list your attributes and give them a default value. It seems to work in Python, however, this doesn't
work the way you think. Doing that will setup class attributes (static attributes), then when you will try to get the
object attribute, it will gives you its value unless it's empty. In that case it will return the class attributes. It implies
two big hazards:

If the class attribute is changed, then the initial value is changed.

If you set a mutable object as a default value, you'll get the same object shared across instances.

Don't (unless you want static):

class Car(object):
    color = "red"
    wheels = [Wheel(), Wheel(), Wheel(), Wheel()]

Do:

class Car(object):
    def __init__(self):
        self.color = "red"
        self.wheels = [Wheel(), Wheel(), Wheel(), Wheel()]

Section 200.2: Mutable default argument
def foo(li=[]):
    li.append(1)
    print(li)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 806

foo([2])
# Out: [2, 1]
foo([3])
# Out: [3, 1]

This code behaves as expected, but what if we don't pass an argument?

foo()
# Out: [1] As expected...

foo()
# Out: [1, 1]  Not as expected...

This is because default arguments of functions and methods are evaluated at definition time rather than run time.
So we only ever have a single instance of the li list.

The way to get around it is to use only immutable types for default arguments:

def foo(li=None):
    if not li:
        li = []
    li.append(1)
    print(li)

foo()
# Out: [1]

foo()
# Out: [1]

While an improvement and although if not li correctly evaluates to False, many other objects do as well, such as
zero-length sequences. The following example arguments can cause unintended results:

x = []
foo(li=x)
# Out: [1]

foo(li="")
# Out: [1]

foo(li=0)
# Out: [1]

The idiomatic approach is to directly check the argument against the None object:

def foo(li=None):
    if li is None:
        li = []
    li.append(1)
    print(li)

foo()
# Out: [1]

Section 200.3: Changing the sequence you are iterating over
A for loop iterates over a sequence, so altering this sequence inside the loop could lead to unexpected results
(especially when adding or removing elements):

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 807

alist = [0, 1, 2]
for index, value in enumerate(alist):
    alist.pop(index)
print(alist)
# Out: [1]

Note: list.pop() is being used to remove elements from the list.

The second element was not deleted because the iteration goes through the indices in order. The above loop
iterates twice, with the following results:

# Iteration #1
index = 0
alist = [0, 1, 2]
alist.pop(0) # removes '0'

# Iteration #2
index = 1
alist = [1, 2]
alist.pop(1) # removes '2'

# loop terminates, but alist is not empty:
alist = [1]

This problem arises because the indices are changing while iterating in the direction of increasing index. To avoid
this problem, you can iterate through the loop backwards:

alist = [1,2,3,4,5,6,7]
for index, item in reversed(list(enumerate(alist))):
    # delete all even items
    if item % 2 == 0:
        alist.pop(index)
print(alist)
# Out: [1, 3, 5, 7]

By iterating through the loop starting at the end, as items are removed (or added), it does not affect the indices of
items earlier in the list. So this example will properly remove all items that are even from alist.

A similar problem arises when inserting or appending elements to a list that you are iterating over, which can
result in an infinite loop:

alist = [0, 1, 2]
for index, value in enumerate(alist):
    # break to avoid infinite loop:
    if index == 20:    
        break          
    alist.insert(index, 'a')
print(alist)
# Out (abbreviated): ['a', 'a', ..., 'a', 'a',  0,   1,   2]

Without the break condition the loop would insert 'a' as long as the computer does not run out of memory and
the program is allowed to continue. In a situation like this, it is usually preferred to create a new list, and add items
to the new list as you loop through the original list.

When using a for loop, you cannot modify the list elements with the placeholder variable:

alist = [1,2,3,4]

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 808

for item in alist:
    if item % 2 == 0:
        item = 'even'
print(alist)
# Out: [1,2,3,4]

In the above example, changing item doesn't actually change anything in the original list. You need to use the
list index (alist[2]), and enumerate() works well for this:

alist = [1,2,3,4]
for index, item in enumerate(alist):
    if item % 2 == 0:
        alist[index] = 'even'
print(alist)
# Out: [1, 'even', 3, 'even']

A while loop might be a better choice in some cases:

If you are going to delete all the items in the list:

zlist = [0, 1, 2]
while zlist:
    print(zlist[0])
    zlist.pop(0)
print('After: zlist =', zlist)

# Out: 0
#      1
#      2
# After: zlist = []

Although simply resetting zlist will accomplish the same result;

zlist = []

The above example can also be combined with len() to stop after a certain point, or to delete all but x items in the
list:

zlist = [0, 1, 2]
x = 1
while len(zlist) > x:
    print(zlist[0])
    zlist.pop(0)
print('After: zlist =', zlist)

# Out: 0
#      1
# After: zlist = [2]

Or to loop through a list while deleting elements that meet a certain condition (in this case deleting all even
elements):

zlist = [1,2,3,4,5]
i = 0
while i < len(zlist):
    if zlist[i] % 2 == 0:
        zlist.pop(i)
    else:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 809

        i += 1
print(zlist)
# Out: [1, 3, 5]

Notice that you don't increment i after deleting an element. By deleting the element at zlist[i], the index of the
next item has decreased by one, so by checking zlist[i] with the same value for i on the next iteration, you will
be correctly checking the next item in the list.

A contrary way to think about removing unwanted items from a list, is to add wanted items to a new list. The
following example is an alternative to the latter while loop example:

zlist = [1,2,3,4,5]

z_temp = []
for item in zlist:
    if item % 2 != 0:
        z_temp.append(item)
zlist = z_temp
print(zlist)
# Out: [1, 3, 5]

Here we are funneling desired results into a new list. We can then optionally reassign the temporary list to the
original variable.

With this trend of thinking, you can invoke one of Python's most elegant and powerful features, list
comprehensions, which eliminates temporary lists and diverges from the previously discussed in-place list/index
mutation ideology.

zlist = [1,2,3,4,5]
[item for item in zlist if item % 2 != 0]
# Out: [1, 3, 5]

Section 200.4: Integer and String identity
Python uses internal caching for a range of integers to reduce unnecessary overhead from their repeated creation.

In effect, this can lead to confusing behavior when comparing integer identities:

>>> -8 is (-7 - 1)
False
>>> -3 is (-2 - 1)
True

and, using another example:

>>> (255 + 1) is (255 + 1)
True
>>> (256 + 1) is (256 + 1)
False

Wait what?

We can see that the identity operation is yields True for some integers (-3, 256) but no for others (-8, 257).

To be more specific, integers in the range [-5, 256] are internally cached during interpreter startup and are only
created once. As such, they are identical and comparing their identities with is yields True; integers outside this

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 810

range are (usually) created on-the-fly and their identities compare to False.

This is a common pitfall since this is a common range for testing, but often enough, the code fails in the later
staging process (or worse - production) with no apparent reason after working perfectly in development.

The solution is to always compare values using the equality (==) operator and not the identity (is) operator.

Python also keeps references to commonly used strings and can result in similarly confusing behavior when
comparing identities (i.e. using is) of strings.

>>> 'python' is 'py' + 'thon'
True

The string 'python' is commonly used, so Python has one object that all references to the string 'python' use.

For uncommon strings, comparing identity fails even when the strings are equal.

>>> 'this is not a common string' is 'this is not' + ' a common string'
False
>>> 'this is not a common string' == 'this is not' + ' a common string'
True

So, just like the rule for Integers, always compare string values using the equality (==) operator and not the
identity (is) operator.

Section 200.5: Dictionaries are unordered
You might expect a Python dictionary to be sorted by keys like, for example, a C++ std::map, but this is not the
case:

myDict = {'first': 1, 'second': 2, 'third': 3}
print(myDict)
# Out: {'first': 1, 'second': 2, 'third': 3}

print([k for k in myDict])
# Out: ['second', 'third', 'first']

Python doesn't have any built-in class that automatically sorts its elements by key.

However, if sorting is not a must, and you just want your dictionary to remember the order of insertion of its
key/value pairs, you can use collections.OrderedDict:

from collections import OrderedDict

oDict = OrderedDict([('first', 1), ('second', 2), ('third', 3)])

print([k for k in oDict])
# Out: ['first', 'second', 'third']

Keep in mind that initializing an OrderedDict with a standard dictionary won't sort in any way the dictionary for
you. All that this structure does is to preserve the order of key insertion.

The implementation of dictionaries was changed in Python 3.6 to improve their memory consumption. A side effect
of this new implementation is that it also preserves the order of keyword arguments passed to a function:

Python 3.x Version ≥ 3.6

https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 811

def func(**kw): print(kw.keys())

func(a=1, b=2, c=3, d=4, e=5)
dict_keys(['a', 'b', 'c', 'd', 'e']) # expected order

Caveat: beware that “the order-preserving aspect of this new implementation is considered an implementation
detail and should not be relied upon”, as it may change in the future.

Section 200.6: Variable leaking in list comprehensions and for
loops
Consider the following list comprehension

Python 2.x Version ≤ 2.7

i = 0
a = [i for i in range(3)]
print(i) # Outputs 2

This occurs only in Python 2 due to the fact that the list comprehension “leaks” the loop control variable into the
surrounding scope (source). This behavior can lead to hard-to-find bugs and it has been fixed in Python 3.

Python 3.x Version ≥ 3.0

i = 0
a = [i for i in range(3)]
print(i) # Outputs 0

Similarly, for loops have no private scope for their iteration variable

i = 0
for i in range(3):
    pass
print(i) # Outputs 2

This type of behavior occurs both in Python 2 and Python 3.

To avoid issues with leaking variables, use new variables in list comprehensions and for loops as appropriate.

Section 200.7: Chaining of or operator
When testing for any of several equality comparisons:

if a == 3 or b == 3 or c == 3:

it is tempting to abbreviate this to

if a or b or c == 3: # Wrong

This is wrong; the or operator has lower precedence than ==, so the expression will be evaluated as if (a) or (b)
or (c == 3):. The correct way is explicitly checking all the conditions:

if a == 3 or b == 3 or c == 3:  # Right Way

Alternately, the built-in any() function may be used in place of chained or operators:

https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
http://python-history.blogspot.com/2010/06/from-list-comprehensions-to-generator.html
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 812

if any([a == 3, b == 3, c == 3]): # Right

Or, to make it more efficient:

if any(x == 3 for x in (a, b, c)): # Right

Or, to make it shorter:

if 3 in (a, b, c): # Right

Here, we use the in operator to test if the value is present in a tuple containing the values we want to compare
against.

Similarly, it is incorrect to write

if a == 1 or 2 or 3:

which should be written as

if a in (1, 2, 3):

Section 200.8: sys.argv[0] is the name of the file being
executed
The first element of sys.argv[0] is the name of the python file being executed. The remaining elements are the
script arguments.

# script.py
import sys

print(sys.argv[0])
print(sys.argv)

$ python script.py
=> script.py
=> ['script.py']

$ python script.py fizz
=> script.py
=> ['script.py', 'fizz']

$ python script.py fizz buzz
=> script.py
=> ['script.py', 'fizz', 'buzz']

Section 200.9: Accessing int literals' attributes
You might have heard that everything in Python is an object, even literals. This means, for example, 7 is an object as
well, which means it has attributes. For example, one of these attributes is the bit_length. It returns the amount of
bits needed to represent the value it is called upon.

x = 7
x.bit_length()
# Out: 3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 813

Seeing the above code works, you might intuitively think that 7.bit_length() would work as well, only to find out it
raises a SyntaxError. Why? because the interpreter needs to differentiate between an attribute access and a
floating number (for example 7.2 or 7.bit_length()). It can't, and that's why an exception is raised.

There are a few ways to access an int literals' attributes:

# parenthesis
(7).bit_length()
# a space
7 .bit_length()

Using two dots (like this 7..bit_length()) doesn't work in this case, because that creates a float literal and floats
don't have the bit_length() method.

This problem doesn't exist when accessing float literals' attributes since the interpreter is "smart" enough to know
that a float literal can't contain two ., for example:

7.2.as_integer_ratio()
# Out: (8106479329266893, 1125899906842624)

Section 200.10: Global Interpreter Lock (GIL) and blocking
threads
Plenty has been written about Python's GIL. It can sometimes cause confusion when dealing with multi-threaded
(not to be confused with multiprocess) applications.

Here's an example:

import math
from threading import Thread

def calc_fact(num):
    math.factorial(num)

num = 600000
t = Thread(target=calc_fact, daemon=True, args=[num])
print("About to calculate: {}!".format(num))
t.start()
print("Calculating...")
t.join()
print("Calculated")

You would expect to see Calculating... printed out immediately after the thread is started, we wanted the
calculation to happen in a new thread after all! But in actuality, you see it get printed after the calculation is
complete. That is because the new thread relies on a C function (math.factorial) which will lock the GIL while it
executes.

There are a couple ways around this. The first is to implement your factorial function in native Python. This will
allow the main thread to grab control while you are inside your loop. The downside is that this solution will be a lot
slower, since we're not using the C function anymore.

def calc_fact(num):
    """ A slow version of factorial in native Python """
    res = 1
    while num >= 1:
        res = res * num

https://en.wikipedia.org/wiki/Global_interpreter_lock
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
http://python-notes.curiousefficiency.org/en/latest/python3/multicore_python.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 814

        num -= 1
    return res

You can also sleep for a period of time before starting your execution. Note: this won't actually allow your program
to interrupt the computation happening inside the C function, but it will allow your main thread to continue after
the spawn, which is what you may expect.

def calc_fact(num):
    sleep(0.001)
    math.factorial(num)

Section 200.11: Multiple return
Function xyz returns two values a and b:

def xyz():
  return a, b

Code calling xyz stores result into one variable assuming xyz returns only one value:

t = xyz()

Value of t is actually a tuple (a, b) so any action on t assuming it is not a tuple may fail deep in the code with a an
unexpected error about tuples.

TypeError: type tuple doesn't define ... method

The fix would be to do:

a, b = xyz()

Beginners will have trouble finding the reason of this message by only reading the tuple error message !

Section 200.12: Pythonic JSON keys
my_var = 'bla';
api_key = 'key';
...lots of code here...
params = {"language": "en", my_var: api_key}

If you are used to JavaScript, variable evaluation in Python dictionaries won't be what you expect it to be. This
statement in JavaScript would result in the params object as follows:

{
    "language": "en",
    "my_var": "key"
}

In Python, however, it would result in the following dictionary:

{
    "language": "en",
    "bla": "key"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 815

}

my_var is evaluated and its value is used as the key.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 816

Chapter 201: Hidden Features
Section 201.1: Operator Overloading
Everything in Python is an object. Each object has some special internal methods which it uses to interact with other
objects. Generally, these methods follow the __action__ naming convention. Collectively, this is termed as the
Python Data Model.

You can overload any of these methods. This is commonly used in operator overloading in Python. Below is an
example of operator overloading using Python's data model. The Vector class creates a simple vector of two
variables. We'll add appropriate support for mathematical operations of two vectors using operator overloading.

class Vector(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __add__(self, v):
        # Addition with another vector.
        return Vector(self.x + v.x, self.y + v.y)

    def __sub__(self, v):
        # Subtraction with another vector.
        return Vector(self.x - v.x, self.y - v.y)

    def __mul__(self, s):
        # Multiplication with a scalar.
        return Vector(self.x * s, self.y * s)

    def __div__(self, s):
        # Division with a scalar.
        float_s = float(s)
        return Vector(self.x / float_s, self.y / float_s)

    def __floordiv__(self, s):
        # Division with a scalar (value floored).
        return Vector(self.x // s, self.y // s)

    def __repr__(self):
        # Print friendly representation of Vector class. Else, it would
        # show up like, <__main__.Vector instance at 0x01DDDDC8>.
        return '<Vector (%f, %f)>' % (self.x, self.y, )

a = Vector(3, 5)
b = Vector(2, 7)

print a + b # Output: <Vector (5.000000, 12.000000)>
print b - a # Output: <Vector (-1.000000, 2.000000)>
print b * 1.3 # Output: <Vector (2.600000, 9.100000)>
print a // 17 # Output: <Vector (0.000000, 0.000000)>
print a / 17 # Output: <Vector (0.176471, 0.294118)>

The above example demonstrates overloading of basic numeric operators. A comprehensive list can be found here.

https://docs.python.org/2/reference/datamodel.html
https://docs.python.org/2/reference/datamodel.html?object.__getattr__#emulating-numeric-types
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 817

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Çağatay Uslu Chapter 20
2Cubed Chapters 39, 122 and 147
4444 Chapter 21
A. Ciclet Chapter 196
A. Raza Chapter 1
Aaron Christiansen Chapters 40 and 109
Aaron Critchley Chapter 1
Aaron Hall Chapter 38
Abhishek Kumar Chapter 149
abukaj Chapter 200
acdr Chapter 21
Adam Brenecki Chapter 85
Adam Matan Chapters 84 and 104
Adam_92 Chapter 40
adeora Chapter 197
Aditya Chapters 40, 53, 134, 195 and 200
Adrian Antunez Chapter 88
Adriano Chapter 33
afeique Chapter 1
Aidan Chapter 75
Ajean Chapter 5
Akshat Mahajan Chapters 33, 67, 120 and 146
aldanor Chapter 40
Aldo Chapter 103
Alec Chapter 200
alecxe Chapters 5, 40, 87, 92 and 93
alejosocorro Chapters 1 and 75
Alex Gaynor Chapter 55
Alex L Chapter 16
Alex Logan Chapter 1
AlexV Chapter 33
Alfe Chapter 88
alfonso.kim Chapter 16
ALinuxLover Chapter 1
Alireza Savand Chapter 192
Alleo Chapters 21 and 149
Alon Alexander Chapter 116
amblina Chapters 83, 85 and 129
Ami Tavory Chapter 192
amin Chapter 9
Amir Rachum Chapters 19 and 39
Amitay Stern Chapters 41 and 91
Anaphory Chapter 159
anatoly techtonik Chapter 160
Andrea Chapter 1
andrew Chapter 131
Andrew Schade Chapter 84

mailto:web@petercv.com
https://stackoverflow.com/users/4962122/
https://stackoverflow.com/users/4962122/
https://stackoverflow.com/users/4962122/
https://stackoverflow.com/users/6119465/
https://stackoverflow.com/users/1464444/
https://stackoverflow.com/users/6817418/
https://stackoverflow.com/users/3374681/
https://stackoverflow.com/users/2626000/
https://stackoverflow.com/users/4323812/
https://stackoverflow.com/users/541136/
https://stackoverflow.com/users/7121181/
https://stackoverflow.com/users/4879688/
https://stackoverflow.com/users/5044921/
https://stackoverflow.com/users/445398/
https://stackoverflow.com/users/51197/
https://stackoverflow.com/users/1357409/
https://stackoverflow.com/users/2250231/
https://stackoverflow.com/users/6524169/
https://stackoverflow.com/users/1086326/
https://stackoverflow.com/users/2428123/
https://stackoverflow.com/users/737230/
https://stackoverflow.com/users/2697955/
https://stackoverflow.com/users/3100515/
https://stackoverflow.com/users/2271269/
https://stackoverflow.com/users/1115659/
https://stackoverflow.com/users/3663705/
https://stackoverflow.com/users/5719759/
https://stackoverflow.com/users/771848/
https://stackoverflow.com/users/1330831/
https://stackoverflow.com/users/37181/
https://stackoverflow.com/users/2899630/
https://stackoverflow.com/users/6161714/
https://stackoverflow.com/users/248723/
https://stackoverflow.com/users/1281485/
https://stackoverflow.com/users/199236/
https://stackoverflow.com/users/6712764/
https://stackoverflow.com/users/636136/
https://stackoverflow.com/users/498892/
https://stackoverflow.com/users/6338083/
https://stackoverflow.com/users/3759777/
https://stackoverflow.com/users/3510736/
https://stackoverflow.com/users/669017/
https://stackoverflow.com/users/166067/
https://stackoverflow.com/users/3676450/
https://stackoverflow.com/users/1274613/
https://stackoverflow.com/users/239247/
https://stackoverflow.com/users/909742/
https://stackoverflow.com/users/7582820/
https://stackoverflow.com/users/4877634/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 818

Andrii Abramov Chapter 1
Andrzej Pronobis Chapters 8, 38 and 55
Andy Chapters 1, 5, 7, 17, 33, 51, 82 and 88
Andy Hayden Chapters 8, 33, 67, 73, 75, 77, 98 and 149
angussidney Chapter 1
Ani Menon Chapters 1, 4, 40, 149 and 154
Annonymous Chapters 78, 87 and 199
Anthony Pham Chapters 13, 15, 16, 19, 20, 30, 33, 43, 45, 55, 60, 70 and 179
Antoine Bolvy Chapters 1 and 149
Antoine Pinsard Chapter 39
Antti Haapala Chapters 5, 16, 72, 87 and 106
Antwan Chapter 149
APerson Chapters 21, 69 and 72
Aquib Javed Khan Chapter 1
Ares Chapters 1, 15, 20 and 41
Arkady Chapter 33
Arpit Solanki Chapters 1, 82 and 125
Artem Kolontay Chapter 173
ArtOfCode Chapters 67, 173 and 197
Arun Chapters 65 and 108
Aryaman Arora Chapter 179
ashes999 Chapter 75
asmeurer Chapters 45 and 47
atayenel Chapter 124
Athari Chapter 151
Avantol13 Chapter 38
avb Chapter 30
Axe Chapters 21 and 149
B8vrede Chapters 1, 40, 75 and 103
Baaing Cow Chapters 1 and 200
Bahrom Chapter 8
Bakuriu Chapter 149
balki Chapter 53
Barry Chapter 20
Bastian Chapter 86
bbayles Chapter 128
Beall619 Chapters 74 and 101
bee Chapters 161 and 164
Benedict Bunting Chapter 99
Bharel Chapters 30 and 149
Bhargav Chapter 40
Bhargav Rao Chapters 41, 149 and 200
bignose Chapter 149
Billy Chapter 200
Biswa_9937 Chapters 178, 182 and 183
bitchaser Chapter 149
bixel Chapter 200
blubberdiblub Chapter 177
blueberryfields Chapter 181
blueenvelope Chapters 9 and 20
Bluethon Chapter 149
boboquack Chapters 10, 11 and 18
bogdanciobanu Chapter 111

https://stackoverflow.com/users/5091346/
https://stackoverflow.com/users/1576602/
https://stackoverflow.com/users/189134/
https://stackoverflow.com/users/1240268/
https://stackoverflow.com/users/4622463/
https://stackoverflow.com/users/2142994/
https://stackoverflow.com/users/3334697/
https://stackoverflow.com/users/4052384/
https://stackoverflow.com/users/2367848/
https://stackoverflow.com/users/1529346/
https://stackoverflow.com/users/918959/
https://stackoverflow.com/users/106287/
https://stackoverflow.com/users/1757964/
https://stackoverflow.com/users/5404894/
https://stackoverflow.com/users/2887760/
https://stackoverflow.com/users/1626/
https://stackoverflow.com/users/5250746/
https://stackoverflow.com/users/5198222/
https://stackoverflow.com/users/3160466/
https://stackoverflow.com/users/5803233/
https://stackoverflow.com/users/4343241/
https://stackoverflow.com/users/210780/
https://stackoverflow.com/users/161801/
https://stackoverflow.com/users/4982148/
https://stackoverflow.com/users/293099/
https://stackoverflow.com/users/4175042/
https://stackoverflow.com/users/3095014/
https://stackoverflow.com/users/705471/
https://stackoverflow.com/users/2263652/
https://stackoverflow.com/users/7154241/
https://stackoverflow.com/users/2302482/
https://stackoverflow.com/users/510937/
https://stackoverflow.com/users/463758/
https://stackoverflow.com/users/2069064/
https://stackoverflow.com/users/1075374/
https://stackoverflow.com/users/353839/
https://stackoverflow.com/users/6711420/
https://stackoverflow.com/users/6220620/
https://stackoverflow.com/users/7981254/
https://stackoverflow.com/users/1658617/
https://stackoverflow.com/users/2054527/
https://stackoverflow.com/users/4099593/
https://stackoverflow.com/users/70157/
https://stackoverflow.com/users/7007605/
https://stackoverflow.com/users/8117998/
https://stackoverflow.com/users/4350985/
https://stackoverflow.com/users/2834918/
https://stackoverflow.com/users/794539/
https://stackoverflow.com/users/173773/
https://stackoverflow.com/users/4049036/
https://stackoverflow.com/users/4757521/
https://stackoverflow.com/users/6936386/
https://stackoverflow.com/users/1513091/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 819

Bonifacio2 Chapter 64
BoppreH Chapter 19
Bosoneando Chapter 46
Božo Stojković Chapters 1, 14, 21, 33 and 149
bpachev Chapter 53
Brendan Abel Chapter 84
brennan Chapter 173
Brett Cannon Chapters 11 and 43
Brian C Chapter 1
Brien Chapter 41
Bryan P Chapter 1
BSL Chapters 1 and 197
Burhan Khalid Chapter 19
BusyAnt Chapters 1, 20, 43, 60, 78 and 88
Buzz Chapter 18
Cache Staheli Chapter 41
CamelBackNotation Chapter 33
Cameron Gagnon Chapter 149
Camsbury Chapters 9 and 33
caped114 Chapter 41
carrdelling Chapter 77
Cbeb24404 Chapter 1
ceruleus Chapter 1
cfi Chapters 21, 26 and 69
Chandan Purohit Chapters 20 and 33
ChaoticTwist Chapters 21, 33, 41 and 107
Charles Chapters 10, 21, 30, 41, 149 and 200
Charul Chapter 167
Chinmay Hegde Chapters 50, 94, 132, 164 and 171
Chong Tang Chapter 21
Chris Hunt Chapter 16
Chris Larson Chapter 33
Chris Midgley Chapter 1
Chris Mueller Chapter 19
Christian Ternus Chapters 1, 16, 43, 51 and 78
Christofer Ohlsson Chapter 45
Christophe Roussy Chapter 200
Chromium Chapter 134
Cilyan Chapter 170
Cimbali Chapter 8
cizixs Chapters 19, 20 and 128
cjds Chapters 110 and 134
Clíodhna Chapter 1
Claudiu Chapters 1, 31, 67, 75, 80, 83, 88, 111, 118, 153, 192 and 193
Clayton Wahlstrom Chapter 149
cledoux Chapter 108
CodenameLambda Chapters 1 and 67
Cody Piersall Chapter 8
Colin Yang Chapter 149
Comrade SparklePony Chapters 180 and 181
Conrad.Dean Chapters 1, 5, 21, 38 and 43
crhodes Chapter 30
c�ʟ�s���� Chapters 1, 149, 161 and 191

https://stackoverflow.com/users/1812322/
https://stackoverflow.com/users/252218/
https://stackoverflow.com/users/6620417/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4936137/
https://stackoverflow.com/users/4317531/
https://stackoverflow.com/users/1547004/
https://stackoverflow.com/users/6085135/
https://stackoverflow.com/users/236574/
https://stackoverflow.com/users/1258509/
https://stackoverflow.com/users/893324/
https://stackoverflow.com/users/1224158/
https://stackoverflow.com/users/6539733/
https://stackoverflow.com/users/790387/
https://stackoverflow.com/users/5018771/
https://stackoverflow.com/users/3586325/
https://stackoverflow.com/users/4816518/
https://stackoverflow.com/users/4368946/
https://stackoverflow.com/users/2319588/
https://stackoverflow.com/users/3933810/
https://stackoverflow.com/users/3163022/
https://stackoverflow.com/users/6014153/
https://stackoverflow.com/users/7074124/
https://stackoverflow.com/users/3114900/
https://stackoverflow.com/users/923794/
https://stackoverflow.com/users/4618272/
https://stackoverflow.com/users/5996838/
https://stackoverflow.com/users/5679756/
https://stackoverflow.com/users/2596515/
https://stackoverflow.com/users/4168903/
https://stackoverflow.com/users/1895314/
https://stackoverflow.com/users/1698058/
https://stackoverflow.com/users/214150/
https://stackoverflow.com/users/2591803/
https://stackoverflow.com/users/3254859/
https://stackoverflow.com/users/2797476/
https://stackoverflow.com/users/1223463/
https://stackoverflow.com/users/657427/
https://stackoverflow.com/users/5264490/
https://stackoverflow.com/users/1970751/
https://stackoverflow.com/users/1387346/
https://stackoverflow.com/users/1925083/
https://stackoverflow.com/users/1059273/
https://stackoverflow.com/users/1905360/
https://stackoverflow.com/users/15055/
https://stackoverflow.com/users/5645103/
https://stackoverflow.com/users/558820/
https://stackoverflow.com/users/4696955/
https://stackoverflow.com/users/1612701/
https://stackoverflow.com/users/5478848/
https://stackoverflow.com/users/7254591/
https://stackoverflow.com/users/656833/
https://stackoverflow.com/users/2039976/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://stackoverflow.com/users/4909087/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 820

Dair Chapters 11, 120 and 173
Daksh Gupta Chapters 1 and 38
Dania Chapter 1
danidee Chapter 33
Daniel Chapter 43
Daniil Ryzhkov Chapter 173
Darkade Chapter 173
Darth Kotik Chapter 16
Darth Shadow Chapters 1, 40, 75, 97, 149 and 173
Dartmouth Chapters 1, 62, 149 and 150
Dave J Chapters 40 and 149
David Chapters 9, 33, 124 and 161
David Cullen Chapters 30 and 121
David Heyman Chapters 41 and 149
davidism Chapter 13
DawnPaladin Chapter 33
Dee Chapter 186
deeenes Chapters 1, 20 and 67
deepakkt Chapter 14
DeepSpace Chapters 9, 16, 77, 100, 149 and 200
Delgan Chapters 1, 16, 20 and 40
denvaar Chapter 167
depperm Chapters 1, 3, 38, 41 and 99
DevD Chapter 1
Devesh Saini Chapter 115
DhiaTN Chapter 16
dhimanta Chapters 184 and 185
Dilettant Chapter 200
Dima Tisnek Chapter 21
djaszczurowski Chapter 167
Doc Chapter 143
dodell Chapter 1
Doraemon Chapter 29
Doug Henderson Chapter 41
Douglas Starnes Chapter 1
Dov Chapter 30
dreftymac Chapter 40
driax Chapters 39, 75 and 88
Duh Chapter 149
Dunatotatos Chapter 171
dwanderson Chapter 149
eandersson Chapter 127
edwinksl Chapter 173
eenblam Chapter 21
Elazar Chapters 1, 7, 8, 13, 15, 16, 20, 21, 28, 38, 41, 67, 87, 111, 144 and 149
Eleftheria Chapter 113
elegent Chapter 33
Ellis Chapters 20 and 45
Elodin Chapters 33 and 195
Emma Chapters 20 and 21
Enamul Hassan Chapter 16
engineercoding Chapter 192
Enrico Maria De Angelis Chapter 1

https://stackoverflow.com/users/667648/
https://stackoverflow.com/users/5662469/
https://stackoverflow.com/users/1463823/
https://stackoverflow.com/users/3734244/
https://stackoverflow.com/users/3195451/
https://stackoverflow.com/users/1241619/
https://stackoverflow.com/users/1002410/
https://stackoverflow.com/users/4091324/
https://stackoverflow.com/users/3476387/
https://stackoverflow.com/users/4106184/
https://stackoverflow.com/users/2395605/
https://stackoverflow.com/users/3220986/
https://stackoverflow.com/users/3657941/
https://stackoverflow.com/users/6051861/
https://stackoverflow.com/users/400617/
https://stackoverflow.com/users/1805453/
https://stackoverflow.com/users/8269859/
https://stackoverflow.com/users/854988/
https://stackoverflow.com/users/384397/
https://stackoverflow.com/users/1453822/
https://stackoverflow.com/users/2291710/
https://stackoverflow.com/users/1718122/
https://stackoverflow.com/users/3462319/
https://stackoverflow.com/users/3843828/
https://stackoverflow.com/users/2419921/
https://stackoverflow.com/users/5658350/
https://stackoverflow.com/users/3236045/
https://stackoverflow.com/users/378826/
https://stackoverflow.com/users/705086/
https://stackoverflow.com/users/4271125/
https://stackoverflow.com/users/6620149/
https://stackoverflow.com/users/6187538/
https://stackoverflow.com/users/5267879/
https://stackoverflow.com/users/4257143/
https://stackoverflow.com/users/974695/
https://stackoverflow.com/users/105717/
https://stackoverflow.com/users/42223/
https://stackoverflow.com/users/72476/
https://stackoverflow.com/users/4356188/
https://stackoverflow.com/users/5512755/
https://stackoverflow.com/users/2272638/
https://stackoverflow.com/users/408182/
https://stackoverflow.com/users/486919/
https://stackoverflow.com/users/2074215/
https://stackoverflow.com/users/2289509/
https://stackoverflow.com/users/6584717/
https://stackoverflow.com/users/4594443/
https://stackoverflow.com/users/5903382/
https://stackoverflow.com/users/7171962/
https://stackoverflow.com/users/422333/
https://stackoverflow.com/users/3555000/
https://stackoverflow.com/users/3554071/
https://stackoverflow.com/users/5825294/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 821

enrico.bacis Chapters 21, 56 and 149
erewok Chapter 149
Eric Chapter 107
Eric Finn Chapter 16
Eric Zhang Chapter 110
Erica Chapter 1
ericdwang Chapter 149
ericmarkmartin Chapters 67, 98, 110 and 149
Erik Godard Chapter 1
EsmaeelE Chapter 1
Esteis Chapters 13 and 21
ettanany Chapters 27 and 149
Everyone_Else Chapter 149
evuez Chapters 7, 8, 14, 20, 40, 113 and 149
exhuma Chapter 20
Fábio Perez Chapter 31
Faiz Halde Chapters 21, 114 and 119
FazeL Chapters 111 and 148
Felix D. Chapter 16
Felk Chapter 21
Fermi paradox Chapter 21
Fernando Chapter 173
Ffisegydd Chapters 14, 38, 98, 108 and 193
Filip Haglund Chapter 1
Firix Chapters 1 and 150
flamenco Chapter 56
Flickerlight Chapter 20
Florian Bender Chapter 21
FMc Chapter 43
Francisco Guimaraes Chapter 94
Franck Dernoncourt Chapter 1
FrankBr Chapter 36
frankyjuang Chapter 181
Fred Barclay Chapters 1 and 157
Freddy Chapter 1
fredley Chapter 45
freidrichen Chapter 21
Frustrated Chapter 74
Gal Dreiman Chapters 16, 20, 21, 33, 40, 136 and 137
ganesh gadila Chapters 20 and 41
Ganesh K Chapter 148
Gareth Latty Chapter 19
garg10may Chapters 21 and 149
Gavin Chapter 149
Geeklhem Chapters 14, 110 and 124
Generic Snake Chapter 16
geoffspear Chapter 149
Gerard Roche Chapter 1
gerrit Chapter 40
ghostarbeiter Chapters 16, 21, 33, 41, 45, 88, 132 and 149
Giannis Spiliopoulos Chapter 40
GiantsLoveDeathMetal Chapters 40 and 164
girish946 Chapters 31 and 154

https://stackoverflow.com/users/1003123/
https://stackoverflow.com/users/1748754/
https://stackoverflow.com/users/5483058/
https://stackoverflow.com/users/407071/
https://stackoverflow.com/users/2514396/
https://stackoverflow.com/users/3861314/
https://stackoverflow.com/users/1944947/
https://stackoverflow.com/users/3777633/
https://stackoverflow.com/users/376371/
https://stackoverflow.com/users/7508077/
https://stackoverflow.com/users/473899/
https://stackoverflow.com/users/4575071/
https://stackoverflow.com/users/3238611/
https://stackoverflow.com/users/653378/
https://stackoverflow.com/users/160665/
https://stackoverflow.com/users/604734/
https://stackoverflow.com/users/2708169/
https://stackoverflow.com/users/2099608/
https://stackoverflow.com/users/3753684/
https://stackoverflow.com/users/3688648/
https://stackoverflow.com/users/4230591/
https://stackoverflow.com/users/2992065/
https://stackoverflow.com/users/3005188/
https://stackoverflow.com/users/596041/
https://stackoverflow.com/users/3830647/
https://stackoverflow.com/users/2736671/
https://stackoverflow.com/users/1144711/
https://stackoverflow.com/users/1331956/
https://stackoverflow.com/users/55857/
https://stackoverflow.com/users/289368/
https://stackoverflow.com/users/395857/
https://stackoverflow.com/users/1281470/
https://stackoverflow.com/users/3748807/
https://stackoverflow.com/users/4588964/
https://stackoverflow.com/users/3871910/
https://stackoverflow.com/users/319618/
https://stackoverflow.com/users/1529178/
https://stackoverflow.com/users/759485/
https://stackoverflow.com/users/3580365/
https://stackoverflow.com/users/5182026/
https://stackoverflow.com/users/5671364/
https://stackoverflow.com/users/722121/
https://stackoverflow.com/users/3151415/
https://stackoverflow.com/users/1468125/
https://stackoverflow.com/users/1219073/
https://stackoverflow.com/users/5860230/
https://stackoverflow.com/users/110707/
https://stackoverflow.com/users/934739/
https://stackoverflow.com/users/974555/
https://stackoverflow.com/users/6274563/
https://stackoverflow.com/users/1489266/
https://stackoverflow.com/users/3407256/
https://stackoverflow.com/users/2580412/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 822

giucal Chapter 55
GoatsWearHats Chapters 1, 16, 29, 41 and 72
goodmami Chapter 75
Greg Chapter 22
greut Chapter 37
Guy Chapters 16, 19 and 156
H. Pauwelyn Chapter 1
hackvan Chapter 164
Hannele Chapter 21
Hannes Karppila Chapters 14 and 134
Harrison Chapter 40
hashcode55 Chapter 76
ha_1694 Chapter 173
heyhey2k Chapter 94
hiro protagonist Chapters 54 and 200
HoverHell Chapter 12
Hriddhi Dey Chapter 105
Hurkyl Chapters 21 and 33
hxysayhi Chapters 66 and 168
Ian Chapter 1
IanAuld Chapters 1 and 21
iankit Chapters 21 and 37
iBelieve Chapter 19
idjaw Chapter 41
ifma Chapter 108
Igor Raush Chapters 1, 19, 20, 38, 39, 45, 67 and 98
Ilia Barahovski Chapters 32, 41 and 88
ilse2005 Chapter 30
Inbar Rose Chapter 16
Indradhanush Gupta Chapter 49
Infinity Chapters 19 and 115
InitializeSahib Chapters 38, 39 and 82
intboolstring Chapters 10, 21 and 45
iScrE4m Chapter 149
J F Chapters 1, 9, 15, 20, 29, 33, 38, 88, 97, 111, 119, 125 and 149
Jörn Hees Chapter 137
J0HN Chapters 21 and 67
j3485 Chapter 20
jackskis Chapters 53 and 67
Jacques de Hooge Chapters 97 and 151
JakeD Chapter 22
James Chapters 8, 14, 19, 20, 33 and 100
James Elderfield Chapters 20, 40, 45 and 149
James Taylor Chapter 1
JamesS Chapter 21
Jan Chapter 75
jani Chapter 20
japborst Chapter 86
Jean Chapters 1 and 40
jedwards Chapters 1, 102 and 149
Jeff Hutchins Chapter 110
Jeffrey Lin Chapters 1, 16, 75, 132 and 200
JelmerS Chapter 102

https://stackoverflow.com/users/4047785/
https://stackoverflow.com/users/5299938/
https://stackoverflow.com/users/1441112/
https://stackoverflow.com/users/5377941/
https://stackoverflow.com/users/122978/
https://stackoverflow.com/users/5943150/
https://stackoverflow.com/users/4551041/
https://stackoverflow.com/users/732398/
https://stackoverflow.com/users/832136/
https://stackoverflow.com/users/2867076/
https://stackoverflow.com/users/1390536/
https://stackoverflow.com/users/5540305/
https://stackoverflow.com/users/5149740/
https://stackoverflow.com/users/1569659/
https://stackoverflow.com/users/4954037/
https://stackoverflow.com/users/62821/
https://stackoverflow.com/users/5800744/
https://stackoverflow.com/users/1084944/
https://stackoverflow.com/users/6364089/
https://stackoverflow.com/users/5528308/
https://stackoverflow.com/users/1318181/
https://stackoverflow.com/users/1620792/
https://stackoverflow.com/users/1917313/
https://stackoverflow.com/users/1832539/
https://stackoverflow.com/users/4245174/
https://stackoverflow.com/users/1391671/
https://stackoverflow.com/users/404099/
https://stackoverflow.com/users/1762988/
https://stackoverflow.com/users/1561176/
https://stackoverflow.com/users/1773961/
https://stackoverflow.com/users/1058671/
https://stackoverflow.com/users/6147266/
https://stackoverflow.com/users/4490559/
https://stackoverflow.com/users/5616110/
https://stackoverflow.com/users/5244995/
https://stackoverflow.com/users/1423333/
https://stackoverflow.com/users/882918/
https://stackoverflow.com/users/5343557/
https://stackoverflow.com/users/3538220/
https://stackoverflow.com/users/1577341/
https://stackoverflow.com/users/6655092/
https://stackoverflow.com/users/6627323/
https://stackoverflow.com/users/1488801/
https://stackoverflow.com/users/1944335/
https://stackoverflow.com/users/6627185/
https://stackoverflow.com/users/1231450/
https://stackoverflow.com/users/3476397/
https://stackoverflow.com/users/2489446/
https://stackoverflow.com/users/1603480/
https://stackoverflow.com/users/736937/
https://stackoverflow.com/users/981097/
https://stackoverflow.com/users/1440897/
https://stackoverflow.com/users/4911585/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 823

JGreenwell Chapters 3, 9, 33 and 37
JHS Chapter 21
Jim Fasarakis Hilliard Chapters 1, 16, 33, 41, 55, 87, 110, 149 and 200
jim opleydulven Chapter 1
Jimmy Song Chapter 149
jimsug Chapters 1 and 20
jkdev Chapters 20 and 38
jkitchen Chapter 33
JL Peyret Chapters 40 and 51
jlarsch Chapter 38
jmunsch Chapters 1, 47, 92, 125, 181 and 192
JNat Chapters 10, 20 and 29
joel3000 Chapters 21, 103 and 192
Johan Lundberg Chapter 1
John Slegers Chapters 1 and 149
John Zwinck Chapter 11
Jonatan Chapters 40, 64 and 87
jonrsharpe Chapters 1, 75, 78 and 98
Joseph True Chapter 1
Josh Chapter 149
Jossie Calderon Chapter 86
jrast Chapter 16
JRodDynamite Chapters 1, 21 and 40
jtbandes Chapter 70
Juan T Chapters 1, 67, 90 and 149
JuanPablo Chapter 110
Julien Spronck Chapters 53 and 75
Julij Jegorov Chapter 188
Justin Chapters 30, 33, 40, 74 and 149
Justin Chadwell Chapter 125
Justin M. Ucar Chapter 149
j__ Chapter 41
Kabie Chapter 149
Kallz Chapter 38
Kamran Mackey Chapter 1
Karl Knechtel Chapters 67, 69 and 149
KartikKannapur Chapters 20 and 38
kdopen Chapters 19, 21 and 110
keiv.fly Chapter 194
Kevin Brown Chapters 1, 5, 14, 30, 53, 75, 146, 149 and 192
KeyWeeUsr Chapters 80 and 153
KIDJourney Chapter 21
Kinifwyne Chapters 43 and 193
Kiran Vemuri Chapter 1
kisanme Chapter 1
knight Chapter 40
kollery Chapter 156
kon psych Chapter 47
krato Chapter 83
Kunal Marwaha Chapter 149
Kwarrtz Chapter 21
L3viathan Chapters 33 and 98
Lafexlos Chapters 1, 9 and 20

https://stackoverflow.com/users/4667934/
https://stackoverflow.com/users/3538313/
https://stackoverflow.com/users/4952130/
https://stackoverflow.com/users/7692140/
https://stackoverflow.com/users/1721244/
https://stackoverflow.com/users/3437837/
https://stackoverflow.com/users/3345375/
https://stackoverflow.com/users/639792/
https://stackoverflow.com/users/1394353/
https://stackoverflow.com/users/5558281/
https://stackoverflow.com/users/2026508/
https://stackoverflow.com/users/1328704/
https://stackoverflow.com/users/390738/
https://stackoverflow.com/users/1149664/
https://stackoverflow.com/users/1946501/
https://stackoverflow.com/users/4323/
https://stackoverflow.com/users/434943/
https://stackoverflow.com/users/3001761/
https://stackoverflow.com/users/8060056/
https://stackoverflow.com/users/5951320/
https://stackoverflow.com/users/2124148/
https://stackoverflow.com/users/1211607/
https://stackoverflow.com/users/2932244/
https://stackoverflow.com/users/23649/
https://stackoverflow.com/users/7237719/
https://stackoverflow.com/users/348081/
https://stackoverflow.com/users/2184364/
https://stackoverflow.com/users/8210140/
https://stackoverflow.com/users/6412179/
https://stackoverflow.com/users/6848834/
https://stackoverflow.com/users/4028130/
https://stackoverflow.com/users/4555569/
https://stackoverflow.com/users/260985/
https://stackoverflow.com/users/7825115/
https://stackoverflow.com/users/2031089/
https://stackoverflow.com/users/523612/
https://stackoverflow.com/users/3001733/
https://stackoverflow.com/users/943010/
https://stackoverflow.com/users/3596337/
https://stackoverflow.com/users/359284/
https://stackoverflow.com/users/5994041/
https://stackoverflow.com/users/3994063/
https://stackoverflow.com/users/6859882/
https://stackoverflow.com/users/1186949/
https://stackoverflow.com/users/3663471/
https://stackoverflow.com/users/1945104/
https://stackoverflow.com/users/3949387/
https://stackoverflow.com/users/614241/
https://stackoverflow.com/users/2130213/
https://stackoverflow.com/users/6623013/
https://stackoverflow.com/users/4725625/
https://stackoverflow.com/users/1016216/
https://stackoverflow.com/users/3134251/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 824

LDP Chapter 20
Lee Netherton Chapters 21, 33 and 114
Leo Chapters 49 and 97
Leo Thumma Chapter 20
Leon Chapter 1
Leon Z. Chapter 74
Liteye Chapters 21 and 38
loading... Chapters 83 and 114
Locane Chapter 21
lorenzofeliz Chapter 2
LostAvatar Chapters 1 and 161
Luca Van Oort Chapter 165
Luke Taylor Chapter 70
lukewrites Chapter 20
Lyndsy Simon Chapter 21
machine yearning Chapters 19, 53 and 67
magu_ Chapter 77
Mahdi Chapters 21, 82 and 120
Mahmoud Hashemi Chapter 199
Majid Chapters 19, 28, 77, 82, 98, 112 and 173
Malt Chapter 200
manu Chapter 1
MANU Chapter 1
Marco Pashkov Chapters 29, 39, 40, 83 and 173
Mario Corchero Chapter 192
Mark Chapter 125
Mark Miller Chapter 130
Mark Omo Chapter 168
Markus Meskanen Chapter 21
MarkyPython Chapter 41
Marlon Abeykoon Chapter 79
Martijn Pieters Chapters 1, 67, 77 and 97
Martin Valgur Chapter 104
Math Chapter 16
Mathias711 Chapter 1
matsjoyce Chapters 1 and 9
Matt Dodge Chapters 149 and 200
Matt Giltaji Chapters 33, 40, 173 and 193
Matt Rowland Chapter 149
MattCorr Chapters 4 and 121
Mattew Whitt Chapters 21, 37, 39, 110, 146, 173 and 192
mattgathu Chapters 19, 117, 124 and 190
Matthew Chapter 77
max Chapter 67
Max Feng Chapter 14
mbrig Chapter 21
mbsingh Chapter 161
Md Sifatul Islam Chapters 28 and 75
mdegis Chapter 1
Mechanic Chapters 1, 9, 19 and 28
mertyildiran Chapter 1
MervS Chapter 125
metmirr Chapter 162

https://stackoverflow.com/users/6622517/
https://stackoverflow.com/users/341459/
https://stackoverflow.com/users/1728179/
https://stackoverflow.com/users/1406941/
https://stackoverflow.com/users/6394138/
https://stackoverflow.com/users/6727041/
https://stackoverflow.com/users/2400310/
https://stackoverflow.com/users/6623266/
https://stackoverflow.com/users/2308300/
https://stackoverflow.com/users/5054533/
https://stackoverflow.com/users/1541458/
https://stackoverflow.com/users/7182177/
https://stackoverflow.com/users/4414003/
https://stackoverflow.com/users/3389827/
https://stackoverflow.com/users/1336699/
https://stackoverflow.com/users/798684/
https://stackoverflow.com/users/2173891/
https://stackoverflow.com/users/3349443/
https://stackoverflow.com/users/178013/
https://stackoverflow.com/users/877541/
https://stackoverflow.com/users/3199595/
https://stackoverflow.com/users/4578652/
https://stackoverflow.com/users/3903762/
https://stackoverflow.com/users/2210287/
https://stackoverflow.com/users/1210060/
https://stackoverflow.com/users/23991/
https://stackoverflow.com/users/1184072/
https://stackoverflow.com/users/4492611/
https://stackoverflow.com/users/2505645/
https://stackoverflow.com/users/5641674/
https://stackoverflow.com/users/2779389/
https://stackoverflow.com/users/100297/
https://stackoverflow.com/users/2997179/
https://stackoverflow.com/users/3406955/
https://stackoverflow.com/users/2781698/
https://stackoverflow.com/users/3946766/
https://stackoverflow.com/users/1222076/
https://stackoverflow.com/users/3586162/
https://stackoverflow.com/users/2856868/
https://stackoverflow.com/users/2970790/
https://stackoverflow.com/users/3264217/
https://stackoverflow.com/users/3078304/
https://stackoverflow.com/users/4927616/
https://stackoverflow.com/users/1753545/
https://stackoverflow.com/users/6501627/
https://stackoverflow.com/users/5116726/
https://stackoverflow.com/users/3623056/
https://stackoverflow.com/users/6840615/
https://stackoverflow.com/users/1368534/
https://stackoverflow.com/users/833530/
https://stackoverflow.com/users/2104879/
https://stackoverflow.com/users/1847471/
https://stackoverflow.com/users/5802335/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 825

mezzode Chapter 28
mgilson Chapter 192
Michael Recachinas Chapter 149
Michel Touw Chapter 161
Mike Driscoll Chapters 1 and 13
Miljen Mikic Chapter 1
Mimouni Chapter 1
Mirec Miskuf Chapter 21
mnoronha Chapters 1 and 149
Mohammad Julfikar Chapter 123
moshemeirelles Chapter 1
MrP01 Chapter 20
mrtuovinen Chapter 92
MSD Chapter 1

MSeifert Chapters 9, 16, 19, 21, 26, 33, 37, 41, 43, 45, 48, 55, 64, 67, 68, 69, 70, 71, 72,
73 and 200

muddyfish Chapters 1, 20, 21, 33, 37, 57, 111 and 149
Mukunda Modell Chapter 37
Muntasir Alam Chapter 1
Murphy4 Chapter 33
MYGz Chapter 40
Naga2Raja Chapter 150
Nander Speerstra Chapters 40, 75 and 116
naren Chapters 42 and 89
Nathan Osman Chapter 190
Nathaniel Ford Chapters 1, 29 and 41
ncmathsadist Chapter 200
nd. Chapter 33
nehemiah Chapter 173
nemesisfixx Chapter 10
Ni. Chapters 1 and 92
Nick Humrich Chapter 139
Nicolás Chapter 29
Nicole White Chapter 5
niemmi Chapter 149
niyasc Chapters 1, 43, 45 and 149
nlsdfnbch Chapters 5, 19, 28, 30, 53, 67, 117, 120 and 121
Nour Chawich Chapter 40
noɥʇʎ�ʎzɐɹƆ Chapters 1, 19, 21, 28, 88 and 149
Nuhil Mehdy Chapter 173
numbermaniac Chapters 1 and 9
obust Chapter 54
Ohad Eytan Chapter 5
ojas mohril Chapter 38
omgimanerd Chapter 200
Or East Chapters 8, 21, 75, 112 and 189
OrangeTux Chapter 149
Ortomala Lokni Chapter 173
orvi Chapters 1, 25, 41, 125, 133 and 134
Oz Bar Chapter 20
Ozair Kafray Chapter 30
Panda Chapter 21
Parousia Chapters 23 and 69

https://stackoverflow.com/users/6102253/
https://stackoverflow.com/users/748858/
https://stackoverflow.com/users/4760801/
https://stackoverflow.com/users/6748546/
https://stackoverflow.com/users/393194/
https://stackoverflow.com/users/1460628/
https://stackoverflow.com/users/2822643/
https://stackoverflow.com/users/4816775/
https://stackoverflow.com/users/2608433/
https://stackoverflow.com/users/7081771/
https://stackoverflow.com/users/5331352/
https://stackoverflow.com/users/5832850/
https://stackoverflow.com/users/5749443/
https://stackoverflow.com/users/2082004/
https://stackoverflow.com/users/5393381/
https://stackoverflow.com/users/3398583/
https://stackoverflow.com/users/1672995/
https://stackoverflow.com/users/6471733/
https://stackoverflow.com/users/3200367/
https://stackoverflow.com/users/4082217/
https://stackoverflow.com/users/2404424/
https://stackoverflow.com/users/5488275/
https://stackoverflow.com/users/1193863/
https://stackoverflow.com/users/193619/
https://stackoverflow.com/users/442945/
https://stackoverflow.com/users/467379/
https://stackoverflow.com/users/112964/
https://stackoverflow.com/users/968442/
https://stackoverflow.com/users/522150/
https://stackoverflow.com/users/2907819/
https://stackoverflow.com/users/2434234/
https://stackoverflow.com/users/677022/
https://stackoverflow.com/users/2848578/
https://stackoverflow.com/users/5043793/
https://stackoverflow.com/users/1520248/
https://stackoverflow.com/users/5413116/
https://stackoverflow.com/users/552621/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1459669/
https://stackoverflow.com/users/1061236/
https://stackoverflow.com/users/3150837/
https://stackoverflow.com/users/4577665/
https://stackoverflow.com/users/2069380/
https://stackoverflow.com/users/4518388/
https://stackoverflow.com/users/5792737/
https://stackoverflow.com/users/6806681/
https://stackoverflow.com/users/1073222/
https://stackoverflow.com/users/1807667/
https://stackoverflow.com/users/3654356/
https://stackoverflow.com/users/1472064/
https://stackoverflow.com/users/365188/
https://stackoverflow.com/users/5022249/
https://stackoverflow.com/users/2689562/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 826

Pasha Chapters 3, 20, 21, 33, 37, 38, 67, 70, 77, 83 and 149
Patrick Haugh Chapters 1 and 200
Paul Chapter 5
Paul Weaver Chapter 88
paulmorriss Chapter 5
Paulo Freitas Chapter 149
Paulo Scardine Chapter 39
Pavan Nath Chapters 1, 20 and 179
pcurry Chapters 29, 110 and 149
Peter Brittain Chapter 77
Peter Mølgaard Pallesen Chapter 73
Peter Shinners Chapter 109
petrs Chapter 77
philngo Chapter 16
Pigman168 Chapter 96
pistache Chapter 38
pktangyue Chapter 149
poke Chapter 20
PolyGeo Chapter 145
poppie Chapter 149
ppperry Chapter 55
Prem Narain Chapter 59
Preston Chapters 138 and 173
proprefenetre Chapter 147
proprius Chapter 5
PSN Chapter 1
pylang Chapters 1, 8, 21, 33, 38, 43, 53, 54, 73, 80, 128, 147, 173, 192 and 200
PYPL Chapter 79
Pythonista Chapters 32 and 149
pzp Chapters 1, 29, 30, 33, 41, 49, 64 and 67
Quill Chapter 1
qwertyuip9 Chapters 161, 173 and 181
R Colmenares Chapter 10
R Nar Chapter 21
Rápli András Chapter 82
Régis B. Chapter 173
Raghav Chapter 125
Rahul Nair Chapters 1, 21, 43, 88 and 143
RahulHP Chapters 5, 8, 45, 53, 64 and 112
rajah9 Chapters 14, 16 and 45
Ram Grandhi Chapter 1
RandomHash Chapter 95
rassar Chapter 172
ravigadila Chapters 20, 60, 85, 91 and 104
Razik Chapter 158
Rednivrug Chapters 2, 35 and 63
regnarg Chapter 75
Reut Sharabani Chapters 64 and 200
rfkortekaas Chapters 1 and 115
Ricardo Chapter 157
Riccardo Petraglia Chapters 21, 84 and 117
Richard Fitzhugh Chapter 38
rlee827 Chapter 62

https://stackoverflow.com/users/958624/
https://stackoverflow.com/users/6779307/
https://stackoverflow.com/users/467366/
https://stackoverflow.com/users/4017552/
https://stackoverflow.com/users/2983/
https://stackoverflow.com/users/222758/
https://stackoverflow.com/users/444036/
https://stackoverflow.com/users/5152794/
https://stackoverflow.com/users/1339820/
https://stackoverflow.com/users/4994021/
https://stackoverflow.com/users/5371102/
https://stackoverflow.com/users/17209/
https://stackoverflow.com/users/1400554/
https://stackoverflow.com/users/1965736/
https://stackoverflow.com/users/5370534/
https://stackoverflow.com/users/1011859/
https://stackoverflow.com/users/1076889/
https://stackoverflow.com/users/216074/
https://stackoverflow.com/users/820534/
https://stackoverflow.com/users/3153312/
https://stackoverflow.com/users/3750257/
https://stackoverflow.com/users/6343860/
https://stackoverflow.com/users/3906487/
https://stackoverflow.com/users/6899000/
https://stackoverflow.com/users/2345523/
https://stackoverflow.com/users/4161385/
https://stackoverflow.com/users/4531270/
https://stackoverflow.com/users/1984756/
https://stackoverflow.com/users/5230901/
https://stackoverflow.com/users/3155933/
https://stackoverflow.com/users/3296811/
https://stackoverflow.com/users/5183342/
https://stackoverflow.com/users/6657715/
https://stackoverflow.com/users/5323213/
https://stackoverflow.com/users/2232151/
https://stackoverflow.com/users/356528/
https://stackoverflow.com/users/3639087/
https://stackoverflow.com/users/1060034/
https://stackoverflow.com/users/2483080/
https://stackoverflow.com/users/509840/
https://stackoverflow.com/users/2679723/
https://stackoverflow.com/users/5276801/
https://stackoverflow.com/users/6342812/
https://stackoverflow.com/users/4201963/
https://stackoverflow.com/users/3157961/
https://stackoverflow.com/users/7564323/
https://stackoverflow.com/users/809056/
https://stackoverflow.com/users/948550/
https://stackoverflow.com/users/2345870/
https://stackoverflow.com/users/3517631/
https://stackoverflow.com/users/6769931/
https://stackoverflow.com/users/5050683/
https://stackoverflow.com/users/6947337/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 827

rll Chapter 21
Rob H Chapter 121
Rob Murray Chapter 94
Ronen Ness Chapter 30
ronrest Chapters 19 and 41
Roy Iacob Chapter 19
rrao Chapter 1
rrawat Chapter 161
Ryan Smith Chapters 21 and 120
ryanyuyu Chapter 21
Ry� Chapter 149
Sachin Kalkur Chapter 125
sagism Chapter 5
Saiful Azad Chapter 43
Sam Krygsheld Chapter 1
Sam Whited Chapter 111
Sangeeth Sudheer Chapter 1
Saqib Shamsi Chapter 92
Sardathrion Chapter 103
Sardorbek Imomaliev Chapter 103
sarvajeetsuman Chapters 9 and 16
SashaZd Chapters 12, 14, 29, 64, 86, 134, 143, 144, 146 and 194
satsumas Chapter 67
sayan Chapters 1 and 96
Scott Mermelstein Chapters 110, 135 and 149
Sebastian Schrader Chapter 173
Selcuk Chapters 1, 28, 149 and 201
Sempoo Chapter 38
Serenity Chapters 20, 30, 40, 43, 149 and 173
SerialDev Chapter 82
serv Chapter 40
Seth M. Larson Chapters 54 and 87
Seven Chapters 1, 11, 20 and 33
sevenforce Chapters 16 and 67
ShadowRanger Chapter 149
Shantanu Alshi Chapter 173
Shawn Mehan Chapters 10, 15, 19, 20 and 47
Shihab Shahriar Chapter 200
Shijo Chapter 198
Shoe Chapter 21
Shrey Gupta Chapters 41, 56 and 173
Shreyash S Sarnayak Chapter 12
Shuo Chapter 77
SiggyF Chapters 16 and 111
Simon Fraser Chapter 173
Simon Hibbs Chapter 169

Simplans Chapters 1, 9, 10, 14, 16, 19, 21, 28, 33, 37, 38, 41, 43, 44, 45, 50, 69, 75, 77,
82, 88, 99, 147, 149 and 173

Sirajus Salayhin Chapters 5, 175 and 176
sisanared Chapter 39
skrrgwasme Chapters 16 and 99
SN Ravichandran KR Chapter 75
solarc Chapters 20 and 149

https://stackoverflow.com/users/4974175/
https://stackoverflow.com/users/783524/
https://stackoverflow.com/users/5539184/
https://stackoverflow.com/users/1134649/
https://stackoverflow.com/users/4285679/
https://stackoverflow.com/users/1783914/
https://stackoverflow.com/users/7006469/
https://stackoverflow.com/users/3796473/
https://stackoverflow.com/users/2330648/
https://stackoverflow.com/users/4320665/
https://stackoverflow.com/users/707111/
https://stackoverflow.com/users/707111/
https://stackoverflow.com/users/6005652/
https://stackoverflow.com/users/1011227/
https://stackoverflow.com/users/1919324/
https://stackoverflow.com/users/3884408/
https://stackoverflow.com/users/1087001/
https://stackoverflow.com/users/2511828/
https://stackoverflow.com/users/2935155/
https://stackoverflow.com/users/232794/
https://stackoverflow.com/users/3627387/
https://stackoverflow.com/users/3416469/
https://stackoverflow.com/users/966247/
https://stackoverflow.com/users/3328833/
https://stackoverflow.com/users/4626943/
https://stackoverflow.com/users/1404311/
https://stackoverflow.com/users/2350268/
https://stackoverflow.com/users/2011147/
https://stackoverflow.com/users/5321058/
https://stackoverflow.com/users/2666859/
https://stackoverflow.com/users/4504245/
https://stackoverflow.com/users/1587329/
https://stackoverflow.com/users/5763213/
https://stackoverflow.com/users/5428997/
https://stackoverflow.com/users/1091453/
https://stackoverflow.com/users/364696/
https://stackoverflow.com/users/3655904/
https://stackoverflow.com/users/5113071/
https://stackoverflow.com/users/4553309/
https://stackoverflow.com/users/6626530/
https://stackoverflow.com/users/493122/
https://stackoverflow.com/users/1543403/
https://stackoverflow.com/users/4095334/
https://stackoverflow.com/users/334999/
https://stackoverflow.com/users/386327/
https://stackoverflow.com/users/3527520/
https://stackoverflow.com/users/318488/
https://stackoverflow.com/users/2806499/
https://stackoverflow.com/users/717600/
https://stackoverflow.com/users/3886740/
https://stackoverflow.com/users/2615940/
https://stackoverflow.com/users/7130168/
https://stackoverflow.com/users/154762/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 828

Soumendra Kumar Sahoo Chapters 14 and 38
SouvikMaji Chapter 1
sricharan Chapter 149
StardustGogeta Chapter 43
stark Chapter 1
Stephen Nyamweya Chapter 161
Steve Barnes Chapters 33 and 82
Steven Maude Chapters 11, 33, 47 and 92
sth Chapters 91, 92 and 141
strpeter Chapters 85 and 192
StuxCrystal Chapters 21, 37, 43, 56, 76, 82, 121 and 142
Sudip Bhandari Chapter 88
Sun Qingyao Chapter 101
Sunny Patel Chapter 21

SuperBiasedMan Chapters 1, 4, 15, 16, 20, 21, 26, 29, 30, 33, 41, 43, 64, 69, 77, 80, 88, 132, 149
and 200

supersam654 Chapter 70
surfthecity Chapter 6
Symmitchry Chapters 47 and 53
sytech Chapter 92
Sнаđошƒа� Chapters 1 and 134
Tadhg McDonald Chapter 149
talhasch Chapters 92, 93 and 164
Tasdik Rahman Chapter 30
taylor swift Chapter 1
techydesigner Chapters 1, 38, 43 and 190
Teepeemm Chapter 152
Tejas Jadhav Chapter 201
Tejus Prasad Chapter 1
TemporalWolf Chapter 90
textshell Chapters 16, 28, 33 and 121
TheGenie OfTruth Chapter 1
theheadofabroom Chapters 41, 49 and 64
the_cat_lady Chapter 43
The_Curry_Man Chapter 16
Thomas Ahle Chapters 60 and 134
Thomas Crowley Chapter 105
Thomas Gerot Chapters 30, 43, 58, 61, 126 and 181
Thomas Moreau Chapter 119
Thtu Chapter 80
Tim Chapter 149
Tim D Chapter 200
tjohnson Chapter 44
tlo Chapter 82
tobias_k Chapters 28 and 40
Tom Chapter 16
Tom Barron Chapters 1 and 21
Tom de Geus Chapter 1
Tony Meyer Chapter 43
Tony Suffolk 66 Chapters 9, 10, 38 and 40
tox123 Chapter 38
TuringTux Chapter 4
Tyler Crompton Chapter 86

https://stackoverflow.com/users/5014656/
https://stackoverflow.com/users/3198508/
https://stackoverflow.com/users/6660856/
https://stackoverflow.com/users/5732397/
https://stackoverflow.com/users/1507325/
https://stackoverflow.com/users/4515228/
https://stackoverflow.com/users/2298070/
https://stackoverflow.com/users/1678416/
https://stackoverflow.com/users/56338/
https://stackoverflow.com/users/2062965/
https://stackoverflow.com/users/3294035/
https://stackoverflow.com/users/4589003/
https://stackoverflow.com/users/5399734/
https://stackoverflow.com/users/1708751/
https://stackoverflow.com/users/4374739/
https://stackoverflow.com/users/868533/
https://stackoverflow.com/users/3645227/
https://stackoverflow.com/users/515368/
https://stackoverflow.com/users/5747944/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/3375713/
https://stackoverflow.com/users/5827215/
https://stackoverflow.com/users/3720614/
https://stackoverflow.com/users/3834059/
https://stackoverflow.com/users/6451264/
https://stackoverflow.com/users/6309608/
https://stackoverflow.com/users/2336725/
https://stackoverflow.com/users/4330559/
https://stackoverflow.com/users/3409405/
https://stackoverflow.com/users/3579910/
https://stackoverflow.com/users/4973666/
https://stackoverflow.com/users/5931915/
https://stackoverflow.com/users/655372/
https://stackoverflow.com/users/326238/
https://stackoverflow.com/users/5361515/
https://stackoverflow.com/users/205521/
https://stackoverflow.com/users/8330953/
https://stackoverflow.com/users/7343856/
https://stackoverflow.com/users/2642845/
https://stackoverflow.com/users/4267783/
https://stackoverflow.com/users/2808510/
https://stackoverflow.com/users/3726604/
https://stackoverflow.com/users/5504760/
https://stackoverflow.com/users/1306877/
https://stackoverflow.com/users/1639625/
https://stackoverflow.com/users/6437367/
https://stackoverflow.com/users/1074744/
https://stackoverflow.com/users/2646505/
https://stackoverflow.com/users/4966/
https://stackoverflow.com/users/3426606/
https://stackoverflow.com/users/3802922/
https://stackoverflow.com/users/6377268/
https://stackoverflow.com/users/652722/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 829

Tyler Gubala Chapters 119 and 122
Udi Chapter 54
UltraBob Chapter 38
Umibozu Chapter 30
Underyx Chapter 49
Undo Chapter 9
unutbu Chapter 116
user2027202827 Chapter 163

user2314737 Chapters 8, 9, 13, 16, 20, 28, 30, 33, 38, 40, 41, 57, 60, 64, 69, 75, 88, 110, 134,
142, 149, 154, 161, 196 and 200

user2683246 Chapters 43 and 187
user2728397 Chapter 166
user2853437 Chapter 1
user312016 Chapters 1, 40 and 77
user3333708 Chapter 33
user405 Chapter 33
user6457549 Chapter 20
Utsav T Chapter 20
vaichidrewar Chapter 1
valeas Chapter 161
Valentin Lorentz Chapters 20, 21, 43, 110 and 149
Valor Naram Chapter 43
vaultah Chapters 20, 33, 43 and 77
Veedrac Chapters 21, 33, 41 and 110
Vikash Kumar Jain Chapter 174
Vin Chapters 1 and 17
Vinayak Chapter 149
vinzee Chapters 99, 116 and 120
viveksyngh Chapters 10 and 19
VJ Magar Chapter 31
Vlad Bezden Chapter 103
weewooquestionaire Chapter 1
WeizhongTu Chapters 41 and 149
Wickramaranga Chapter 53
Will Chapters 5, 15, 16, 21, 30, 33, 91, 116, 117, 121 and 164
Wingston Sharon Chapter 155
Wladimir Palant Chapters 21, 37 and 197
wnnmaw Chapters 41, 43 and 53
Wolf Chapter 149
WombatPM Chapter 30
Wombatz Chapter 200
wrwrwr Chapter 173
wwii Chapter 14
wythagoras Chapter 9
Xavier Combelle Chapters 15, 19, 111 and 120
XCoder Real Chapter 47
xgord Chapters 14 and 30
XonAether Chapter 52
xtreak Chapters 67 and 149
Y0da Chapter 85
ygram Chapter 190
Yogendra Sharma Chapters 1 and 117
yurib Chapter 64

https://stackoverflow.com/users/6767685/
https://stackoverflow.com/users/57952/
https://stackoverflow.com/users/1465373/
https://stackoverflow.com/users/4538495/
https://stackoverflow.com/users/568855/
https://stackoverflow.com/users/1849664/
https://stackoverflow.com/users/190597/
https://stackoverflow.com/users/2079484/
https://stackoverflow.com/users/2314737/
https://stackoverflow.com/users/2683246/
https://stackoverflow.com/users/2728397/
https://stackoverflow.com/users/2853437/
https://stackoverflow.com/users/5350498/
https://stackoverflow.com/users/3333708/
https://stackoverflow.com/users/929623/
https://stackoverflow.com/users/6457549/
https://stackoverflow.com/users/2233336/
https://stackoverflow.com/users/553223/
https://stackoverflow.com/users/5874499/
https://stackoverflow.com/users/539465/
https://stackoverflow.com/users/6734503/
https://stackoverflow.com/users/2301450/
https://stackoverflow.com/users/1763356/
https://stackoverflow.com/users/7602873/
https://stackoverflow.com/users/5888265/
https://stackoverflow.com/users/1768141/
https://stackoverflow.com/users/5446749/
https://stackoverflow.com/users/2798036/
https://stackoverflow.com/users/6766209/
https://stackoverflow.com/users/30038/
https://stackoverflow.com/users/6860612/
https://stackoverflow.com/users/2714931/
https://stackoverflow.com/users/3977826/
https://stackoverflow.com/users/145279/
https://stackoverflow.com/users/1124344/
https://stackoverflow.com/users/785541/
https://stackoverflow.com/users/2084656/
https://stackoverflow.com/users/2932052/
https://stackoverflow.com/users/294836/
https://stackoverflow.com/users/4759726/
https://stackoverflow.com/users/5466926/
https://stackoverflow.com/users/2823755/
https://stackoverflow.com/users/5305869/
https://stackoverflow.com/users/128629/
https://stackoverflow.com/users/6661940/
https://stackoverflow.com/users/2487336/
https://stackoverflow.com/users/1993414/
https://stackoverflow.com/users/2610955/
https://stackoverflow.com/users/6522112/
https://stackoverflow.com/users/337997/
https://stackoverflow.com/users/2623906/
https://stackoverflow.com/users/249878/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


GoalKicker.com – Python® Notes for Professionals 830

Zach Janicki Chapter 1
Zags Chapter 1
Zaid Ajaj Chapter 67
zarak Chapter 149
Zaz Chapter 21
zenlc2000 Chapter 34
Zhanping Shi Chapter 145
zmo Chapters 83, 140 and 141
zondo Chapters 75 and 83
zopieux Chapter 173
zvone Chapters 13, 37, 39 and 112
zxxz Chapter 33
Zydnar Chapter 81
Ƙ�ỈSƬƠƑ Chapter 117
λuser Chapters 67 and 77
Некто Chapters 24, 37 and 128

https://stackoverflow.com/users/5001349/
https://stackoverflow.com/users/2800876/
https://stackoverflow.com/users/2705530/
https://stackoverflow.com/users/5912399/
https://stackoverflow.com/users/405550/
https://stackoverflow.com/users/3754548/
https://stackoverflow.com/users/4744336/
https://stackoverflow.com/users/1290438/
https://stackoverflow.com/users/5827958/
https://stackoverflow.com/users/180709/
https://stackoverflow.com/users/389289/
https://stackoverflow.com/users/6813176/
https://stackoverflow.com/users/4392611/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/3165737/
https://stackoverflow.com/users/6541288/
https://stackoverflow.com/users/6541288/
https://stackoverflow.com/users/7605829/
https://stackoverflow.com/users/7605829/
https://stackoverflow.com/users/7605829/
https://stackoverflow.com/users/7605829/
https://stackoverflow.com/users/7605829/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/


You may also like

https://goalkicker.com/CBook
https://goalkicker.com/CSharpBook
https://goalkicker.com/CPlusPlusBook
https://goalkicker.com/CSSBook
https://goalkicker.com/HTML5Book
https://goalkicker.com/JavaBook
https://goalkicker.com/JavaScriptBook
https://goalkicker.com/PHPBook
https://goalkicker.com/RBook

	Content list
	About
	Chapter 1: Getting started with Python Language
	Section 1.1: Getting Started
	Section 1.2: Creating variables and assigning values
	Section 1.3: Block Indentation
	Section 1.4: Datatypes
	Section 1.5: Collection Types
	Section 1.6: IDLE - Python GUI
	Section 1.7: User Input
	Section 1.8: Built in Modules and Functions
	Section 1.9: Creating a module
	Section 1.10: Installation of Python 2.7.x and 3.x
	Section 1.11: String function - str() and repr()
	Section 1.12: Installing external modules using pip
	Section 1.13: Help Utility

	Chapter 2: Python Data Types
	Section 2.1: String Data Type
	Section 2.2: Set Data Types
	Section 2.3: Numbers data type
	Section 2.4: List Data Type
	Section 2.5: Dictionary Data Type
	Section 2.6: Tuple Data Type

	Chapter 3: Indentation
	Section 3.1: Simple example
	Section 3.2: How Indentation is Parsed
	Section 3.3: Indentation Errors

	Chapter 4: Comments and Documentation
	Section 4.1: Single line, inline and multiline comments
	Section 4.2: Programmatically accessing docstrings
	Section 4.3: Write documentation using docstrings

	Chapter 5: Date and Time
	Section 5.1: Parsing a string into a timezone aware datetime object
	Section 5.2: Constructing timezone-aware datetimes
	Section 5.3: Computing time dierences
	Section 5.4: Basic datetime objects usage
	Section 5.5: Switching between time zones
	Section 5.6: Simple date arithmetic 
	Section 5.7: Converting timestamp to datetime
	Section 5.8: Subtracting months from a date accurately
	Section 5.9: Parsing an arbitrary ISO 8601 timestamp with minimal libraries
	Section 5.10: Get an ISO 8601 timestamp
	Section 5.11: Parsing a string with a short time zone name into a timezone aware datetime object
	Section 5.12: Fuzzy datetime parsing (extracting datetime out of a text)
	Section 5.13: Iterate over dates

	Chapter 6: Date Formatting
	Section 6.1: Time between two date-times
	Section 6.2: Outputting datetime object to string
	Section 6.3: Parsing string to datetime object

	Chapter 7: Enum
	Section 7.1: Creating an enum (Python 2.4 through 3.3)
	Section 7.2: Iteration

	Chapter 8: Set
	Section 8.1: Operations on sets
	Section 8.2: Get the unique elements of a list
	Section 8.3: Set of Sets
	Section 8.4: Set Operations using Methods and Builtins
	Section 8.5: Sets versus multisets

	Chapter 9: Simple Mathematical Operators
	Section 9.1: Division
	Section 9.2: Addition
	Section 9.3: Exponentiation
	Section 9.4: Trigonometric Functions
	Section 9.5: Inplace Operations
	Section 9.6: Subtraction
	Section 9.7: Multiplication
	Section 9.8: Logarithms
	Section 9.9: Modulus

	Chapter 10: Bitwise Operators
	Section 10.1: Bitwise NOT
	Section 10.2: Bitwise XOR (Exclusive OR)
	Section 10.3: Bitwise AND
	Section 10.4: Bitwise OR
	Section 10.5: Bitwise Left Shift
	Section 10.6: Bitwise Right Shift
	Section 10.7: Inplace Operations

	Chapter 11: Boolean Operators
	Section 11.1: `and` and `or` are not guaranteed to return a boolean
	Section 11.2: A simple example
	Section 11.3: Short-circuit evaluation
	Section 11.4: and
	Section 11.5: or
	Section 11.6: not

	Chapter 12: Operator Precedence
	Section 12.1: Simple Operator Precedence Examples in python

	Chapter 13: Variable Scope and Binding
	Section 13.1: Nonlocal Variables
	Section 13.2: Global Variables
	Section 13.3: Local Variables
	Section 13.4: The del command
	Section 13.5: Functions skip class scope when looking up names
	Section 13.6: Local vs Global Scope
	Section 13.7: Binding Occurrence

	Chapter 14: Conditionals
	Section 14.1: Conditional Expression (or "The Ternary Operator")
	Section 14.2: if, elif, and else
	Section 14.3: Truth Values
	Section 14.4: Boolean Logic Expressions
	Section 14.5: Using the cmp function to get the comparison result of two objects
	Section 14.6: Else statement
	Section 14.7: Testing if an object is None and assigning it
	Section 14.8: If statement

	Chapter 15: Comparisons
	Section 15.1: Chain Comparisons
	Section 15.2: Comparison by `is` vs `==`
	Section 15.3: Greater than or less than
	Section 15.4: Not equal to
	Section 15.5: Equal To
	Section 15.6: Comparing Objects

	Chapter 16: Loops
	Section 16.1: Break and Continue in Loops
	Section 16.2: For loops
	Section 16.3: Iterating over lists
	Section 16.4: Loops with an "else" clause
	Section 16.5: The Pass Statement
	Section 16.6: Iterating over dictionaries
	Section 16.7: The "half loop" do-while
	Section 16.8: Looping and Unpacking
	Section 16.9: Iterating dierent portion of a list with dierent step size
	Section 16.10: While Loop

	Chapter 17: Arrays
	Section 17.1: Access individual elements through indexes
	Section 17.2: Basic Introduction to Arrays
	Section 17.3: Append any value to the array using append() method
	Section 17.4: Insert value in an array using insert() method
	Section 17.5: Extend python array using extend() method
	Section 17.6: Add items from list into array using fromlist() method
	Section 17.7: Remove any array element using remove() method
	Section 17.8: Remove last array element using pop() method
	Section 17.9: Fetch any element through its index using index() method
	Section 17.10: Reverse a python array using reverse() method
	Section 17.11: Get array buer information through buer_info() method
	Section 17.12: Check for number of occurrences of an element using count() method
	Section 17.13: Convert array to string using tostring() method
	Section 17.14: Convert array to a python list with same elements using tolist() method
	Section 17.15: Append a string to char array using fromstring() method

	Chapter 18: Multidimensional arrays
	Section 18.1: Lists in lists
	Section 18.2: Lists in lists in lists in..

	Chapter 19: Dictionary
	Section 19.1: Introduction to Dictionary
	Section 19.2: Avoiding KeyError Exceptions
	Section 19.3: Iterating Over a Dictionary
	Section 19.4: Dictionary with default values
	Section 19.5: Merging dictionaries
	Section 19.6: Accessing keys and values
	Section 19.7: Accessing values of a dictionary
	Section 19.8: Creating a dictionary
	Section 19.9: Creating an ordered dictionary
	Section 19.10: Unpacking dictionaries using the ** operator
	Section 19.11: The trailing comma
	Section 19.12: The dict() constructor
	Section 19.13: Dictionaries Example
	Section 19.14: All combinations of dictionary values

	Chapter 20: List
	Section 20.1: List methods and supported operators
	Section 20.2: Accessing list values
	Section 20.3: Checking if list is empty
	Section 20.4: Iterating over a list
	Section 20.5: Checking whether an item is in a list
	Section 20.6: Any and All
	Section 20.7: Reversing list elements
	Section 20.8: Concatenate and Merge lists
	Section 20.9: Length of a list
	Section 20.10: Remove duplicate values in list
	Section 20.11: Comparison of lists
	Section 20.12: Accessing values in nested list
	Section 20.13: Initializing a List to a Fixed Number of Elements

	Chapter 21: List comprehensions
	Section 21.1: List Comprehensions
	Section 21.2: Conditional List Comprehensions
	Section 21.3: Avoid repetitive and expensive operations using conditional clause
	Section 21.4: Dictionary Comprehensions
	Section 21.5: List Comprehensions with Nested Loops
	Section 21.6: Generator Expressions
	Section 21.7: Set Comprehensions
	Section 21.8: Refactoring ﬁlter and map to list comprehensions
	Section 21.9: Comprehensions involving tuples
	Section 21.10: Counting Occurrences Using Comprehension
	Section 21.11: Changing Types in a List
	Section 21.12: Nested List Comprehensions
	Section 21.13: Iterate two or more list simultaneously within list comprehension

	Chapter 22: List slicing (selecting parts of lists)
	Section 22.1: Using the third "step" argument
	Section 22.2: Selecting a sublist from a list
	Section 22.3: Reversing a list with slicing
	Section 22.4: Shifting a list using slicing

	Chapter 23: groupby()
	Section 23.1: Example 4
	Section 23.2: Example 2
	Section 23.3: Example 3

	Chapter 24: Linked lists
	Section 24.1: Single linked list example

	Chapter 25: Linked List Node
	Section 25.1: Write a simple Linked List Node in python

	Chapter 26: Filter
	Section 26.1: Basic use of ﬁlter
	Section 26.2: Filter without function
	Section 26.3: Filter as short-circuit check
	Section 26.4: Complementary function: ﬁlterfalse, iﬁlterfalse

	Chapter 27: Heapq
	Section 27.1: Largest and smallest items in a collection
	Section 27.2: Smallest item in a collection

	Chapter 28: Tuple
	Section 28.1: Tuple
	Section 28.2: Tuples are immutable
	Section 28.3: Packing and Unpacking Tuples
	Section 28.4: Built-in Tuple Functions
	Section 28.5: Tuple Are Element-wise Hashable and Equatable
	Section 28.6: Indexing Tuples
	Section 28.7: Reversing Elements

	Chapter 29: Basic Input and Output
	Section 29.1: Using the print function
	Section 29.2: Input from a File
	Section 29.3: Read from stdin
	Section 29.4: Using input() and raw_input()
	Section 29.5: Function to prompt user for a number
	Section 29.6: Printing a string without a newline at the end

	Chapter 30: Files & Folders I/O
	Section 30.1: File modes
	Section 30.2: Reading a ﬁle line-by-line
	Section 30.3: Iterate ﬁles (recursively)
	Section 30.4: Getting the full contents of a ﬁle
	Section 30.5: Writing to a ﬁle
	Section 30.6: Check whether a ﬁle or path exists
	Section 30.7: Random File Access Using mmap
	Section 30.8: Replacing text in a ﬁle
	Section 30.9: Checking if a ﬁle is empty
	Section 30.10: Read a ﬁle between a range of lines
	Section 30.11: Copy a directory tree
	Section 30.12: Copying contents of one ﬁle to a dierent ﬁle

	Chapter 31: os.path
	Section 31.1: Join Paths
	Section 31.2: Path Component Manipulation
	Section 31.3: Get the parent directory
	Section 31.4: If the given path exists
	Section 31.5: check if the given path is a directory, ﬁle, symbolic link, mount point etc
	Section 31.6: Absolute Path from Relative Path

	Chapter 32: Iterables and Iterators
	Section 32.1: Iterator vs Iterable vs Generator
	Section 32.2: Extract values one by one
	Section 32.3: Iterating over entire iterable
	Section 32.4: Verify only one element in iterable
	Section 32.5: What can be iterable
	Section 32.6: Iterator isn't reentrant!

	Chapter 33: Functions
	Section 33.1: Deﬁning and calling simple functions
	Section 33.2: Deﬁning a function with an arbitrary number of arguments
	Section 33.3: Lambda (Inline/Anonymous) Functions
	Section 33.4: Deﬁning a function with optional arguments
	Section 33.5: Deﬁning a function with optional mutable arguments
	Section 33.6: Argument passing and mutability
	Section 33.7: Returning values from functions
	Section 33.8: Closure
	Section 33.9: Forcing the use of named parameters
	Section 33.10: Nested functions
	Section 33.11: Recursion limit
	Section 33.12: Recursive Lambda using assigned variable
	Section 33.13: Recursive functions
	Section 33.14: Deﬁning a function with arguments
	Section 33.15: Iterable and dictionary unpacking
	Section 33.16: Deﬁning a function with multiple arguments

	Chapter 34: Deﬁning functions with list arguments
	Section 34.1: Function and Call

	Chapter 35: Functional Programming in Python
	Section 35.1: Lambda Function
	Section 35.2: Map Function
	Section 35.3: Reduce Function
	Section 35.4: Filter Function

	Chapter 36: Partial functions
	Section 36.1: Raise the power

	Chapter 37: Decorators
	Section 37.1: Decorator function
	Section 37.2: Decorator class
	Section 37.3: Decorator with arguments (decorator factory)
	Section 37.4: Making a decorator look like the decorated function
	Section 37.5: Using a decorator to time a function
	Section 37.6: Create singleton class with a decorator

	Chapter 38: Classes
	Section 38.1: Introduction to classes
	Section 38.2: Bound, unbound, and static methods
	Section 38.3: Basic inheritance
	Section 38.4: Monkey Patching
	Section 38.5: New-style vs. old-style classes
	Section 38.6: Class methods: alternate initializers
	Section 38.7: Multiple Inheritance
	Section 38.8: Properties
	Section 38.9: Default values for instance variables
	Section 38.10: Class and instance variables
	Section 38.11: Class composition
	Section 38.12: Listing All Class Members
	Section 38.13: Singleton class
	Section 38.14: Descriptors and Dotted Lookups

	Chapter 39: Metaclasses
	Section 39.1: Basic Metaclasses
	Section 39.2: Singletons using metaclasses
	Section 39.3: Using a metaclass
	Section 39.4: Introduction to Metaclasses
	Section 39.5: Custom functionality with metaclasses
	Section 39.6: The default metaclass

	Chapter 40: String Formatting
	Section 40.1: Basics of String Formatting
	Section 40.2: Alignment and padding
	Section 40.3: Format literals (f-string)
	Section 40.4: Float formatting
	Section 40.5: Named placeholders
	Section 40.6: String formatting with datetime
	Section 40.7: Formatting Numerical Values
	Section 40.8: Nested formatting
	Section 40.9: Format using Getitem and Getattr
	Section 40.10: Padding and truncating strings, combined
	Section 40.11: Custom formatting for a class

	Chapter 41: String Methods
	Section 41.1: Changing the capitalization of a string
	Section 41.2: str.translate: Translating characters in a string
	Section 41.3: str.format and f-strings: Format values into a string
	Section 41.4: String module's useful constants
	Section 41.5: Stripping unwanted leading/trailing characters from a string
	Section 41.6: Reversing a string
	Section 41.7: Split a string based on a delimiter into a list of strings
	Section 41.8: Replace all occurrences of one substring with another substring
	Section 41.9: Testing what a string is composed of
	Section 41.10: String Contains
	Section 41.11: Join a list of strings into one string
	Section 41.12: Counting number of times a substring appears in a string
	Section 41.13: Case insensitive string comparisons
	Section 41.14: Justify strings
	Section 41.15: Test the starting and ending characters of a string
	Section 41.16: Conversion between str or bytes data and unicode characters

	Chapter 42: Using loops within functions
	Section 42.1: Return statement inside loop in a function

	Chapter 43: Importing modules
	Section 43.1: Importing a module
	Section 43.2: The __all__ special variable
	Section 43.3: Import modules from an arbitrary ﬁlesystem location
	Section 43.4: Importing all names from a module
	Section 43.5: Programmatic importing
	Section 43.6: PEP8 rules for Imports
	Section 43.7: Importing speciﬁc names from a module
	Section 43.8: Importing submodules
	Section 43.9: Re-importing a module
	Section 43.10: __import__() function

	Chapter 44: Dierence between Module and Package
	Section 44.1: Modules
	Section 44.2: Packages

	Chapter 45: Math Module
	Section 45.1: Rounding: round, ﬂoor, ceil, trunc
	Section 45.2: Trigonometry
	Section 45.3: Pow for faster exponentiation
	Section 45.4: Inﬁnity and NaN ("not a number")
	Section 45.5: Logarithms
	Section 45.6: Constants
	Section 45.7: Imaginary Numbers
	Section 45.8: Copying signs
	Section 45.9: Complex numbers and the cmath module

	Chapter 46: Complex math
	Section 46.1: Advanced complex arithmetic
	Section 46.2: Basic complex arithmetic

	Chapter 47: Collections module
	Section 47.1: collections.Counter
	Section 47.2: collections.OrderedDict
	Section 47.3: collections.defaultdict
	Section 47.4: collections.namedtuple
	Section 47.5: collections.deque
	Section 47.6: collections.ChainMap

	Chapter 48: Operator module
	Section 48.1: Itemgetter
	Section 48.2: Operators as alternative to an inﬁx operator
	Section 48.3: Methodcaller

	Chapter 49: JSON Module
	Section 49.1: Storing data in a ﬁle
	Section 49.2: Retrieving data from a ﬁle
	Section 49.3: Formatting JSON output
	Section 49.4: `load` vs `loads`, `dump` vs `dumps`
	Section 49.5: Calling `json.tool` from the command line to pretty-print JSON output
	Section 49.6: JSON encoding custom objects
	Section 49.7: Creating JSON from Python dict
	Section 49.8: Creating Python dict from JSON

	Chapter 50: Sqlite3 Module
	Section 50.1: Sqlite3 - Not require separate server process
	Section 50.2: Getting the values from the database and Error handling

	Chapter 51: The os Module
	Section 51.1: makedirs - recursive directory creation
	Section 51.2: Create a directory
	Section 51.3: Get current directory
	Section 51.4: Determine the name of the operating system
	Section 51.5: Remove a directory
	Section 51.6: Follow a symlink (POSIX)
	Section 51.7: Change permissions on a ﬁle

	Chapter 52: The locale Module
	Section 52.1: Currency Formatting US Dollars Using the locale Module

	Chapter 53: Itertools Module
	Section 53.1: Combinations method in Itertools Module
	Section 53.2: itertools.dropwhile
	Section 53.3: Zipping two iterators until they are both exhausted
	Section 53.4: Take a slice of a generator
	Section 53.5: Grouping items from an iterable object using a function
	Section 53.6: itertools.takewhile
	Section 53.7: itertools.permutations
	Section 53.8: itertools.repeat
	Section 53.9: Get an accumulated sum of numbers in an iterable
	Section 53.10: Cycle through elements in an iterator
	Section 53.11: itertools.product
	Section 53.12: itertools.count
	Section 53.13: Chaining multiple iterators together

	Chapter 54: Asyncio Module
	Section 54.1: Coroutine and Delegation Syntax
	Section 54.2: Asynchronous Executors
	Section 54.3: Using UVLoop
	Section 54.4: Synchronization Primitive: Event
	Section 54.5: A Simple Websocket
	Section 54.6: Common Misconception about asyncio

	Chapter 55: Random module
	Section 55.1: Creating a random user password
	Section 55.2: Create cryptographically secure random numbers
	Section 55.3: Random and sequences: shue, choice and sample
	Section 55.4: Creating random integers and ﬂoats: randint, randrange, random, and uniform
	Section 55.5: Reproducible random numbers: Seed and State
	Section 55.6: Random Binary Decision

	Chapter 56: Functools Module
	Section 56.1: partial
	Section 56.2: cmp_to_key
	Section 56.3: lru_cache
	Section 56.4: total_ordering
	Section 56.5: reduce

	Chapter 57: The dis module
	Section 57.1: What is Python bytecode?
	Section 57.2: Constants in the dis module
	Section 57.3: Disassembling modules

	Chapter 58: The base64 Module
	Section 58.1: Encoding and Decoding Base64
	Section 58.2: Encoding and Decoding Base32
	Section 58.3: Encoding and Decoding Base16
	Section 58.4: Encoding and Decoding ASCII85
	Section 58.5: Encoding and Decoding Base85

	Chapter 59: Queue Module
	Section 59.1: Simple example

	Chapter 60: Deque Module
	Section 60.1: Basic deque using
	Section 60.2: Available methods in deque
	Section 60.3: limit deque size
	Section 60.4: Breadth First Search

	Chapter 61: Webbrowser Module
	Section 61.1: Opening a URL with Default Browser
	Section 61.2: Opening a URL with Dierent Browsers

	Chapter 62: tkinter
	Section 62.1: Geometry Managers
	Section 62.2: A minimal tkinter Application

	Chapter 63: pyautogui module
	Section 63.1: Mouse Functions
	Section 63.2: Keyboard Functions
	Section 63.3: Screenshot And Image Recognition

	Chapter 64: Indexing and Slicing
	Section 64.1: Basic Slicing
	Section 64.2: Reversing an object
	Section 64.3: Slice assignment
	Section 64.4: Making a shallow copy of an array
	Section 64.5: Indexing custom classes: __getitem__, __setitem__ and __delitem__
	Section 64.6: Basic Indexing

	Chapter 65: Plotting with Matplotlib
	Section 65.1: Plots with Common X-axis but dierent Y-axis : Using twinx()
	Section 65.2: Plots with common Y-axis and dierent X-axis using twiny()
	Section 65.3: A Simple Plot in Matplotlib
	Section 65.4: Adding more features to a simple plot : axis labels, title, axis ticks, grid, and legend
	Section 65.5: Making multiple plots in the same ﬁgure by superimposition similar to MATLAB
	Section 65.6: Making multiple Plots in the same ﬁgure using plot superimposition with separate plot commands

	Chapter 66: graph-tool
	Section 66.1: PyDotPlus
	Section 66.2: PyGraphviz

	Chapter 67: Generators
	Section 67.1: Introduction
	Section 67.2: Inﬁnite sequences
	Section 67.3: Sending objects to a generator
	Section 67.4: Yielding all values from another iterable
	Section 67.5: Iteration
	Section 67.6: The next() function
	Section 67.7: Coroutines
	Section 67.8: Refactoring list-building code
	Section 67.9: Yield with recursion: recursively listing all ﬁles in a directory
	Section 67.10: Generator expressions
	Section 67.11: Using a generator to ﬁnd Fibonacci Numbers
	Section 67.12: Searching
	Section 67.13: Iterating over generators in parallel

	Chapter 68: Reduce
	Section 68.1: Overview
	Section 68.2: Using reduce
	Section 68.3: Cumulative product
	Section 68.4: Non short-circuit variant of any/all

	Chapter 69: Map Function
	Section 69.1: Basic use of map, itertools.imap and future_builtins.map
	Section 69.2: Mapping each value in an iterable
	Section 69.3: Mapping values of dierent iterables
	Section 69.4: Transposing with Map: Using "None" as function argument (python 2.x only)
	Section 69.5: Series and Parallel Mapping

	Chapter 70: Exponentiation
	Section 70.1: Exponentiation using builtins: ** and pow()
	Section 70.2: Square root: math.sqrt() and cmath.sqrt
	Section 70.3: Modular exponentiation: pow() with 3 arguments
	Section 70.4: Computing large integer roots
	Section 70.5: Exponentiation using the math module: math.pow()
	Section 70.6: Exponential function: math.exp() and cmath.exp()
	Section 70.7: Exponential function minus 1: math.expm1()
	Section 70.8: Magic methods and exponentiation: builtin, math and cmath
	Section 70.9: Roots: nth-root with fractional exponents

	Chapter 71: Searching
	Section 71.1: Searching for an element
	Section 71.2: Searching in custom classes: __contains__ and __iter__
	Section 71.3: Getting the index for strings: str.index(), str.rindex() and str.ﬁnd(), str.rﬁnd()
	Section 71.4: Getting the index list and tuples: list.index(), tuple.index()
	Section 71.5: Searching key(s) for a value in dict
	Section 71.6: Getting the index for sorted sequences: bisect.bisect_left()
	Section 71.7: Searching nested sequences

	Chapter 72: Sorting, Minimum and Maximum
	Section 72.1: Make custom classes orderable
	Section 72.2: Special case: dictionaries
	Section 72.3: Using the key argument
	Section 72.4: Default Argument to max, min
	Section 72.5: Getting a sorted sequence
	Section 72.6: Extracting N largest or N smallest items from an iterable
	Section 72.7: Getting the minimum or maximum of several values
	Section 72.8: Minimum and Maximum of a sequence

	Chapter 73: Counting
	Section 73.1: Counting all occurrence of all items in an iterable: collections.Counter
	Section 73.2: Getting the most common value(-s): collections.Counter.most_common()
	Section 73.3: Counting the occurrences of one item in a sequence: list.count() and tuple.count()
	Section 73.4: Counting the occurrences of a substring in a string: str.count()
	Section 73.5: Counting occurrences in numpy array

	Chapter 74: The Print Function
	Section 74.1: Print basics
	Section 74.2: Print parameters

	Chapter 75: Regular Expressions (Regex)
	Section 75.1: Matching the beginning of a string
	Section 75.2: Searching
	Section 75.3: Precompiled patterns
	Section 75.4: Flags
	Section 75.5: Replacing
	Section 75.6: Find All Non-Overlapping Matches
	Section 75.7: Checking for allowed characters
	Section 75.8: Splitting a string using regular expressions
	Section 75.9: Grouping
	Section 75.10: Escaping Special Characters
	Section 75.11: Match an expression only in speciﬁc locations
	Section 75.12: Iterating over matches using `re.ﬁnditer`

	Chapter 76: Copying data
	Section 76.1: Copy a dictionary
	Section 76.2: Performing a shallow copy
	Section 76.3: Performing a deep copy
	Section 76.4: Performing a shallow copy of a list
	Section 76.5: Copy a set

	Chapter 77: Context Managers (“with” Statement)
	Section 77.1: Introduction to context managers and the with statement
	Section 77.2: Writing your own context manager
	Section 77.3: Writing your own contextmanager using generator syntax
	Section 77.4: Multiple context managers
	Section 77.5: Assigning to a target
	Section 77.6: Manage Resources

	Chapter 78: The __name__ special variable
	Section 78.1: __name__ == '__main__'
	Section 78.2: Use in logging
	Section 78.3: function_class_or_module.__name__

	Chapter 79: Checking Path Existence and Permissions
	Section 79.1: Perform checks using os.access

	Chapter 80: Creating Python packages
	Section 80.1: Introduction
	Section 80.2: Uploading to PyPI
	Section 80.3: Making package executable

	Chapter 81: Usage of "pip" module: PyPI Package Manager
	Section 81.1: Example use of commands
	Section 81.2: Handling ImportError Exception
	Section 81.3: Force install

	Chapter 82: pip: PyPI Package Manager
	Section 82.1: Install Packages
	Section 82.2: To list all packages installed using `pip`
	Section 82.3: Upgrade Packages
	Section 82.4: Uninstall Packages
	Section 82.5: Updating all outdated packages on Linux
	Section 82.6: Updating all outdated packages on Windows
	Section 82.7: Create a requirements.txt ﬁle of all packages on the system
	Section 82.8: Using a certain Python version with pip
	Section 82.9: Create a requirements.txt ﬁle of packages only in the current virtualenv
	Section 82.10: Installing packages not yet on pip as wheels

	Chapter 83: Parsing Command Line arguments
	Section 83.1: Hello world in argparse
	Section 83.2: Using command line arguments with argv
	Section 83.3: Setting mutually exclusive arguments with argparse
	Section 83.4: Basic example with docopt
	Section 83.5: Custom parser error message with argparse
	Section 83.6: Conceptual grouping of arguments with argparse.add_argument_group()
	Section 83.7: Advanced example with docopt and docopt_dispatch

	Chapter 84: Subprocess Library
	Section 84.1: More ﬂexibility with Popen
	Section 84.2: Calling External Commands
	Section 84.3: How to create the command list argument

	Chapter 85: setup.py
	Section 85.1: Purpose of setup.py
	Section 85.2: Using source control metadata in setup.py
	Section 85.3: Adding command line scripts to your python package
	Section 85.4: Adding installation options

	Chapter 86: Recursion
	Section 86.1: The What, How, and When of Recursion
	Section 86.2: Tree exploration with recursion
	Section 86.3: Sum of numbers from 1 to n
	Section 86.4: Increasing the Maximum Recursion Depth
	Section 86.5: Tail Recursion - Bad Practice
	Section 86.6: Tail Recursion Optimization Through Stack Introspection

	Chapter 87: Type Hints
	Section 87.1: Adding types to a function
	Section 87.2: NamedTuple
	Section 87.3: Generic Types
	Section 87.4: Variables and Attributes
	Section 87.5: Class Members and Methods
	Section 87.6: Type hints for keyword arguments

	Chapter 88: Exceptions
	Section 88.1: Catching Exceptions
	Section 88.2: Do not catch everything!
	Section 88.3: Re-raising exceptions
	Section 88.4: Catching multiple exceptions
	Section 88.5: Exception Hierarchy
	Section 88.6: Else
	Section 88.7: Raising Exceptions
	Section 88.8: Creating custom exception types
	Section 88.9: Practical examples of exception handling
	Section 88.10: Exceptions are Objects too
	Section 88.11: Running clean-up code with ﬁnally
	Section 88.12: Chain exceptions with raise from

	Chapter 89: Raise Custom Errors / Exceptions
	Section 89.1: Custom Exception
	Section 89.2: Catch custom Exception

	Chapter 90: Commonwealth Exceptions
	Section 90.1: Other Errors
	Section 90.2: NameError: name '???' is not deﬁned
	Section 90.3: TypeErrors
	Section 90.4: Syntax Error on good code
	Section 90.5: IndentationErrors (or indentation SyntaxErrors)

	Chapter 91: urllib
	Section 91.1: HTTP GET
	Section 91.2: HTTP POST
	Section 91.3: Decode received bytes according to content type encoding

	Chapter 92: Web scraping with Python
	Section 92.1: Scraping using the Scrapy framework
	Section 92.2: Scraping using Selenium WebDriver
	Section 92.3: Basic example of using requests and lxml to scrape some data
	Section 92.4: Maintaining web-scraping session with requests
	Section 92.5: Scraping using BeautifulSoup4
	Section 92.6: Simple web content download with urllib.request
	Section 92.7: Modify Scrapy user agent
	Section 92.8: Scraping with curl

	Chapter 93: HTML Parsing
	Section 93.1: Using CSS selectors in BeautifulSoup
	Section 93.2: PyQuery
	Section 93.3: Locate a text after an element in BeautifulSoup

	Chapter 94: Manipulating XML
	Section 94.1: Opening and reading using an ElementTree
	Section 94.2: Create and Build XML Documents
	Section 94.3: Modifying an XML File
	Section 94.4: Searching the XML with XPath
	Section 94.5: Opening and reading large XML ﬁles using iterparse (incremental parsing)

	Chapter 95: Python Requests Post
	Section 95.1: Simple Post
	Section 95.2: Form Encoded Data
	Section 95.3: File Upload
	Section 95.4: Responses
	Section 95.5: Authentication
	Section 95.6: Proxies

	Chapter 96: Distribution
	Section 96.1: py2app
	Section 96.2: cx_Freeze

	Chapter 97: Property Objects
	Section 97.1: Using the @property decorator for read-write properties
	Section 97.2: Using the @property decorator
	Section 97.3: Overriding just a getter, setter or a deleter of a property object
	Section 97.4: Using properties without decorators

	Chapter 98: Overloading
	Section 98.1: Operator overloading
	Section 98.2: Magic/Dunder Methods
	Section 98.3: Container and sequence types
	Section 98.4: Callable types
	Section 98.5: Handling unimplemented behaviour

	Chapter 99: Polymorphism
	Section 99.1: Duck Typing
	Section 99.2: Basic Polymorphism

	Chapter 100: Method Overriding
	Section 100.1: Basic method overriding

	Chapter 101: User-Deﬁned Methods
	Section 101.1: Creating user-deﬁned method objects
	Section 101.2: Turtle example

	Chapter 102: String representations of class instances: __str__ and __repr__ methods
	Section 102.1: Motivation
	Section 102.2: Both methods implemented, eval-round-trip style __repr__()

	Chapter 103: Debugging
	Section 103.1: Via IPython and ipdb
	Section 103.2: The Python Debugger: Step-through Debugging with _pdb_
	Section 103.3: Remote debugger

	Chapter 104: Reading and Writing CSV
	Section 104.1: Using pandas
	Section 104.2: Writing a TSV ﬁle

	Chapter 105: Writing to CSV from String or List
	Section 105.1: Basic Write Example
	Section 105.2: Appending a String as a newline in a CSV ﬁle

	Chapter 106: Dynamic code execution with `exec` and `eval`
	Section 106.1: Executing code provided by untrusted user using exec, eval, or ast.literal_eval
	Section 106.2: Evaluating a string containing a Python literal with ast.literal_eval
	Section 106.3: Evaluating statements with exec
	Section 106.4: Evaluating an expression with eval
	Section 106.5: Precompiling an expression to evaluate it multiple times
	Section 106.6: Evaluating an expression with eval using custom globals

	Chapter 107: PyInstaller - Distributing Python Code
	Section 107.1: Installation and Setup
	Section 107.2: Using Pyinstaller
	Section 107.3: Bundling to One Folder
	Section 107.4: Bundling to a Single File

	Chapter 108: Data Visualization with Python
	Section 108.1: Seaborn
	Section 108.2: Matplotlib
	Section 108.3: Plotly
	Section 108.4: MayaVI

	Chapter 109: The Interpreter (Command Line Console)
	Section 109.1: Getting general help
	Section 109.2: Referring to the last expression
	Section 109.3: Opening the Python console
	Section 109.4: The PYTHONSTARTUP variable
	Section 109.5: Command line arguments
	Section 109.6: Getting help about an object

	Chapter 110: *args and **kwargs
	Section 110.1: Using **kwargs when writing functions
	Section 110.2: Using *args when writing functions
	Section 110.3: Populating kwarg values with a dictionary
	Section 110.4: Keyword-only and Keyword-required arguments
	Section 110.5: Using **kwargs when calling functions
	Section 110.6: **kwargs and default values
	Section 110.7: Using *args when calling functions

	Chapter 111: Garbage Collection
	Section 111.1: Reuse of primitive objects
	Section 111.2: Eects of the del command
	Section 111.3: Reference Counting
	Section 111.4: Garbage Collector for Reference Cycles
	Section 111.5: Forcefully deallocating objects
	Section 111.6: Viewing the refcount of an object
	Section 111.7: Do not wait for the garbage collection to clean up
	Section 111.8: Managing garbage collection

	Chapter 112: Pickle data serialisation
	Section 112.1: Using Pickle to serialize and deserialize an object
	Section 112.2: Customize Pickled Data

	Chapter 113: Binary Data
	Section 113.1: Format a list of values into a byte object
	Section 113.2: Unpack a byte object according to a format string
	Section 113.3: Packing a structure

	Chapter 114: Idioms
	Section 114.1: Dictionary key initializations
	Section 114.2: Switching variables
	Section 114.3: Use truth value testing
	Section 114.4: Test for "__main__" to avoid unexpected code execution

	Chapter 115: Data Serialization
	Section 115.1: Serialization using JSON
	Section 115.2: Serialization using Pickle

	Chapter 116: Multiprocessing
	Section 116.1: Running Two Simple Processes
	Section 116.2: Using Pool and Map

	Chapter 117: Multithreading
	Section 117.1: Basics of multithreading
	Section 117.2: Communicating between threads
	Section 117.3: Creating a worker pool
	Section 117.4: Advanced use of multithreads
	Section 117.5: Stoppable Thread with a while Loop

	Chapter 118: Processes and Threads
	Section 118.1: Global Interpreter Lock
	Section 118.2: Running in Multiple Threads
	Section 118.3: Running in Multiple Processes
	Section 118.4: Sharing State Between Threads
	Section 118.5: Sharing State Between Processes

	Chapter 119: Python concurrency
	Section 119.1: The multiprocessing module
	Section 119.2: The threading module
	Section 119.3: Passing data between multiprocessing processes

	Chapter 120: Parallel computation
	Section 120.1: Using the multiprocessing module to parallelise tasks
	Section 120.2: Using a C-extension to parallelize tasks
	Section 120.3: Using Parent and Children scripts to execute code in parallel
	Section 120.4: Using PyPar module to parallelize

	Chapter 121: Sockets
	Section 121.1: Raw Sockets on Linux
	Section 121.2: Sending data via UDP
	Section 121.3: Receiving data via UDP
	Section 121.4: Sending data via TCP
	Section 121.5: Multi-threaded TCP Socket Server

	Chapter 122: Websockets
	Section 122.1: Simple Echo with aiohttp
	Section 122.2: Wrapper Class with aiohttp
	Section 122.3: Using Autobahn as a Websocket Factory

	Chapter 123: Sockets And Message Encryption/Decryption Between Client and Server
	Section 123.1: Server side Implementation
	Section 123.2: Client side Implementation

	Chapter 124: Python Networking
	Section 124.1: Creating a Simple Http Server
	Section 124.2: Creating a TCP server
	Section 124.3: Creating a UDP Server
	Section 124.4: Start Simple HttpServer in a thread and open the browser
	Section 124.5: The simplest Python socket client-server example

	Chapter 125: Python HTTP Server
	Section 125.1: Running a simple HTTP server
	Section 125.2: Serving ﬁles
	Section 125.3: Basic handling of GET, POST, PUT using BaseHTTPRequestHandler
	Section 125.4: Programmatic API of SimpleHTTPServer

	Chapter 126: Flask
	Section 126.1: Files and Templates
	Section 126.2: The basics
	Section 126.3: Routing URLs
	Section 126.4: HTTP Methods
	Section 126.5: Jinja Templating
	Section 126.6: The Request Object

	Chapter 127: Introduction to RabbitMQ using AMQPStorm
	Section 127.1: How to consume messages from RabbitMQ
	Section 127.2: How to publish messages to RabbitMQ
	Section 127.3: How to create a delayed queue in RabbitMQ

	Chapter 128: Descriptor
	Section 128.1: Simple descriptor
	Section 128.2: Two-way conversions

	Chapter 129: tempﬁle NamedTemporaryFile
	Section 129.1: Create (and write to a) known, persistent temporary ﬁle

	Chapter 130: Input, Subset and Output External Data Files using Pandas
	Section 130.1: Basic Code to Import, Subset and Write External Data Files Using Pandas

	Chapter 131: Unzipping Files
	Section 131.1: Using Python ZipFile.extractall() to decompress a ZIP ﬁle
	Section 131.2: Using Python TarFile.extractall() to decompress a tarball

	Chapter 132: Working with ZIP archives
	Section 132.1: Examining Zipﬁle Contents
	Section 132.2: Opening Zip Files
	Section 132.3: Extracting zip ﬁle contents to a directory
	Section 132.4: Creating new archives

	Chapter 133: Getting start with GZip
	Section 133.1: Read and write GNU zip ﬁles

	Chapter 134: Stack
	Section 134.1: Creating a Stack class with a List Object
	Section 134.2: Parsing Parentheses

	Chapter 135: Working around the Global Interpreter Lock (GIL)
	Section 135.1: Multiprocessing.Pool
	Section 135.2: Cython nogil:

	Chapter 136: Deployment
	Section 136.1: Uploading a Conda Package

	Chapter 137: Logging
	Section 137.1: Introduction to Python Logging
	Section 137.2: Logging exceptions

	Chapter 138: Web Server Gateway Interface (WSGI)
	Section 138.1: Server Object (Method)

	Chapter 139: Python Server Sent Events
	Section 139.1: Flask SSE
	Section 139.2: Asyncio SSE

	Chapter 140: Alternatives to switch statement from other languages
	Section 140.1: Use what the language oers: the if/else construct
	Section 140.2: Use a dict of functions
	Section 140.3: Use class introspection
	Section 140.4: Using a context manager

	Chapter 141: List destructuring (aka packing and unpacking)
	Section 141.1: Destructuring assignment
	Section 141.2: Packing function arguments
	Section 141.3: Unpacking function arguments

	Chapter 142: Accessing Python source code and bytecode
	Section 142.1: Display the bytecode of a function
	Section 142.2: Display the source code of an object
	Section 142.3: Exploring the code object of a function

	Chapter 143: Mixins
	Section 143.1: Mixin
	Section 143.2: Overriding Methods in Mixins

	Chapter 144: Attribute Access
	Section 144.1: Basic Attribute Access using the Dot Notation
	Section 144.2: Setters, Getters & Properties

	Chapter 145: ArcPy
	Section 145.1: createDissolvedGDB to create a ﬁle gdb on the workspace
	Section 145.2: Printing one ﬁeld's value for all rows of feature class in ﬁle geodatabase using Search Cursor

	Chapter 146: Abstract Base Classes (abc)
	Section 146.1: Setting the ABCMeta metaclass
	Section 146.2: Why/How to use ABCMeta and @abstractmethod

	Chapter 147: Plugin and Extension Classes
	Section 147.1: Mixins
	Section 147.2: Plugins with Customized Classes

	Chapter 148: Immutable datatypes(int, ﬂoat, str, tuple and frozensets)
	Section 148.1: Individual characters of strings are not assignable
	Section 148.2: Tuple's individual members aren't assignable
	Section 148.3: Frozenset's are immutable and not assignable

	Chapter 149: Incompatibilities moving from Python 2 to Python 3
	Section 149.1: Integer Division
	Section 149.2: Unpacking Iterables
	Section 149.3: Strings: Bytes versus Unicode
	Section 149.4: Print statement vs. Print function
	Section 149.5: Dierences between range and xrange functions
	Section 149.6: Raising and handling Exceptions
	Section 149.7: Leaked variables in list comprehension
	Section 149.8: True, False and None
	Section 149.9: User Input
	Section 149.10: Comparison of dierent types
	Section 149.11: .next() method on iterators renamed
	Section 149.12: ﬁlter(), map() and zip() return iterators instead of sequences
	Section 149.13: Renamed modules
	Section 149.14: Removed operators <> and ``, synonymous with != and repr()
	Section 149.15: long vs. int
	Section 149.16: All classes are "new-style classes" in Python 3
	Section 149.17: Reduce is no longer a built-in
	Section 149.18: Absolute/Relative Imports
	Section 149.19: map()
	Section 149.20: The round() function tie-breaking and return type
	Section 149.21: File I/O
	Section 149.22: cmp function removed in Python 3
	Section 149.23: Octal Constants
	Section 149.24: Return value when writing to a ﬁle object
	Section 149.25: exec statement is a function in Python 3
	Section 149.26: encode/decode to hex no longer available
	Section 149.27: Dictionary method changes
	Section 149.28: Class Boolean Value
	Section 149.29: hasattr function bug in Python 2

	Chapter 150: 2to3 tool
	Section 150.1: Basic Usage

	Chapter 151: Non-ocial Python implementations
	Section 151.1: IronPython
	Section 151.2: Jython
	Section 151.3: Transcrypt

	Chapter 152: Abstract syntax tree
	Section 152.1: Analyze functions in a python script

	Chapter 153: Unicode and bytes
	Section 153.1: Encoding/decoding error handling
	Section 153.2: File I/O
	Section 153.3: Basics

	Chapter 154: Python Serial Communication (pyserial)
	Section 154.1: Initialize serial device
	Section 154.2: Read from serial port
	Section 154.3: Check what serial ports are available on your machine

	Chapter 155: Neo4j and Cypher using Py2Neo
	Section 155.1: Adding Nodes to Neo4j Graph
	Section 155.2: Importing and Authenticating
	Section 155.3: Adding Relationships to Neo4j Graph
	Section 155.4: Query 1 : Autocomplete on News Titles
	Section 155.5: Query 2 : Get News Articles by Location on a particular date
	Section 155.6: Cypher Query Samples

	Chapter 156: Basic Curses with Python
	Section 156.1: The wrapper() helper function
	Section 156.2: Basic Invocation Example

	Chapter 157: Templates in python
	Section 157.1: Simple data output program using template
	Section 157.2: Changing delimiter

	Chapter 158: Pillow
	Section 158.1: Read Image File
	Section 158.2: Convert ﬁles to JPEG

	Chapter 159: The pass statement
	Section 159.1: Ignore an exception
	Section 159.2: Create a new Exception that can be caught

	Chapter 160: CLI subcommands with precise help output
	Section 160.1: Native way (no libraries)
	Section 160.2: argparse (default help formatter)
	Section 160.3: argparse (custom help formatter)

	Chapter 161: Database Access
	Section 161.1: SQLite
	Section 161.2: Accessing MySQL database using MySQLdb
	Section 161.3: Connection
	Section 161.4: PostgreSQL Database access using psycopg2
	Section 161.5: Oracle database
	Section 161.6: Using sqlalchemy

	Chapter 162: Connecting Python to SQL Server
	Section 162.1: Connect to Server, Create Table, Query Data

	Chapter 163: PostgreSQL
	Section 163.1: Getting Started

	Chapter 164: Python and Excel
	Section 164.1: Read the excel data using xlrd module
	Section 164.2: Format Excel ﬁles with xlsxwriter
	Section 164.3: Put list data into a Excel's ﬁle
	Section 164.4: OpenPyXL
	Section 164.5: Create excel charts with xlsxwriter

	Chapter 165: Turtle Graphics
	Section 165.1: Ninja Twist (Turtle Graphics)

	Chapter 166: Python Persistence
	Section 166.1: Python Persistence
	Section 166.2: Function utility for save and load

	Chapter 167: Design Patterns
	Section 167.1: Introduction to design patterns and Singleton Pattern
	Section 167.2: Strategy Pattern
	Section 167.3: Proxy

	Chapter 168: hashlib
	Section 168.1: MD5 hash of a string
	Section 168.2: algorithm provided by OpenSSL

	Chapter 169: Creating a Windows service using Python
	Section 169.1: A Python script that can be run as a service
	Section 169.2: Running a Flask web application as a service

	Chapter 170: Mutable vs Immutable (and Hashable) in Python
	Section 170.1: Mutable vs Immutable
	Section 170.2: Mutable and Immutable as Arguments

	Chapter 171: conﬁgparser
	Section 171.1: Creating conﬁguration ﬁle programmatically
	Section 171.2: Basic usage

	Chapter 172: Optical Character Recognition
	Section 172.1: PyTesseract
	Section 172.2: PyOCR

	Chapter 173: Virtual environments
	Section 173.1: Creating and using a virtual environment
	Section 173.2: Specifying speciﬁc python version to use in script on Unix/Linux
	Section 173.3: Creating a virtual environment for a dierent version of python
	Section 173.4: Making virtual environments using Anaconda
	Section 173.5: Managing multiple virtual environments with virtualenvwrapper
	Section 173.6: Installing packages in a virtual environment
	Section 173.7: Discovering which virtual environment you are using
	Section 173.8: Checking if running inside a virtual environment
	Section 173.9: Using virtualenv with ﬁsh shell

	Chapter 174: Python Virtual Environment - virtualenv
	Section 174.1: Installation
	Section 174.2: Usage
	Section 174.3: Install a package in your Virtualenv
	Section 174.4: Other useful virtualenv commands

	Chapter 175: Virtual environment with virtualenvwrapper
	Section 175.1: Create virtual environment with virtualenvwrapper

	Chapter 176: Create virtual environment with virtualenvwrapper in windows
	Section 176.1: Virtual environment with virtualenvwrapper for windows

	Chapter 177: sys
	Section 177.1: Command line arguments
	Section 177.2: Script name
	Section 177.3: Standard error stream
	Section 177.4: Ending the process prematurely and returning an exit code

	Chapter 178: ChemPy - python package
	Section 178.1: Parsing formulae
	Section 178.2: Balancing stoichiometry of a chemical reaction
	Section 178.3: Balancing reactions
	Section 178.4: Chemical equilibria
	Section 178.5: Ionic strength
	Section 178.6: Chemical kinetics (system of ordinary dierential equations)

	Chapter 179: pygame
	Section 179.1: Pygame's mixer module
	Section 179.2: Installing pygame

	Chapter 180: Pyglet
	Section 180.1: Installation of Pyglet
	Section 180.2: Hello World in Pyglet
	Section 180.3: Playing Sound in Pyglet
	Section 180.4: Using Pyglet for OpenGL
	Section 180.5: Drawing Points Using Pyglet and OpenGL

	Chapter 181: Audio
	Section 181.1: Working with WAV ﬁles
	Section 181.2: Convert any soundﬁle with python and mpeg
	Section 181.3: Playing Windows' beeps
	Section 181.4: Audio With Pyglet

	Chapter 182: pyaudio
	Section 182.1: Callback Mode Audio I/O
	Section 182.2: Blocking Mode Audio I/O

	Chapter 183: shelve
	Section 183.1: Creating a new Shelf
	Section 183.2: Sample code for shelve
	Section 183.3: To summarize the interface (key is a string, data is an arbitrary object):
	Section 183.4: Write-back

	Chapter 184: IoT Programming with Python and Raspberry PI
	Section 184.1: Example - Temperature sensor

	Chapter 185: kivy - Cross-platform Python Framework for NUI Development
	Section 185.1: First App

	Chapter 186: Pandas Transform: Preform operations on groups and concatenate the results
	Section 186.1: Simple transform
	Section 186.2: Multiple results per group

	Chapter 187: Similarities in syntax, Dierences in meaning: Python vs. JavaScript
	Section 187.1: `in` with lists

	Chapter 188: Call Python from C#
	Section 188.1: Python script to be called by C# application
	Section 188.2: C# code calling Python script

	Chapter 189: ctypes
	Section 189.1: ctypes arrays
	Section 189.2: Wrapping functions for ctypes
	Section 189.3: Basic usage
	Section 189.4: Common pitfalls
	Section 189.5: Basic ctypes object
	Section 189.6: Complex usage

	Chapter 190: Writing extensions
	Section 190.1: Hello World with C Extension
	Section 190.2: C Extension Using c++ and Boost
	Section 190.3: Passing an open ﬁle to C Extensions

	Chapter 191: Python Lex-Yacc
	Section 191.1: Getting Started with PLY
	Section 191.2: The "Hello, World!" of PLY - A Simple Calculator
	Section 191.3: Part 1: Tokenizing Input with Lex
	Section 191.4: Part 2: Parsing Tokenized Input with Yacc

	Chapter 192: Unit Testing
	Section 192.1: Test Setup and Teardown within a unittest.TestCase
	Section 192.2: Asserting on Exceptions
	Section 192.3: Testing Exceptions
	Section 192.4: Choosing Assertions Within Unittests
	Section 192.5: Unit tests with pytest
	Section 192.6: Mocking functions with unittest.mock.create_autospec

	Chapter 193: py.test
	Section 193.1: Setting up py.test
	Section 193.2: Intro to Test Fixtures
	Section 193.3: Failing Tests

	Chapter 194: Proﬁling
	Section 194.1: %%timeit and %timeit in IPython
	Section 194.2: Using cProﬁle (Preferred Proﬁler)
	Section 194.3: timeit() function
	Section 194.4: timeit command line
	Section 194.5: line_proﬁler in command line

	Chapter 195: Python speed of program
	Section 195.1: Deque operations
	Section 195.2: Algorithmic Notations
	Section 195.3: Notation
	Section 195.4: List operations
	Section 195.5: Set operations

	Chapter 196: Performance optimization
	Section 196.1: Code proﬁling

	Chapter 197: Security and Cryptography
	Section 197.1: Secure Password Hashing
	Section 197.2: Calculating a Message Digest
	Section 197.3: Available Hashing Algorithms
	Section 197.4: File Hashing
	Section 197.5: Generating RSA signatures using pycrypto
	Section 197.6: Asymmetric RSA encryption using pycrypto
	Section 197.7: Symmetric encryption using pycrypto

	Chapter 198: Secure Shell Connection in Python
	Section 198.1: ssh connection

	Chapter 199: Python Anti-Patterns
	Section 199.1: Overzealous except clause
	Section 199.2: Looking before you leap with processor-intensive function

	Chapter 200: Common Pitfalls
	Section 200.1: List multiplication and common references
	Section 200.2: Mutable default argument
	Section 200.3: Changing the sequence you are iterating over
	Section 200.4: Integer and String identity
	Section 200.5: Dictionaries are unordered
	Section 200.6: Variable leaking in list comprehensions and for loops
	Section 200.7: Chaining of or operator
	Section 200.8: sys.argv[0] is the name of the ﬁle being executed
	Section 200.9: Accessing int literals' attributes
	Section 200.10: Global Interpreter Lock (GIL) and blocking threads
	Section 200.11: Multiple return
	Section 200.12: Pythonic JSON keys

	Chapter 201: Hidden Features
	Section 201.1: Operator Overloading

	Credits
	You may also like

